
Coggeshall
Zend Enterprise PHP Patterns

Companion
eBook

Available

spine = 0.625" 280 page count

THE EXPERT’S VOICE® IN PHP

Zend Enterprise
PHP Patterns

John Coggeshall
with Morgan Tocker
Foreword by Andi Gutmans,
Chief Executive Officer, Zend Technologies, Inc.

Performance, architecture, and analysis
of PHP applications

this print for content only—size & color not accurate

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Zend Enterprise PHP Patterns
Dear Reader,

As the Senior Architect for Zend Global Services during the first three years of
the group’s existence, I had the opportunity to work with some of the largest PHP
applications on the planet and solve many interesting challenges around perfor-
mance, security, and architecture. At the time there was little in the way of tools
or standards to accomplish these tasks, and the group often had to create the
solutions to our customers’ problems from scratch. The fruit of these efforts has
largely been captured in this book—a compilation of techniques around perfor-
mance, architecture, security, and more taken directly from my experiences.

Thankfully, a lot has changed since 2004, and now extensive tools and tech-
niques exist to solve more effectively many of the issues we struggled with. From
powerful open source frameworks such as Zend Framework to the advanced
tools provided by Zend Studio for Eclipse and Zend Platform, it is now easier to
diagnose and address issues than it has ever been. That said, there are still many
things that require the touch of a knowledgeable engineer, and it is my sincere
hope that you will find this book a useful insight into how these tools, with some
key knowledge, can help you solve many of the common problems faced in
world-class PHP applications today.

The Web and its challenges are always going to be moving targets, changing
nearly daily as technology evolves. The goal of this book is not only to teach you
the practical solutions for some of the common problems for today but also to
give you insight that I hope will help you solve the problems of tomorrow. Enjoy!

Regards,

John Coggeshall

 CYAN
MAGENTA

YELLOW
BLACK

 PANTONE 123 C

THE APRESS ROADMAP

Zend Enterprise
PHP Patterns

PHP Objects, Patterns, and
Practice, Second Edition

Pro PHP

Practical Web 2.0
Applications with PHP

Beginning PHP 5 and
MySQL, Third Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

ISBN 978-1-4302-1974-3

9 781430 219743

54699

US $46.99

Shelve in
PHP

User level:
Intermediate–Advanced
Advanced

www.zendenterprisephp.com

Author of

PHP 5 Unleashed

Download at WoWeBook.Com

Zend Enterprise PHP
Patterns

John Coggeshall with Morgan Tocker

Download at WoWeBook.Com

Zend Enterprise PHP Patterns

Copyright © 2009 by John Coggeshall

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1974-3

ISBN-13 (electronic): 978-1-4302-1975-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade
Technical Reviewer: Kevin Schroeder
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Managers: Sofia Marchant and Kylie Johnston
Copy Editor: Hastings Hart
Associate Production Director: Kari Brooks-Copony
Production Editor: April Eddy
Compositor: Lynn L’Heureux
Proofreader: Liz Welch
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 233 Spring Street, New York, NY 10013.
E-mail or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at .

Download at WoWeBook.Com

To my daughter, Diana Katheryn Coggeshall, who continues to be the single steadfast
reason I have to do more and be more in my life

John Coggeshall

Download at WoWeBook.Com

Download at WoWeBook.Com

v

Contents at a Glance

Foreword . xiii

About the Authors. xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Introduction to Zend Framework . 1

CHAPTER 2 Introduction to Zend Studio for Eclipse . 33

CHAPTER 3 Web Application Performance and Analysis . 57

CHAPTER 4 Data-Caching Strategies in PHP . 71

CHAPTER 5 Asynchronous Operations with PHP . 93

CHAPTER 6 Securing Your PHP Applications. 123

CHAPTER 7 Monitoring Your Applications . 141

CHAPTER 8 Web Services and Zend Framework . 167

CHAPTER 9 Production Farms for PHP . 193

CHAPTER 10 The MySQL Database. 211

INDEX . 249

Download at WoWeBook.Com

Download at WoWeBook.Com

vii

Contents

Foreword . xiii

About the Authors. xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Introduction to Zend Framework. 1

Introduction to Zend Framework Library . 1

Zend Framework MVC . 3

Model, View, and Controller . 3

“Hello World” in Zend Framework . 9

Zend Framework Request/Response Objects and Error Handling. . . . 27

Conclusion . 31

CHAPTER 2 Introduction to Zend Studio for Eclipse 33

Getting Started Zend Studio for Eclipse . 33

Creating Projects in Zend Studio for Eclipse . 36

Debugging in Zend Studio for Eclipse. 38

Profiling in Zend Studio for Eclipse . 52

Conclusion . 55

CHAPTER 3 Web Application Performance and Analysis 57

Locating the Bottleneck . 59

How Are You Bound?. 59

Using vmstat . 59

Determining Whether You Are CPU-Bound . 62

Determining Whether You Are Memory-Bound. 63

Determining Whether You Are I/O-Bound . 65

Download at WoWeBook.Com

CONTENTSviii

Where to Start Looking . 66

CPU Bounding Influence . 66

Memory Bounding Influence . 67

I/O Bounding Influence . 67

When the Bottleneck Is a Remote Procedure Call 68

Simulating Load to Identify Future Bottlenecks 68

Conclusion . 70

CHAPTER 4 Data-Caching Strategies in PHP . 71

Opcode Caching. 71

The PHP Execution Cycle . 71

Full-Page Caching . 74

What Is Full-Page Caching? . 74

Setting Up Full-Page Caching . 76

Final Thoughts on Full-Page Caching. 79

Semi-Full-Page Caching. 79

Programmatic Caching . 82

Components of Caching in Zend Framework 82

You Can (Almost) Always Cache Things. 83

Knowing Your Cache Effectiveness. 85

The Various Zend_Cache Back Ends . 85

Conclusion . 92

CHAPTER 5 Asynchronous Operations with PHP . 93

Getting Started with Job Queue . 95

Advanced Job Queue Configuration . 97

Replacing Job Queue’s PHP with Your Own . 97

Modifying the Configuration of Job Queue’s PHP. 99

Controlling the Job Queue from the Command Line 99

Using the Job Queue to Execute PHP Scripts . 100

Creating Your First Job . 100

Searching for Existing Jobs . 102

Using Input Parameters in Job Queue Scripts. 105

Creating Jobs Programmatically Using the Job Queue API. 108

Conclusion . 121

Download at WoWeBook.Com

CONTENTS ix

CHAPTER 6 Securing Your PHP Applications . 123

Setting the Context . 123

Defining Security . 124

Common Threats and Defenses . 124

Input Security . 125

Securing File Uploads . 130

Output Security. 135

Conclusion . 138

CHAPTER 7 Monitoring Your Applications . 141

Effective Logging Through Zend_Log . 141

Getting Started with Zend_Log . 142

Advanced Monitoring . 149

What Is PHP Intelligence?. 149

Getting Started with PHP Intelligence. 150

Creating Advanced Monitoring Facilities . 155

Customizing Zend_Log Behavior and Integrating 159

with Zend Platform

Logging and Performance . 165

Conclusion . 166

CHAPTER 8 Web Services and Zend Framework . 167

The Multi-Transport Services Architecture Using ZF. 167

The Command Pattern . 168

The ServiceController Action Controller . 176

Creating a Simple Web Service . 182

Dealing with SOAP in Zend Framework MVC 184

Consuming Web Services Using Zend Framework 189

Consume REST-Style Services . 189

Consuming SOAP Services . 191

Conclusion . 192

Download at WoWeBook.Com

CONTENTSx

CHAPTER 9 Production Farms for PHP . 193

General Server Farm Architecture . 193

Session Data and Farm Architecture . 196

Database Concerns in Farm Architecture . 197

MySQL Slave Farm Architecture . 198

MySQL Master Farm Architecture . 201

Dealing with Serving of Files . 203

Asynchronous Operations and the Farm . 208

Conclusion . 209

CHAPTER 10 The MySQL Database . 211

The Storage Engine Concept . 211

Optimizing Queries with EXPLAIN . 213

Workload-Driven Performance Tuning. 220

Read-Heavy Workload. 220

Write-Heavy Workload. 224

Online Transaction Processing . 226

Online Analytical Processing . 229

Data Warehouse . 230

Optimization Advice That Applies to All Workloads 231

Applications with More Than One Workload 235

Using Appropriate Data Types . 235

Estimating Storage Requirements. 235

Just Throw Hardware at the Problem . 238

CPUs. 238

Memory . 238

Disks. 238

Network . 239

Scaling MySQL . 239

When Replication Scale Out Works Well . 240

When Replication Fails . 240

MySQL Sharded Architectures. 242

Using MySQL Proxy for Automatic Read/Write Splitting 244

Backing Up MySQL . 245

Download at WoWeBook.Com

CONTENTS xi

The Rules of Performance Tuning a Database . 246

Be Methodical. 246

Make Any Benchmarks As Realistic As Possible 246

Realize That Every Setting Has a Range . 247

Realize That Things Change over Time . 247

Realize That Some Settings Make Trade-offs. 247

Realize That Empirical Proof Is the Only True Test 248

Conclusion . 248

INDEX . 249

Download at WoWeBook.Com

Download at WoWeBook.Com

xiii

Foreword

Seat 5D, Continental Flight 449B, someplace over North America

In the late ’90s, PHP was still referred to mockingly by many computer science gradu-
ates as a “scripting language.” Lack of strict typing was the number one reason it was
not viewed as ready for prime time. At that time most computer science graduates were
developing either in C or C++, or picking up Java, and therefore there was a strong bias in
the IT community. Although PHP grew rapidly during this period and among other things
displaced Perl on the Web, it still was not widely considered an enterprise-ready solution.

During the dot-com boom venture capitalists expected startups to build their solu-
tions on the latest and greatest Oracle/Solaris/WebLogic combo. It was very much a
culture of “Java is the solution. What’s the problem?” Paying ridiculous prices such as
tens of thousands of dollars per CPU did not stop anyone from buying these solutions,
and the majority of projects really weren’t using the enterprise features they paid for. This
was very familiar to the well-known saying, “No one gets fired for buying IBM.”

With the dot-com bust, companies started to realize they needed to get the most
out of their investment. PHP went through a very strong period of growth during those
years, including early penetration within business-critical enterprise applications. The
perception of “scripting languages” changed, and they were even given a new more
professional-sounding name, “dynamic languages.” It was now OK for a computer sci-
ence graduate to add dynamic languages to their toolbox.

Over the past five years PHP adoption within the enterprise has accelerated, and it is
now going mainstream within IT. In addition to the already mentioned reasons for this
change, there were additional factors that drove this change. The ecosystem and the solu-
tions around PHP have matured to make it a strong contender for driving standardization
within corporate IT. With the investments by the likes of IBM, Oracle, Adobe, and Micro-
soft ensuring that PHP runs well with their solutions, there are few solutions that are as
cross-platform and interoperable as PHP.

In addition, application servers, application frameworks, tools, many available
prebuilt applications, and other solutions are now readily available as part of the PHP
ecosystem. Add five million to six million developers to that, and it becomes a very com-
pelling value proposition for enterprises.

With the financial crises that started in 2007 we are seeing the same trends as we did
with the dot-com bust. Companies are looking to do more with less as that is the only way
for them to continue to be competitive and grow. Yet again a perfect setup for yet another
acceleration in PHP adoption, but this time with the full-blown ecosystem.

Download at WoWeBook.Com

FOREWORDxiv

Strategic adoption of PHP in mainstream IT continues to accelerate, and there are
few other solutions out there that can compete on the same ease of use, cross-platform
support, huge developer community, large ecosystem, and corporate support.

PHP is in the enterprise because it is faster, cheaper, and I also claim better!
I have known John, the author of this book, for over five years. In fact, first time I

started working with John was when we had a significant enterprise opportunity that we
had to engage with, and I asked John to join that effort. Over the years he has worked with
many enterprises, helping them build business-critical PHP applications. I have no doubt
that you will find this book a valuable resource for building and deploying enterprise-
ready PHP applications.

Andi Gutmans
Cofounder and Chief Executive Officer of Zend Technologies

July 10, 2009

Download at WoWeBook.Com

xv

About the Authors

JOHN COGGESHALL is CEO of Internet Technology Solutions, a
PHP-focused technology consultancy. The former Senior Architect
of Zend Technologies’ Global Services team, he got started with
PHP in 1997 and is the author of three published books and over
100 articles on PHP technologies with some of the biggest names
in the industry such as Sams Publishing, Apress, and O’Reilly. John
also is an active contributor to the PHP core as the author of the
Tidy extension, a member of the Zend Education Advisory Board,
and a frequent speaker at PHP-related conferences worldwide. His
web site, , is an excellent resource for
any PHP developer, and you can follow him on Twitter by adding

.

MORGAN TOCKER is a Consultant at Percona, a company that pro-
vides consulting and custom development for MySQL.

Before joining Percona, Morgan worked as a Technical
Instructor for MySQL (and then Sun Microsystems) in Canada,
where he taught courses on high availability, performance tuning,
and database administration. He is a frequent conference speaker
in the United States and Canada.

Morgan has also previously worked as a MySQL Support Engi-
neer and claims that he can look at complex problems and answer
with a bug number, without having to ever look it up.

Download at WoWeBook.Com

Download at WoWeBook.Com

xvii

About the Technical Reviewer

KEVIN SCHROEDER, Technical Consultant for Zend Technologies, is well versed in technol-
ogies pertinent to small- and large-scale web-application deployments. He has developed
production software using PHP and several other languages and also has extensive expe-
rience in system administration on Linux, Solaris, and Windows. He is the author of The
IBM i Programmer’s Guide to PHP (MC Press, 2009).

Download at WoWeBook.Com

Download at WoWeBook.Com

xix

Acknowledgments

I’d like to give a special thanks to Morgan Tocker, who so willingly agreed to lend his
amazing wealth of MySQL knowledge to this book. Without him the book most certainly
would have suffered.

John Coggeshall

I can remember the day I told my dad I was going to be working remotely for a Swedish
database company called MySQL AB. To him, the idea of someone putting money in my
bank account each month while I sat at home in Australia sounded like a scam. It turned
out to be a big career break.

I would like to acknowledge my former colleagues at the MySQL AB (now Sun Micro-
systems) Support and Training teams. It was through your patience and willingness to
share that I began picking up the pieces to place in this book (with a special thanks to
Tobias Asplund, who provided many of the examples I used).

I would also like to thank Percona, my current employer, for continuing to enhance
MySQL and adding the demanding performance features that escape Sun Microsystems’
eyes. We’d all be at a loss without you.

Morgan Tocker

Download at WoWeBook.Com

Download at WoWeBook.Com

xxi

Introduction

The idea for this book came to me years ago after about a year and a half of working
in the Zend Global Services group. Being “on the front lines” of solving the problems of
some of the most complex PHP application implementations on the planet, it quickly
became clear to me that there was a real need for a text that captures the solutions and
techniques we were discovering from one client to the next. Unfortunately when you’re in
the services business time is scarce, and while I had written the table of contents for the
book, that TOC sat gathering dust in my archives until the day I had the time and energy
to pursue it.

That opportunity came years later, after I resigned my position at Zend to pursue
other challenges. As it turned out, Zend was interested in creating a branded series of
books as part of a series through Apress (“Zend Press”) and was in search of qualified
authors. Suddenly that TOC that had been stagnant for years once again had legs. Of
course it took a few revisions to factor in things that have changed over the years, but ulti-
mately I was surprised to find how many of the solutions we had worked with years ago
still were not only relevant today but also unknown to many PHP developers.

Of all of the books I have worked on over the years, I have enjoyed writing this one
the most. Partly because it’s a bit smaller than my previous works (*grin*), but mostly
because I really feel like the content has so much value that doesn’t get a lot of attention
even today. I hope you enjoy the book as much as I enjoyed writing it! As you get started
with this book, I strongly recommend that you visit the companion web site (

/), where you will find an errata, the VMware virtual machine that is
a complete self-contained environment for the examples and demos found in this book,
as well as other resources you may find useful.

Thank you for purchasing my book! Enjoy!

Who This Book Is For
This book is for intermediate PHP developers who work with large, extremely complex
code bases and have a significant amount of traffic to deal with. It is also for technical
leaders within organizations charged with managing those developers.

Download at WoWeBook.Com

INTRODUCTIONxxii

How This Book Is Structured
Each chapter in this book for the most part is independent from the next, although they
are all structured in such a way that it can be read cover to cover without issue. This
makes the book not only a great read start to finish but also a great reference guide to
some of the more challenging aspects of PHP application development.

Prerequisites
This book was written against PHP 5.2 and Zend Framework 1.8. That said, the provided
VMware image on the book web site () is a fully func-
tional, self-contained environment to work with the code in this book.

Downloading the Code
The source code for this book is available to readers at in the Down-
loads section of this book’s home page. Please feel free to visit the Apress web site and
download all the code there. You can also find the book’s source code at

 (recommended).

Contacting the Author
E-mail:
Web site:
Book site:
Twitter:

Download at WoWeBook.Com

1

C H A P T E R 1

Introduction to Zend
Framework

When developing an enterprise application in any language, tooling is almost as impor-
tant to you as the way you use the tools. If you look at the success of languages such as
Java you see an entire ecosystem of tools to make the lives of the developers, managers,
and team as a whole better.

When it comes to tooling, the PHP world is no different. While I’ll admit there are
decidedly fewer options available to a PHP development team, those options that do exist
are impressively robust and easy to use. One such category of tools is frameworks that help
ease the pain of development and maintenance of applications for their entire lifetime
while promoting best practices. One such framework is Zend Framework (ZF), where we
will begin our voyage into the development of enterprise-class PHP applications.

Introduction to Zend Framework Library
Zend Framework, while a relatively new framework to the PHP space, has quickly become
the de facto standard of enterprise PHP development. This is due in no small part to Zend
Technologies, which has used its considerable resources to research, develop, and actively
grow the framework into the powerhouse it is today. Philosophically, Zend Framework
is quite different than most other PHP-based frameworks in the sense that your commit-
ment to using the framework is left entirely to you. Where most frameworks force you into
a specific coding practice or impose on you a specific way the framework must be used to
be effective, Zend Framework is based on the notion that each component can be used
completely independently of the rest of the framework. This not only makes each compo-
nent a more interesting piece of technology on its own but also allows you to cherry-pick
those pieces of the framework that solve your development problems without commit-
ting to an entire way of development. In fact, Zend Framework can be used piecemeal in
existing PHP applications to accomplish development tasks as easily as it can be used to
develop incredibly complex applications from the ground up.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK2

Looking at the framework itself, its component nature is reflected in its organi-
zational structure and class-naming conventions. Let’s take a look at an abbreviated
directory and file listing (showing only the component) for the framework (see
Listing 1-1).

Listing 1-1. The Component File Structure

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 3

Being an entirely object-oriented framework, Zend Framework classes follow naming
conventions that reflect their location in the file system. For example, the primary class
for the component is found in the top-level file within the file structure,
where the interface that defines the ACL data store object can
be found in the file.

CLASS STRUCTURE VS. CLASS LOCATION IN ZEND FRAMEWORK

The relationship between a class name and its location within Zend Framework directory structure
is no accident! Besides being a very logical approach, there is a component within the framework

 that can be used to automatically include as necessary classes that follow this conven-
tion without any further effort on the part of the developer. So use this convention to your advantage
by organizing your libraries of object-oriented code in the same fashion to save time and effort writing
complex applications.

Now that we know a little about how Zend Framework is structured, let’s talk a little
about how Zend Framework is designed to be implemented. In general, there are two
approaches to using Zend Framework. The first is to simply use its components within
your application—ideal if you already have an existing code base you must integrate with.
The second option is to build an application from start to finish using Zend Framework,
and to do that you’ll need to understand Zend Framework MVC (model-view-controller)
subsystem of the framework.

Zend Framework MVC
When building a new application in Zend Framework, the recommended approach is
to use Zend Framework MVC subsystem to do so. Structured as a collection of loosely
bound components, Zend Framework MVC implements the model-view-controller
design pattern. To understand how to use this aspect of Zend Framework, you need to
understand this pattern, so let’s begin there.

Model, View, and Controller

In recent years the MVC pattern has gained wide acceptance within the web development
community as a powerful approach to web application design. However, not many devel-
opers realize that the MVC pattern has roots deep within the world of computer science
and was created well before the Internet was even conceived. The MVC was introduced in
1979 by Trygve Reenskaug and was implemented in the Smalltalk programming language.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK4

Note Did you know: Besides the origins of the MVC design pattern being an interesting piece of history,
this fact has relevance when we discuss the modern version of MVC now used on the Web because while
many aspects of this pattern are similar, the modern MVC is actually not the same implementation as the
pattern of old due to the differences in web application implementation. In the original MVC pattern there was
a direct logical connection between the model object and view object whereby the model could directly notify
the view when its data was modified. Since the view in MVC applications on the Web is in the browser (while
the model resides on the server), the pattern requires modification to be effective in this space.

The acronym MVC stands for model, view, and controller. These three distinct com-
ponents of the pattern represent the data model, the rendering of that data model (the
view), and the logic that accepts input and contains the logic to manipulate the model
and view (the controller). The relationship between these three components is shown in
Figure 1-1.

Figure 1-1. The high-level relationship between a model, view, and controller within an
MVC framework

Before we begin our discussion around the specifics of the MVC pattern, let us take a
moment to describe Figure 1-1 in more detail. The diagram has the three components of
the MVC framework represented as boxes. An important aspect, however, is the nature of
the lines that connect them. These lines represent the relationship (concrete or abstract)
between the various components represented by dashed or solid lines, where solid lines
represent a concrete reference and dashed lines represent an abstract relationship. These
relationships are a cornerstone of the MVC framework and can be expressed in the fol-
lowing terms:

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 5

Controllers handle all input and manipulate specific instances of both models and
views.

Models represent the data used by the application and know nothing of controllers,
although they do have access to an abstract view interface.

Views render data of specific instances of models to the user and have an abstract
access to the controller that created them.

So what does it mean to have an abstract access to another component? In practical
programming terms for a view, this means in many cases that the view simply knows
about one specific interface implemented by the controller and can call those methods
alone. Likewise for models, while they have no access to call a controller whatsoever, they
do know of an interface implemented by the view that renders it. For example, a model
may notify the view if its data has changed as the result of an action by the controller.

What we have described is the MVC design pattern as created by Reenskaug back in
1979. For web applications, such a design pattern doesn’t make sense holistically. For
starters, in the traditional Web 2.0 application, the view is of course the browser window
and not some sort of object that can be easily bound to a model or a controller, simply
because its logic (implemented usually in JavaScript) is not the same as the server-side
PHP. Furthermore, view logic is almost entirely executed on the client-side machine,
which makes it a real problem for a model and controller (implemented on the server
side in PHP) to have the sorts of relationships as described in the original pattern.

These facts introduce some interesting complexities to the theoretical design of the
MVC pattern for web applications, which is of course reflected in the design of the vari-
ous so-called MVC implementations available in web development languages today. For
instance, in most if not all MVC implementations (including Zend Framework), there is
a fourth component to the MVC architecture called the front controller. While labeled a
controller by name, the purpose of this critical component is to marshal what fundamen-
tally is a simple HTTP request from the browser into a form that can be mapped into the
MVC architecture we introduced in this section. Let’s examine the front controller and
the various components it harnesses to breathe life into your applications.

The Front Controller and Friends

For a Zend Framework application, the front controller serves as the launch point for a
Zend Framework MVC application and abstracts a multitude of complexities away from
the end developer. The front controller’s responsibility is to accept the input of a web
request received from a client and use various related components to identify and exe-
cute a specific controller to be executed as represented in Figure 1-2.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK6

Figure 1-2. Front controllers create instances and execute logic contained within controllers.

However, while this is the basic idea behind the purpose of the front controller, there
are many subcomponents the front controller utilizes that play a key role in what other-
wise seems a relatively simple task. In fact, if you were to draw Figure 1-2 to include all of
its elements you would arrive at something that looked closer to Figure 1-3.

Figure 1-3. An expanded view of the relationship between the front controller and controller

In order to understand how these components all work together, let’s go through
each of them in order, starting with the front controller. As you might imagine, the front
controller’s responsibility is to initialize the MVC system of the framework (including
creating the router and dispatcher) and prepare and pass along the input provided by
the standard PHP superglobals into the system as a more structured object (the
object). By definition the front controller is implemented as a singleton (meaning there
is only one instance of it ever in an application) and can be referenced from anywhere

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 7

in the application if necessary. Note, however, while it is always possible to retrieve an
instance of the front controller in all but the most complex situations, such an action
should not be necessary.

Note We use the term “superglobals” to refer to those arrays that are available in PHP regardless of
scope, such as , , , , and .

Ultimately, the outcome of the execution of the front controller is to create instances
of the router and dispatcher and to pass execution control of the request into the router
for further processing. Note that, as Figure 1-3 indicates, from this point forward all input
and output of the request is contained within the and objects, respec-
tively, which are created by the front controller.

Once the router has received the object from the front controller, its task is to
examine the request data as received from the user and determine the proper controller
and action to execute. How does this determination happen? Such behavior is entirely
definable by the user through the implementation of a custom router component. Since
most users will never have a need to write their own custom routers, Zend Framework of
course provides a default router that maps a given URL to a controller and action by fol-
lowing the structure shown in Figure 1-4.

Figure 1-4. How the default Zend Framework router routes requests to controllers and actions

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK8

Note You might be wondering how the router always gets executed every request. This is a necessary
configuration step we haven’t discussed in detail, but basically you need to set up a mod_rewrite rule (if
you are using the Apache server) to map all URL requests that don’t refer to concrete files to —
called the bootstrap file. This file is where you will fire up the ZF front controller and start the process we’re
describing.

Once the router has fulfilled its sole purpose of mapping the request to a controller
and action, this information is stored within the object that is then passed into
the dispatcher—our next subject of discussion. If no routing information is provided, the
ZF router will automatically default the controller to “index” and the action to “index,”
making comparable to an file of a directory.

After the request has started, the front controller has initialized the MVC framework,
and the router has properly identified and added the necessary controller and action
information into the request, the next step is for the request itself to be dispatched to an
action within a controller. This is done by the object that, like the router, you
can replace with your own class if so desired.

The vast majority of your development efforts will be spent in writing the controllers
that are dispatched by the object. The job of the object is to execute
business logic by executing a method within your object based on the routing
information provided by the object. Furthermore, depending on the logic of your
controllers, multiple actions across multiple controllers can be executed within a single
request (called chaining of actions)—also the responsibility of the object to
manage.

For every action that is executed, the goes through multiple steps:

1. The class is instantiated.

2. The method is called (overridden by developer).

3. The method is called (overridden by developer).

4. The requested action is called (implemented by developer).

5. The method is called (overridden by developer).

In the simplest implementation of a controller, only an action within the
class must be implemented. However, depending on your needs you can also implement
the , , or methods to execute code on initialization of
the controller, before dispatch to the action, or after dispatch to the action.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 9

Note What is the difference between the and methods? It refers to when you
chain multiple controllers together. Think of the method as a replacement for the class constructor—
if you have action A that forwards to action B within the same class, will be called only once before
the execution of A while will be called before both action A and action B.

So now that we have an understanding of how controllers are executed by the dis-
patcher, how are they actually implemented? Controllers and the actions within them
follow a strict naming convention, which allows them to be executed dynamically by the
dispatcher. Assuming you are using the standard Zend Framework router and dispatcher,
the following rules define the name of the controller class, file name, and an action within
a controller:

Controllers are named in the form of , where the controller action is
“Example.” The name is capitalized, followed by a capitalized “Controller” suffix.

Actions are named in the form of , where the action name is “my.” The action
method name is lowercase, followed by a capitalized “Action” suffix.

Referring to Figure 1-4, if the URL of the request was as follows:

the corresponding controller and method that must be implemented to execute on that
URL would be .

So where do controllers live in the file system? Well, that is mostly up to you. Later in
the chapter we will make recommendations as to where you might want to put them, but
the front controller’s method defines where Zend Framework
will look for them.

“Hello World” in Zend Framework

Now that we understand at least at a high level how Zend Framework MVC works, let’s
dive into some code and write our first ZF-powered application: a simple “Hello, World!”
program. In fact we will look at two examples of a Hello World application. The first will
be the simplest approach that only implements a controller, and the second a slightly
more complex example that uses layouts, views, and controllers. While both are valid
ZF applications, the first exists only to show you the bare-bones setup and to illustrate an
important architectual point—the only required component of a web-based MVC is the
controller from which everything else builds off of.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK10

To create our most basic MVC application in ZF there are a few steps we have to go
through:

1. Create a document root and point our web server to it.

2. Create a rewrite rule that redirects every non-static request to our file.

3. Create and set up an instance of the front controller ().

4. Dispatch the request.

Tip Typically the basic rewrite rule used for Zend Framework applications is
, which routes all requests for files that don’t end in , , , and so on to

 to be handled by Zend Framework. You can put this rule in your Apache file, but
most people simply use the file. If you elect to use the file, make sure you enable
overrides by setting in your file first! From a performance perspective
using the is a better choice since the server will check the status of the file for
every request if it exists, but the file is often much more convenient.

Listing 1-2 gives us an idea of how our simple Hello World program is structured.

Listing 1-2. The Simplest Zend Framework Application

Now that we have that out of the way, let’s take a look inside the file for the
application and see how we kick off a Zend Framework request. The contents of
are shown in Listing 1-3.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 11

Listing 1-3. A Simple “Hello World” Zend Framework Bootstrap File

Looking at Listing 1-3 you should be able to follow along fairly easily with the steps
I described earlier on building a Zend Framework application. We start the bootstrap by
first turning on error reporting. You will find that in all of the code examples in this book
we elect to have the maximum error reporting enabled for the purpose of demonstration.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK12

The first real step in our Zend Framework application is to retrieve an instance of
the front controller class . Since the front controller is a singleton
we don’t simply use the operator to create an instance but rather let the class itself
retrieve the instance by calling the static method. Now that we have our
instance we can begin to configure it by calling a variety of different methods of the
object. For the simplest ZF applications the only required configuration is a call to the

 method, which sets up the path where the dispatcher may find
the controllers needed for the application. In our example we take this one small step fur-
ther and make a call to the method as well. This is an unnecessary step
but one we do for purpose of demonstration. Finally, once our front controller is config-
ured we can pass the request into the MVC architecture by calling the method.

Note By default Zend Framework comes preconfigured not to allow exceptions that may be thrown dur-
ing the course of the request to bubble up to the main execution frame and to cause a fatal error to occur. If
such a thing was allowed it would encourage developers to expose stack traces in production systems and
cause a serious potential security concern by exposing application internals to an end user. What happens
instead will be discussed shortly. For now be content in knowing that all we have done is force ZF to not stop
a fatal error if one was to occur for debugging and demonstration purposes.

Once the call to has been made, we have officially entered the workflow
described in Figure 1-3 and begun the process of routing and dispatching the request to a
controller for execution. From this point forward you can now attempt to make a request
against any URL and map it to a controller and action. Since we have turned off some
error handling for this example if the controller doesn’t exist, you’ll see an exception that
looks something like the following:

Since obviously we’d like to avoid this we need to create controllers that can handle
our requests. For this, we’re going to need to create controller classes in the directory we

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 13

specified when we set up the front controller in the bootstrap file. For our example this
controller is the and is shown in Listing 1-4.

Listing 1-4. The Simple “Hello World” Class

As far as controllers go, the of Listing 1-4 is about as bare-bones as
it can be. Like all controllers, the extends the base controller class

. Since this is a simple example we don’t bother implementing any of
the workflow functions such as or and instead only imple-
ment a single method.

In the method we have two lines of code. The first line of code is gener-
ally omitted (included here to simplify the example by removing the coupling to a formal
view), and the second simply prints “Hello, World!” to the screen. The result should be
fairly predictable. When you execute this application without specifying a controller or
action, it should print “Hello, World!” to the screen.

Hopefully that seems simple enough, because now we are going to look at a more
complex (yet arguably easier to use) example that effectively does the same thing. How-
ever, it introduces a few more core Zend Framework tools and concepts: error handling,
views/layouts, unit testing, and a more effective bootstrapping mechanism.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK14

Let’s start by looking at the structure at the file system level, shown in Listing 1-5.

Listing 1-5. The Complete Structure of a Zend Framework Application

Comparing Listing 1-5 with our original Hello World structure in Listing 1-2, we can
see that we’ve certainly added a lot of things. Let’s take a look at how our bootstrap system
works now in this more complex example.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 15

In our original Hello World application we created and set up our front controller
class in the file. In our new version we have moved this setup phase into two
files, the first defining the class and the second a that loads that
class (along with other tasks originally in the old file). As a result, we now can
replace the code in with a single line of code (see Listing 1-6).

Listing 1-6. The New Hello World File

So what is now in our file? Let’s take a look at it in Listing 1-7.

Listing 1-7. The File of a Zend Framework Application

As you can see from Listing 1-7 there are many similarities between the bootstrap
file and what was originally in the of Listing 1-3. There are a few notable dif-
ferences, however, that warrant discussion. For starters we now add three new paths to
our include path—one for the directory (where you can put your own library
files or extensions to Zend Framework) and the other for the models of your application
used for data access. We also introduce our first official Zend Framework component,

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK16

the component. This component’s purpose is to simplify the loading of the
various classes used within Zend Framework by automatically loading class files for
classes without requiring you to include them manually using a statement.
Rather, class files can now be automatically resolved based on their name. For instance,

 will automatically be loaded from the
 file thanks to the component. This functionality is enabled by calling the

 method.

Note It is strongly recommended that this class- and file-naming convention be maintained for your
own library classes and extensions to Zend Framework! Doing so will allow you to harness tools such as

 as easily as Zend Framework does internally. Furthermore, from a performance perspective, it
is significantly faster to use the auto-loading facilities of Zend_Loader.

The next new thing in our bootstrap file is registering a front controller plug-in
that is used to initialize the application. This is done by calling the

 method and passing it an instance of the next class we’ll
discuss: the class.

Before we discuss the class, however, first we must discuss the notion
of a front controller plug-in. Just as controllers have a series of workflow steps that can
have logic attached to them such as and , the front con-
troller’s workflow (shown in Figure 1-3) can have custom logic attached to it at various
points through the use of front controller plug-ins. To create a plug-in, all you have to do
is create a class that extends the class and override the
implemented methods to your desires. Following is a listing of the methods you can
override from this class and their purpose:

/ : Sets or returns the request object

/ : Sets or returns the response object

: Called before evaluating the request against the application’s
routes

: Called immediately after routing is complete

: Called before the application enters its dispatch loop

: Called before every dispatch to an action

: Called after every action dispatch returns

: Called after the application exists the dispatch loop

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 17

This workflow is depicted in Figure 1-5 as an extension of the original flowchart
described in Figure 1-3.

Figure 1-5. Zend Framework MVC workflow including plug-in calls

For the purposes of our plug-in we will only override one method from
this base class, the method, which will be used to initialize the application
before we begin the official request. The class is shown in Listing 1-8.

Listing 1-8. The Front Controller Plug-in

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK18

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 19

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK20

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 21

For the purposes of this book, consider the class shown in Listing 1-8
as a skeleton for a much bigger project to initialize configuration files, database con-
nections, and so on, prior to the start of the routing process (triggered by a call to the

 method). However, there are a few things about it that are
worth mentioning. Note that the constructor of this class accomplishes a few key things.
First, it establishes the root of the application directory structure (used in various areas of
the application). Second, it introduces the notion of different application modes such as
a production and development mode, each of which in theory could respond differently

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK22

than the next. This mode is set when the plug-in is instantiated by passing in
a mode string from the bootstrap file.

Since this is a simple Hello World application without database access requirements,
configuration files, more plug-ins, or custom routes, we won’t discuss what might go into
the , , or methods. We will, however,
look into the method, which sets up the component—a critical
piece of the view of the MVC architecture in Zend Framework.

Views in Zend Framework are broken into two distinct components representing
a classic two-step view design pattern, with the layout of the view encapsulated by the

 component and the actual templates that populate the layout encapsulated
by the component.

Note The two-step view design pattern is used in web application development to allow you to separate
the layout of a web page (e.g., a two-column or three-column layout) from the actual formatted content of
the page. By using a two-step view design pattern, you can make global changes to the layout of your web
site without altering the format of the content itself, and you can change the specific content without affect-
ing layout.

While we will not be discussing the details of layouts and views in this book (please
consult Zend Framework reference guide for details), let’s take a minute to at least
understand how they work in this simple application. When using the com-
ponent in a ZF MVC application, the layout component must be initialized by calling the

 method and passing into it any necessary configuration values
in the form of an associative array. For our particular application, we are setting two con-
figuration values: the path to where we can find the layout templates (“layoutPath”)and
the specific layout we are interested in rendering (“main”). While we won’t be discussing
layouts and views in extensive depth in this book, we will come back to the rendering of
the content of our application later in this chapter.

With our bootstrapping and application initialization now completed, we are ready
to execute a controller and perform some business logic. As with our original Hello
World application, we will be implementing an and its corresponding

 method. This class is shown in Listing 1-9.

Listing 1-9. The for Hello World Version 2.0

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 23

Examining this version of the , you might notice in comparison to the
original controller we implemented in Listing 1-4 that this version of the controller has
no business logic at all! This is not in error but rather due to the fact that we are now uti-
lizing the full Zend Framework MVC architecture, and static text such as a simple “Hello
World!” message is no longer implemented in business logic but as a part of the view.

In Zend Framework’s two-step view approach we use a combination of the
and component to render the output of any given request. Since in a Hello World
application we do not have any business logic to implement, our controller is empty, and we
implement it in the view. Recall that in the method we kicked off
the with a layout path of and specified the layout
“main” as the one we will be using to render our output. This corresponds to the layout in
the file, shown in Listing 1-10.

Listing 1-10. The Hello World Layout for

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK24

The layout defined in Listing 1-10 represents the structure of the request response
without specifying the actual content or formatting of the content the response contains.
Rather, is designed instead to indicate placeholders for content that can be
populated at any time during the execution of the rest of the framework. These content
segments are then assembled into a holistic response by the component
before they are returned to the request issuer.

Note The full functionality of the and components is out of the scope of this
book. While we will continue to discuss it in some degree of detail, please consult Zend Framework docu-
mentation at for a more complete reference.

 With the foundation layout for constructed, we have to next look at the
role that plays in our application (for populating the placeholders in the lay-
out). For this, we need to discuss how views are related to controllers at the file system
level.

Referring back to our file system structure for the application in Listing 1-5, notice
the directory. This directory contains all of the view scripts
for the application organized into two distinct groups: view filters (our application has
none) and action view templates. Action view templates are simply content templates
implemented in the template engine provided by the component, one for
each action implemented inside a controller of the application. Thus, since we have a

 method (MVC action) we must have an directory
(for) and an file (for) within it.
This file is shown in Listing 1-11.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 25

Listing 1-11. The View

In Listing 1-11, you can see how it ties itself to the through
its use of the and methods available within a tem-
plate. The method is a placeholder helper that was installed
into the template engine during the call to within the

 method call discussed earlier. This method sets the placeholder
to the value of “Hello World Zend Framework Project” used in the

 call. Likewise, the call in the to the
method maps to the identical method found in the file.

With that explained, let’s move on to the non-PHP component of our
file—our actual “Hello, World!” string. To understand how this string ultimately makes its
way into the response, let’s revisit the component and discuss the notion of
named segments.

One of the cornerstones of the two-step view design pattern is the notion that the
layout script can define blocks (or segments) of content that can be juggled and shifted
around the layout of the page at will. For example, one may have a navigation bar that in
one layout view is on the left side of the page and in another layout is on the right. In both
cases the exact same controller produced that navigational segment (along with its cor-
responding view). To fulfill this functionality within Zend Framework MVC,
implements the notion of named segments. These named segments can be named what-
ever you would like, but where are they set?

To answer that question, we have to go back to a detail about Zend Framework MVC that
we glossed over: why and how does Zend Framework map to
the view file? The answer to this question is an important one, as it explains
the last missing pieces in our and discussion.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK26

By default, when a controller’s action is executed by Zend Framework and returns,
Zend Framework ultimately seeks to render the view it associates with it by name as
previously demonstrated by the /
controller/view relationship. However, this behavior can be overridden entirely by call-
ing the method from within your controller’s actions.
This method has two purposes. The first purpose of this mention is to, if you so choose,
change the view script rendered for that action from the default (based on the controller
and action name) to another template within the same controller. The second behavior,
which is much more relevant to our current discussion, is to provide a named segment to
which the execution of the controller should be rendered.

Consider Listing 1-12, which uses the method in
both ways described.

Listing 1-12. An Example of Using the Method

In the two examples of the method in Listing 1-12,
the first call, , changes the default rendering behavior from ren-
dering to rendering instead. The second behavior
renders based on the default behavior and thus uses as its view. How-
ever, that view is rendered into the “indexcontent” segment that must be specified in the
layout to be rendered.

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 27

For actions that do not specify a segment, Zend Framework automatically appends
them in the order they were rendered to the named segment “content.” Since our new
version of Hello World specifies no rendering segment in Listing 1-9, the content of the
render is displayed in the “content” segment of our layout shown in Listing 1-10.

Zend Framework Request/Response Objects and
Error Handling

With the detailed explanation of a full Zend Framework MVC execution out of the way,
let’s now talk about how you write something a bit more complex than a simple Hello
World application. To do that, you’ll need to understand a bit more about how Zend
Framework treats two important subjects: I/O operations and error handling.

In the previous section we discussed in detail the basics of how Zend Framework
handles output through the use of the and components. Recall,
however, from Figure 1-3 that all input and output are handled through a set of request
and response objects. These objects by default are created by the framework for you and
are members of the and family of
objects. We’ll be looking briefly at one specific set from this family, the

 and objects.

Note We describe the request/response objects in Zend Framework as a family because Zend
Framework can be used to write more than web applications! Applications that are based on the console
have different requirements for I/O than applications written for the Web, and thus any object that extends
from or can be used
as request/response objects and set during the initialization of Zend Framework front controller.

As has been mentioned throughout this chapter, the
and objects serve to provide context to the application
during the web request. As such, you can access these objects from almost any aspect of
the MVC framework. In most cases within the framework (such as from controllers) this
is as simple as calling the or methods available to you. Since
we have already discussed output in significant detail, we will be focusing on how input is
received into the application through the object.

The intention behind the request object within the framework is to centralize into an
object-oriented interface all input the application has received from the outside world. For
an HTTP version of this object you can access all GET/POST/COOKIE data you would nor-
mally have access to from a PHP script as well as server variables, environment variables,
the request URI, base URL, path information, and more. Beyond that, the ZF request object
also contains the current controller and action being executed as well as any controller and

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK28

action parameters that may have been passed along. Since there are far too many functions
and helper methods that extend and enhance PHP’s abilities to process input, please refer
to Zend Framework reference on the request object online at

.
Listing 1-13 demonstrates the use of the request object from within the context of the

controller to access GET, POST, and the current controller action name.

Listing 1-13. Retrieving Input Data from a ZF Request Object

Like the request object, which serves the purpose of providing context to Zend Frame-
work application, the response object gathers all relevant output data to be displayed
to the user. Returning to one of our first code examples in Listing 1-3, the reason it was
important to call the front controller’s method was because, by default,
Zend Framework will catch all exceptions that occur in the framework and place them into
the response object of the execution instead. That’s ideal behavior if you understand the
framework but potentially confusing behavior for those being introduced to it. Like the

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 29

request object, we will skip an in-depth discussion of all of its functionality other than to
refer you to Zend Framework reference, which provides a detailed explanation of all of its
abilities: .

Speaking of error handling, looking back to our previous section on the Hello World
application recall that we demonstrated what would happen in our first example if we
attempted to go to a controller or action that did not exist. Doing so caused Zend Frame-
work to throw an exception that bubbled to the top of the execution stack and resulted
in a fatal PHP error. Since by default Zend Framework puts exceptions into the response
object, how do you handle them? To understand how Zend Framework MVC expects
to see and will deal with errors, we need to revisit an untouched aspect of our very first
application and discuss the .

Zend Framework MVC, unless you have specified otherwise by a call to the front con-
troller method, will require all of your MVC applications to implement
a special controller and action—the action/method. In
the event of an exception within your application that is caught by the front controller,
the front controller will automatically route the request to this action for error handling
instead of causing an unsightly PHP error message. Once in this action, it is up to you to
handle the error gracefully.

Note It is worth mentioning that Zend Framework, in every situation that it is possible to do so, will use
exceptions to indicate an error (rather than a normal PHP error, through a call) that has a
base class of . It is strongly recommended that your Zend Framework applications also rely
on exceptions as well instead of traditional PHP error-handling facilities.

Let’s take a look at an example implementation (controller only) in
Listing 1-14.

Listing 1-14. An Example Zend Framework

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK30

Examining Listing 1-14, you’ll notice a call we have previously not discussed specifically
in the first line of the action: . This call is a shorthand call
to the request object to retrieve the parameter identified by the key “error_handler” from
the request (“error_handler” is the key used by Zend Framework to store the context of the
error when it routed it to the). This error object is a simple class
instance that contains any exception that was thrown, a copy of the original request that
caused the error, and the type of the error.

Following Listing 1-14, the first step we take in this example is to determine the nature
of the error by checking its type through the property. This property can be extended
to suit your own needs, but within Zend Framework itself there are a total of three possible
values for this value defined as constants within the
class: , , or . These type con-
stants should be self-evident based on their names, the first occurring when the controller

Download at WoWeBook.Com

CHAPTER 1 INTRODUCTION TO ZEND FRAMEWORK 31

class was not found, the second when the controller was found but not the method name
within it, and the third for all other exceptions caught by the framework.

Based on these error types you can see in Listing 1-14 how they are used to differenti-
ate between HTTP 404 errors and true exceptions through the use of a simple
statement.

Conclusion
In this chapter we’ve discussed a great deal in terms of concepts, starting with the way
Zend Framework is organized both in a class and a file structure (including the relation-
ship between them) and everything you will need to know to build an application from
scratch using Zend Framework MVC. It will serve you well to remember the relationships
between the front controller, dispatcher, router, and controllers when developing your
business logic, so do spend the time to learn them correctly. Once you have a solid grasp
there, leveraging the ability to create complex responses using components like

 and will be paramount in turning that business logic into useful
responses when the request is returned.

That’s it for our introduction to Zend Framework. We have barely scratched the sur-
face of the framework as a whole, but even so we have laid a great foundation for writing
Zend Framework applications. If you are interested in learning more about the details of
the framework, the best resource is Zend Framework web site at

 or Beginning Zend Framework by Armando Padilla (Apress, forthcoming).

Download at WoWeBook.Com

Download at WoWeBook.Com

33

C H A P T E R 2

Introduction to Zend Studio
for Eclipse

Now that we have introduced you in Chapter 1 to the fundamental concepts behind writ-
ing a Zend Framework application, let’s now look at one tool that will help you significantly
in the development of Zend Framework applications—Zend Studio for Eclipse (ZSE).

Zend Studio for Eclipse is the premier IDE (integrated development environment) for
development for both Zend Framework and PHP projects. Here are just a few of the fea-
tures that separate ZSE from your everyday text editor:

through plug-ins

In this section, we will explore ZSE and how to use it to not only become a more
effective PHP developer but also a more effective Zend Framework developer.

Getting Started Zend Studio for Eclipse
As the name implies, Zend Studio for Eclipse is based on Eclipse (),

Studio is a collection of Eclipse plug-ins that provides PHP-specific functionality such as
syntax highlighting to the base Eclipse tool set. Of the plug-ins, some are a part of an open

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE34

see while some of the more commercially focused features
constitute the commercial offerings contained within the ZSE products.

Because of the architecture used by Eclipse and ZSE, one of the biggest advantages is
its ability to be extended. Countless extensions and plug-ins exist for Eclipse (both open
source and commercial) that can be added directly to ZSE, making it an almost limitless
platform for application development. Note that although ZSE can be extensively cus-

 at .

Note Because of differences in versions between ZSE, do not be alarmed if your screen does not look
identical to the screenshots displayed in this book, although it should be fairly close.

Figure 2-1. A typical Zend Studio for Eclipse workspace

An Eclipse-based development environment has a number of conceptual differences
in application development compared to other IDEs. First, while in most IDEs the high-
est-level collection of an application is a project, in Eclipse you will find that there is one

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 35

higher: the workspace
these projects can be associated to one another through the workspace configuration.

-
tiple different development contexts and languages in the course of delivering one real
project. For example, within a single workspace for a rich Internet application you may
have at least three projects: a project for the front end of the application based in a tech-
nology such as Adobe Flex, a server-side project that is a Zend Framework project, and a

environment is the notion of views and perspectives. In Eclipse, a view is simply a win-
dowpane that may or may not be docked into one of the various edges of the Eclipse IDE

of Eclipse IDE views. At any time you can remove, move, or add new views to the screen
 Show View menu and adding a new view from the

available collection (keep in mind that many plug-ins represent themselves as views).
Perspectives on the other hand can be thought of as a collection of views that are orga-

changed into the PHP Debug perspective.

Figure 2-2. The PHP Debug development perspective in ZSE

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE36

As you can see, the PHP Debug perspective looks considerably different than the PHP

but some have been added (such as Debug and Breakpoints views), and some have been

 perspectives to add and
change.

Creating Projects in Zend Studio for Eclipse

Now that we have some of the fundamentals in our minds, let’s create our first PHP proj-
ect in Zend Studio for Eclipse. Zend Studio supports creating numerous different types

click File New Zend Framework Project, which will bring up the New Zend Frame-
work project dialog

choices to make such as Zend Framework version to use, whether to include Dojo sup-

have the ability to add additional libraries (Zend Framework is included by default) and

simply click Finish to create the project once you have given it a name.
You can explore the project from the PHP Finder view, and chances are you will find

-
cation we walked through in the last chapter! As we have already explored that aspect
earlier in the chapter, let’s instead build a simple new application to test the debugging
and profiling aspects of Zend Studio for Eclipse.

Tip When writing applications in Zend Studio for Eclipse, it pays to use comments! By using phpDocu-
mentor-style comments for classes and functions, ZSE will automatically parse them as you code and
provide type hinting for your own application APIs. For more information on phpDocumentor-style comments,
see the phpDocumentor web site at .

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 37

Figure 2-3. The New Zend Framework Project dialog

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE38

Debugging in Zend Studio for Eclipse

 debugging functionality of ZSE, first we need to create something to debug.
For these purposes we will create a simple MVC application based on Zend Framework

will redisplay the string converting every other character to uppercase. For this we won’t
go through the entire Zend Framework application again but instead will start with our

Note For this section of the chapter it is most useful to have the StringTransform PHP project up and
running if you intend to follow along with other examples in this chapter, as many of them are built from
this base.

Listing 2-1. The to Do the String Transformation

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 39

As you can see, for this application our accepts a parameter
 that contains the string to transform. If such a string is provided, we pass it

along to the view variable and render the template into the

always render the template into the layout segment to be displayed.

Listing 2-2. The Template

Finally there is the

Listing 2-3. The Template

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE40

Figure 2-4. The running StringTransform application

 statement from less
than to greater than by changing this line:

to

causing any obvious error messages.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 41

Now that we have introduced a bug into our application, let’s set up our project to be

1. Set up the Zend Debugger extension on the server.

2. Set up the access control of the debugger to allow connections.

3. Configure a debugger within the IDE.

4. Configure a Debugging Profile for the project.

-

Note Using the provided virtual machine, you already have the debugger available as part of the Zend
Core package. If you already have a PHP server set up, you can download the Zend Debugger PHP extension
from the Zend Technologies web site: . This book
will only discuss setting up debugging on Zend Core. For other possible configurations please consult the
Zend Debugger documentation.

Once the Zend Debugger is installed in your PHP server, you will need to set up the
server to allow your local machine to connect to it. For Zend Core, this is done from the

,
which will present you with the Zend Core login page

If you are using the virtual machine provided with this book, you can log in to the

password you set up or enter a new password if it is a new installation.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE42

Figure 2-5. The Zend Core login page

Once logged into Zend Core, go to the Configuration tab and click the Zend Debugger
link, which will bring you to the Zend Studio Server Settings page

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 43

Figure 2-6. Zend Studio Server Settings in Zend Core

If you are using the virtual machine provided with this book, the server should be
automatically configured to allow a debugging connection from any IP address within

address in a variety of ranges using this interface or remove any IP address currently
enabled. Once you have altered this configuration, the server will inform you that you

button at the bottom of the page.
-

Studio toolbar

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE44

Figure 2-7. The Zend Studio for Eclipse Toolbar

Click the submenu under the debugging icon.

window

Figure 2-8. The Zend Studio for Eclipse Debug Configurations window

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 45

Figure 2-9. Setting up a new PHP Web Page configuration

execution profile to be connected to (in this case it is our file within the

bring up the PHP Server Creation dialog

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE46

Figure 2-10. The PHP Server Creation dialog in Zend Studio for Eclipse

Zend Studio, as it allows you to do three things:

paths

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 47

Zend Framework, which maps to

the virtual machine as the server) are shown in

Figure 2-11. Server path mapping for the StringTransform project

with the server, and you can move on to debugging your application.

Tip If you have problems getting the debugging server to connect, please re-step through these
instructions and test it against the virtual machine provided with this book first. If you are still having
trouble please contact Zend Technologies for support or visit the Zend Enterprise PHP web site at

 for more assistance.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE48

can now attempt to debug this through two different methods:

start to finish is a lengthy and inefficient task as there are countless lines of code that are
executed in the bowels of the framework you likely have no interest in reviewing. It is,
however, a good place to introduce the Zend Studio for Eclipse PHP Debug perspective.

select the debugging profile you just created. Doing so will ask you whether you would

Debug perspective

Figure 2-12. The Zend Studio for Eclipse PHP Debug perspective

Debug view you have a listing of all of the current variables that are in scope as well as a
view that shows you all of the current breakpoints you have set.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 49

For our purposes, we will be focusing on the toolbar just to the right of the Debug
 allows us to navigate through the execution of the

code base line by line if desired, inspecting the values of variables and the behavior of the
application every step of the way.

Figure 2-13. The debugging toolbar

Remove All Terminated Launches

Resume

Suspend: Pause script execution

Terminate: Stop script execution

Disconnect: Disconnect from the debugging server

Step Into: Step into the next statement code branch

Step Over: Step over the next statement code branch

Step Return: Step out of the current code branch

Drop To Frame: Drop to frame

Use Step Filters

For most debugging operations you will only be interested in resuming and stopping
the application and using the step functions to traverse your script’s execution line by
line.

statement), click the Step Into button -
ment and dive into the next line of code that would be executed, and this can be done
until every single line of code is executed. Since this can be a very time-consuming
process, you can use the Step Over button to execute all of the code below the next state-
ment (meaning the next function and all of the code the next function executes) until the

, will allow you to return to the
higher-level code branch once you have stepped into it. Once you have played with the

-

 Open Perspective PHP.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE50

For a Zend Framework application, while you could step through each line of
.

Breakpoints are mechanisms by which you can flag one or more lines of code within your
application that, prior to being executed, will suspend the execution of the application
and allow you to review the variable values and step through the code from that point
forward.

know exactly where the bug is, so for the sake of demonstration let’s open the
 view file. From here, right-click on the

blue circle next to the line number. From here, restart the debugging of the project, and
 of the

debugging toolbar
breakpoint. Once it has reached the breakpoint, Zend Studio for Eclipse will load the rel-
evant file and pause the execution prior to executing the breakpoint.

Tip Instead of right-clicking on the line number, a simple double-click of the line number will turn a
breakpoint on or off for that line as well.

 script, you will notice something peculiar—the debugger didn’t pause the execu-

within the file never gets executed. For this code to execute we will need

view

Now that we have hit our breakpoint, we can debug, view variable values, and deter-
mine where the bug in our application is.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 51

Figure 2-14. The PHP Debug Perspective with the integrated debugging browser

Figure 2-15. Hitting the breakpoint on the second request

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE52

Profiling in Zend Studio for Eclipse

In addition to profiling of an application, Zend Studio for Eclipse also allows you to pro-
file the execution of an application and determine how long the various aspects of the

-

 Open Perspective PHP Profile, which will bring you

Figure 2-16. The Zend Studio for Eclipse PHP Profile perspective

doing it. Since we already set everything up when we were debugging our application,
you can simply click the Profile button.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 53

Figure 2-17. A profiling report produced by Zend Studio for Eclipse

Once a profiling report has been created, you have a wealth of information on the
execution of your application. For starters, you are given a nice pie chart that gives you a
high-level view of how the total execution time of the script was broken down into various

-

-
tional tabs of information, each providing more details into the performance details of
your application:

Execution Statistics
and method

Execution Flow
which they were executed in the application as a tree

Code Coverage Summary: A list of all of the PHP files executed, and which lines of
code where actually executed from each of those files

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE54

Depending on your needs, each of these views of the performance data can be use-
ful in different ways. Using the toolbar on the upper-right-hand corner of the PHP Profile

Own Time
not counting the amount of time spent executing low-level PHP internals (which
can’t be changed without a custom PHP binary)

Calls

Total Time:

Others Time

Filtering the execution statistics for the application is an invaluable tool in determin-

better. Of course, once you fix that bottleneck another will take its place.

latency, I/O latency, or memory limitations also can have a drastic impact.

-

Keep an eye on the Calls figure!

Note These and many more performance-related discussions on PHP can be found later in the book or
in the various talks I (John) have given at conferences worldwide published on my web site:

.

Download at WoWeBook.Com

CHAPTER 2 INTRODUCTION TO ZEND STUDIO FOR ECLIPSE 55

Conclusion
In this chapter you have been introduced to a lot of great tools available to you as a PHP
developer to make your applications easier to develop, less bug prone, and more efficient.

-
tomed to such as vim, if you have yet to make a choice I strongly recommend that you
start in the Zend Studio environment. By taking advantage of the way Zend Studio sets
up Zend Framework projects and using the tools such as the debugger and profiler intro-
duced in this chapter you will be well on your way to fast, efficient development that will
benefit you for projects and projects to come.

basics of both Zend Framework and Zend Studio out of the way, we are now ready to dive
into the real good stuff—performance, databases, and production server farms to name
a few. If you’d like to learn more about Zend Studio for Eclipse, I suggest both the Zend
Studio for Eclipse User manual (see the Help menu) or the book Zend Studio for Eclipse
Developer’s Guide

Download at WoWeBook.Com

Download at WoWeBook.Com

57

C H A P T E R 3

Web Application Performance
and Analysis

In this chapter and the ones to follow we will discuss the various techniques you can use
to improve the performance and responsiveness of your web-based applications. You will
see that each technique has a set of pros and cons and that nearly all of them add at least
some complexities to your application.

Before we discuss these strategies, let’s first discuss what performance means to a
web application. Unlike a traditional application running on a single machine, a web-
based application (especially a browser application) has many different variables that will
affect the overall performance of the application. This is because, to the end user using
your application, the performance of your application isn’t measured just by how fast
your PHP script executes, as Figure 3-1 illustrates.

Figure 3-1. A high-level view of a typical PHP web request life cycle

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS58

As shown in Figure 3-1, there is a lot more to the performance of your web appli-
cation than just how quickly your PHP script executes. For every step, from when the
request comes in to when the response is returned, there are performance-enhancement
techniques, many of which we will discuss in the course of this book.

While many performance discussions rightly center on the idea of statistics and fig-
ures showing decreased execution times and faster queries, it is often forgotten that to
the end user none of these measurements are in any way relevant. To the end user, the
only performance metric that ever matters is how quickly the page they requested loads,
and how quickly they can do whatever they want to do. This is what Figure 3-1 is designed
to introduce you to—the notion that it is the entire time between the incoming request
and the outgoing response that makes up a significant portion of the user experience, not
just how fast your PHP script itself does or does not execute.

Note We say a “significant portion of the user experience” intentionally, as Figure 3-1 only represents the
dynamic aspect of the web request through PHP. Once PHP is finished, typically its output is an HTML docu-
ment that very likely contains references to other resources such as JavaScript code, images, and CSS that
must also be loaded if we are using user experience as the ruler by which to measure performance. Don’t
discount these additional steps either, as they are important in high-traffic web sites as we will see later in
the book. Tools such as Firebug () and YSlow (

) can go a long way to providing visibility into the entire transaction of a web request and help you
identify where things can be improved.

In this book we will in large part frame our discussion of the aspects of performance
as they relate to Figure 3-1, and we will start by asking the million-dollar question: how
do you effectively increase the performance of an application? As it turns out, the process
of doing so is deceptively simple: identify the bottleneck, address the bottleneck, identify
the next bottleneck, and repeat.

Note You will notice that we intentionally use “bottleneck” in the singular. Using a top-down approach to
fixing problems is the best methodology to use. This process can be repeated as you continue to “find and
fix” until you have reached your performance goals.

Since the first step is to identify where the bottleneck is, we will start our discussion
by examining the various ways to identify where a bottleneck might be lurking.

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS 59

Locating the Bottleneck
We’ll admit—locating the bottleneck in a web application is not necessarily that easy.
Even with the most modern tool set there is a certain amount of experience and intu-
ition that comes into play that allow someone to quickly identify the bottleneck in an
environment. However, as we’ve experienced time and time again in our own lives,
understanding what tools are available and how they work can go a very long way to
developing effective diagnostic conclusions. We’ll look at a few of the most common tools
and discuss how they work.

How Are You Bound?

At the end of the day all optimization techniques basically boil down to three high-level
categories of computational performance that reveal where the bottleneck lies. The first
is CPU-bound, meaning that your server doesn’t have enough processor power to do the
tasks asked of it. The second is memory-bound, meaning that the server doesn’t have
enough memory to accomplish the tasks. The third is input/output (I/O)-bound, mean-
ing that the rate of data transfer from one point to the other over a variety of media (to
and from disk, to and from a network destination, and so on) is not sufficient for the task
at hand. Knowing which of these three categories your performance problem falls into is
the first step in determining where the bottleneck of your application is.

On most web server platforms (UNIX-based), the most consistent way to determine
your bounding influence is to measure it using tools such as and . These sys-
tem-level commands allow you to monitor the status of your server’s various bounding
influences, which can be invaluable when displayed over time before, during, and after a
performance event (such as a web stress test).

Using vmstat

Typically when using this approach you would start with , as it is the more general-
purpose of the two tools, and only come back to if you find that indicates
that you need to examine I/O in more detail. The following usage should work in most
Linux-based implementations of :

This command, executed from a shell, will begin the process and begin record-
ing data in one-second intervals to the log file . The second argument indicates
that the recording will be performed for 86,400 intervals (one day). We could have also
left this argument blank to record indefinitely.

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS60

By running this command on a server that is either immediately experiencing a suit-
able amount of load to cause a performance issue (or will predictably experience one
during the time we are recording data) you can quickly ascertain which of the major
bounding factors your performance issue belongs to.

Listing 3-1 provides an example output from a typical call as shown previ-
ously.

Listing 3-1. Typical Output from a Execution

Note Don’t be alarmed if you are seeing different columns being output when you run . While
many UNIX-like operating systems now implement , the options available, and resulting output,
will differ between each. One key reason for this is that you are getting closer to the “bare metal” in how
memory management works inside the kernel. For example, the point at which one operating system decides
to start swapping memory might not be the same as that point on another server. On the same note, the
metrics used to calculate how CPU wait time is determined are also going to differ (or might not even be
available). It is best to consult the man page for for more detail regarding your particular flavor of
operating system.

As you can see, the output of the utility is a table of data where every line rep-
resents the activity that occurred within a one-second interval (assuming you used the
same parameters we used in the previous example). Since the idea here is that you would
run this command throughout a performance event, it is quite possible that the amount
of data you capture can get into the thousands of lines—much too much for a person to
read and make much sense out of. Instead, we have always found it most useful to take
this data and parse it out into a comma-separated file and load it into a spreadsheet pro-
gram to graph the data visually. We’ll show you how that is done in a moment, but for
now we’d like to point out something that is missing from the outline in Listing 3-1—a
timestamp indicating when each sample of data was collected. This is an important thing
to know for a number of reasons:

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS 61

 data across multiple machines
without a timestamp for each sample.

 poll for data may not
execute every second as instructed to make room for higher-priority needs in the
system. Without a timestamp per poll, it’s impossible to tell whether this happens.

Unfortunately there isn’t any version of we are aware of that will display the
timestamp along with the polling data, so instead we will have to do it ourselves using
a little shell-scripting magic. Assuming you are using or as your shell,
we’ll start by creating a simple shell script as shown in Listing 3-2.

Listing 3-2. The Script

Once you’ve made it executable (by typing) you can then
pipe the output of into the script to add the necessary time-
stamps before writing it to a log file as shown in the following command:

That command will append to each line of output from the date and timestamp, as
shown in Listing 3-3.

Listing 3-3. Partial Output of the Call with the Shell Script

Finally we would like this data to be in some sort of comma-separated format so we
can import it into a spreadsheet application. For this, we use a little more shell magic by
adding the command to the mix:

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS62

This finally makes our log file something we can directly import into Excel, shown in
Listing 3-4.

Listing 3-4. The Final Version of Our Output (truncated)

Note You’ll likely want to give the various column headings a better label once the data has been loaded
into Excel.

Now that we have the data in some sort of useful format, let’s talk a little bit about
how the data should be interpreted to determine our bounding influence.

Determining Whether You Are CPU-Bound

In terms of performance tuning, the ideal situation for a few reasons is that our bound-
ing influence is the CPU. First, it is a problem that can be solved by simply increasing
the processor capacity of the server, and second, it indicates that direct performance
improvements to our PHP scripts will increase the overall capacity of the server. To
determine whether the server is CPU-bound, you will want to look at five columns from
a given line of output: r, us, sy, id, and wa. These figures are defined in the order
presented:

Run-queue: A rotating queue of processes being executed by the CPU, or more
specifically, the number of processes currently waiting for CPU time.

User: User time is “good” time, meaning that it is the percentage of time the server
is spending executing user-space code such as a PHP script.

System: System time is the percentage of time the server is spending executing
tasks within the kernel. As some of your code may in turn make system calls, you
may see this rise slightly when user time rises. This figure also includes pulling
cached data from RAM, which means it has an aspect to it that pertains to I/O
operations.

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS 63

Idle: The percentage of CPU resources that aren’t doing anything at all. This per-
centage can be considered your breathing room.

Wait I/O: The percentage of time the CPU was left waiting unable to complete a
task because it was dependent on an I/O operation that had not yet completed.

Looking at these figures in a properly performing PHP application, you would expect
to see a processor that is rarely idle and spends most of its time executing a combination
of user-space and system code, which means (assuming the only significant thing run-
ning on the server is your web server) that you are spending most of the CPU resources
executing PHP code. If your server is spending a large percentage of time waiting for I/O,
that indicates that I/O operations could be the primary bottleneck, and it warrants fur-
ther examination using . If shows a higher run-queue value than the total
number of processors in the server, this typically indicates that the system is CPU-bound
and would benefit from increased CPU capacity.

Note You should allow enough extra capacity to survive spikes in load. One simple way to do this might
be to look out for user plus system CPU times that sustain themselves above 70 percent total capacity with
spikes into the 90 percent range as an indication that you might be CPU-bound. A more advanced technique
would be to trend this information (with a script similar to the previous example) and capacity plan over a
longer period of time.

Determining Whether You Are Memory-Bound

Determining whether you are memory-bound in a Linux system is a more difficult task
to execute than it really should be, if only because the information you need isn’t entirely
available inside of the output of and thus is difficult to correlate over time. Perhaps
someone will make a better utility, but for now we will introduce the best solution we are
aware of. To determine whether you might have a memory-based bounding influence,
we will start like we did with the CPU—by checking the output under the following
columns: si and so. These two columns are defined in the same order as follows:

Swap-In: The amount of memory swapped in from disk per second

Swap-Out: The amount of memory swapped to disk per second

When looking at si and so, you should note whether either has a value above zero.
While swap is not always a cause for concern, swap-in correlation to high load indicates
that your server is running out of memory and is trying to juggle resources in order to
complete the current work at hand.

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS64

In the cases where the swap is very low and not related to high load, the operating
system kernel may choose to move infrequently accessed pages to disk in the hope that it
will have more memory available for handling sudden spikes in load or will be able to use
the memory for a file-system cache.

That said, if you do see increasing swaps happening under high load, you should
investigate further by checking the virtual file (on a Linux system) as
follows:

This command will produce an output similar to that shown in Listing 3-5.

Listing 3-5. Page-Scanning Output from

Unfortunately, because this output is not produced automatically during a
call, diagnosing this means you will likely have to run the in real time from one ter-
minal and watch for the swap numbers to rise. When they start rising, you’ll be interested
in the and values (indicating scan rate and page
reclaim rate), which indicate that the system is swapping more heavily. If you notice high
scan and reclaim rates while also noticing high swap-in rates, it is a good bet that your
server is memory-bound and that steps should be taken to either increase the available
RAM or decrease the demand.

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS 65

Determining Whether You Are I/O-Bound

As mentioned when discussing CPU bounding influences, the wa column of the
output is an important indicator that your server may be held up because it is reading or
writing too much data to disk. However, that figure alone doesn’t tell you the complete
story. To investigate further, you should also make note of the bi and bo columns defined
as follows:

Blocks In: The number of blocks read during the poll

Blocks Out: The number of blocks written during the poll

A high CPU percentage spent waiting for I/O operations coupled with high blocks in
or blocks out can indicate that your server’s bounding influence is I/O operations.

If you suspect that your system is I/O-bound and if you have the tool available (not
all Linux systems do), the next step is to investigate why you are I/O-bound by looking
at the output of . An example output of shown in Listing 3-6 includes the
optional -x option for extended statistics.

Listing 3-6. Output from a Call to (Truncated)

While much more detail could be gleaned from the output of , for the purposes
of this book we are interested in understanding the proportion of I/O operations as they
happen across the various devices in the system. For example, if the majority of I/O is

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS66

happening on a swap device, then this indicates that the problem might actually be mem-
ory, not I/O. If the majority of I/O is happening on a normal partition coupled with a high
wait I/O CPU time, then this indicates an I/O bounding influence. Some key columns to
point out in the previous example are

iowait: The percentage of time the CPU was left waiting unable to complete a task
because it was dependent on an I/O operation that had not yet completed.

% util: The percentage of time the I/O subsystem was busy working. Note that on
a busy system with RAID, this figure may always appear near 100 percent since it
only takes one spindle to be busy to be “under utilization.”

svctm: Average service time for an I/O request in milliseconds. On a loaded sys-
tem, this number should trend upwards.

avggu-sz: How many outstanding requests there are in the request queue.

Tip It isn't a bad idea in a major environment to create a device specifically for PHP to read and write only
if possible. While it is extra work, being able to clearly identify PHP as the root cause for any I/O performance
issues can not only be handy but also make the system much more robust. For instance, putting heavy write
operations that are known in advance, such as log files, onto spindles different than those used by your data
can increase the performance of your system by keeping the disk heads from having to physically move as
much to perform their operations (creating a reduction in seek times).

Where to Start Looking
Once you have determined your high-level bounding influence, the next obvious ques-
tion is where to go next. Let’s take a look at each of the bounding influences and name
some of the usual suspects that cause them in a web application. For the purposes of this
discussion we will assume that PHP is running alone on the web server (with no other
major processes such as a MySQL database).

CPU Bounding Influence

If you find yourself with the CPU as the bottleneck, the best place to start trying to
improve performance of PHP is by installing an opcode cache and a opcode optimizer,
both provided by Zend Platform. If that still isn’t enough, you can begin improving the
performance of the application logic itself using the Zend Studio for Eclipse profiler
against your application and determining the best place to improve application perfor-

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS 67

mance in terms of processing time. (See Chapter 2 for information regarding the use of
Zend Studio for Eclipse’s PHP Profiler.) It’s important here to remember Amdahl’s Law:
improving code execution time by 50 percent when the code executes 2 percent of the
time will result in a 1 percent overall improvement, while improving execution time by
10 percent when the code executes 80 percent of the time will result in a 8 percent over-
all improvement. This means you should identify code segments that are executed on
almost every request and that can be improved before improving aspects of the applica-
tion that are possibly very inefficient but rarely executed.

As an even more drastic step, consider reimplementing aspects of your application
that do not have to happen within the context of the web request itself (such as sending
an e-mail) as asynchronous operations using Zend Platform’s Job Queue, discussed later
in this book.

Memory Bounding Influence

If the problem you are having is memory-bound, chances are you that are likely per-
forming memory-extensive tasks in your application that need to be streamlined. To
identify where the memory hog is, you can use various techniques. The most available
technique is to toy with the configuration value used to limit the
amount of memory any given PHP script can consume. Through experimentation with
this value (starting low and moving up, or starting high and moving low) you can identify
the aspects of your application that are consuming the most memory (as they will cause
out-of-memory errors when the limit is reached). Once you have determined the amount
of memory PHP needs to execute your application per request, you should solidify the
memory limit using the following formula:

(total RAM – non-Apache memory needs) / number of Apache children

Once you know exactly which requests are eating up all the available memory, you will
likely have to reimplement those aspects to be more memory-friendly by doing whatever
processing is necessary in chunks (i.e., streaming) or taking the processing off the web
server using Zend Platform’s Job Queue. Depending on the nature of your application, it
may also be helpful to be sure PHP frees up large memory chunks no longer being used by
setting their respective variable(s) to null after the operation is complete. (Although due
to the nature of the Zend Engine powering PHP, other references to the data contained
within the variable may prevent it from being freed immediately even if you explicitly set
the variable to in a script.)

I/O Bounding Influence

If your application is I/O-bound, the first obvious candidate is the application itself. If
your application’s logic doesn’t write to the disk at all, or if it is determined that whatever

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS68

writing is being done couldn’t account for the significant I/O bounds you are experienc-
ing, then another possibility is to look at PHP sessions. By default, PHP sessions will write
to the file system and under heavy load could potentially cause I/O bounding influences.
If that is the case, consider either using a RAM disk for session storage (much faster) or
Zend Platform’s Session Clustering feature to improve session performance across your
application.

Tip Interestingly enough, most PHP applications are not I/O bound in performance, but database
servers often are. The advice listed here for finding your bottleneck is equally as valid for debugging
problems in MySQL.

When the Bottleneck Is a Remote Procedure Call

One of the reasons that PHP applications scale so well is that a large part of the environ-
ment does not maintain state (provided that session storage is not handled by Zend
Session Clustering). What this means from a practical standpoint is that as you add addi-
tional web servers to your topology, your capacity to serve requests will increase at an
approximately linear rate.

There will, however, be some components of your architecture that will not have this
ad hoc scalability property, and they tend to be the components that have to guarantee
some sort of persistence of data, such as databases, or calls to external APIs, which in turn
hit their own limits before PHP or the web server itself does.

To determine whether a remote procedure call (RPC) is a bottleneck requires finding
where the PHP script itself is being hung up waiting for a response, which is best done
with the Zend Studio Profiler covered in detail in Chapter 2 in the “Profiling in Zend Stu-
dio for Eclipse” section.

Simulating Load to Identify Future Bottlenecks

Stress testing or simulating load turns out to be a very difficult problem for web appli-
cations. The reason for this is that it’s almost impossible to create the perfect test to
represent exactly what the access patterns of your application are going to be.

If the test does not represent what visitors are going to be doing, then it leaves poten-
tial edge cases where you do not get to see the bottlenecks you had hoped would arise.
Some examples are as follows:

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS 69

The stress test does not have high enough concurrency: Not having enough concur-
rency prevents some database bottlenecks such as deadlocks and MyISAM table
locking from appearing. Tests in a single thread do not help identify bottlenecks
well at all.

The database size during the stress test is too small: A test with too small a database
prevents showing how performance may differ as soon as data is too big to fit in
caches.

The database does not contain realistic data: Repeating the name “test customer”
10,000 times may lead MySQL to execute queries differently than what was
expected.

The stress test is disproportionately read-heavy: Tests need to include a number of
write operations similar to the number the real application would receive. This
ensures that not every request is served by a cache.

The stress test does not access enough unique resources: A test that hits only the
home page will show a skew in high cache hits, which might not be the same for
the rest of your application.

The best tools we are aware of to use as the basis of these stress tests are (an
Apache benchmarking tool available to

) and (). Both are similar in
usage, with having the added feature of accepting an input file of URLs. Having
said that, Selenium is one tool we are watching closely, as it has the ability to record tests
that can be replayed directly within the browser environment. The one major advantage
of using such a test is that it will stress the complete stack of technologies, since it also
requires images to be loaded and JavaScript to be rendered. The downside of Selenium
is that it’s more difficult to generate enough load from one client machine to trigger
performance issues on the server. This problem is addressed by Selenium Grid, which
allows the tests to be distributed across multiple nodes and executed in parallel. Note
that Selenium is not the only option available. Apache JMeter is also a very powerful load-
generation tool to consider.

Note The main purpose of Selenium is actually for test-driven-development. Stress testing is just a
side effect of its functionality. The Selenium IDE Firefox plug-in is available at

.

Download at WoWeBook.Com

CHAPTER 3 WEB APPLICATION PERFORMANCE AND ANALYSIS70

Conclusion
In this chapter we discussed an extensive collection of system-level tools for the Linux
platform for identifying potential bottlenecks in your web applications. Combined with
the profiler tools provided by Zend Studio discussed in Chapter 2, you have a very power-
ful arsenal at your disposal for locating the most problematic performance issues.

As we said in the beginning of the chapter, the act of identifying a server-perfor-
mance bottleneck is based as much on experience as it is technique. But let’s face
it—technique helps a lot. Hopefully after reading this chapter you have a much better
grasp of how to analyze the data available to you and can make some intelligent con-
clusions as to why your application is slow. Once you understand the major bounding
influence of your application, you can then apply the techniques in the rest of this book
to that problem to solve it.

We’ll introduce more information on MySQL in Chapter 10. In the next chapter we
will examine data-caching techniques, an invaluable set of tools for improving appli-
cation performance when the bottleneck lies in the CPU or in interactions with the
database.

Download at WoWeBook.Com

71

C H A P T E R 4

Data-Caching Strategies
in PHP

The first and easiest-to-implement caching technique for your PHP applications is
something called opcode caching. Also known as a compiler cache, this technique cor-
rects a rather obvious inefficiency in the way out-of-the-box PHP executes its code. This
technique increases the performance of your PHP scripts anywhere from 50 percent to
200 percent with no other code changes. To understand how it works, let’s take a look at
what happens when PHP executes a script.

The PHP Execution Cycle
Every time a PHP script executes, it goes through a number of steps to get from the ver-
sion you wrote into something the PHP engine can understand and execute as logic. This
process is expensive from a performance perspective, and it has to happen for not only
for the main script that was executed but also every script the main script references, as
shown in Figure 4-1.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP72

Figure 4-1. The standard execution of a PHP script

While completely functional, what makes the process outlined in Figure 4-1 so inef-
ficient is the reality that there is a deterministic relationship between the original PHP
script and the opcodes it produces. To say that another way, any given input script will
always produce the same output opcodes and thus shouldn’t have to be re-created every
single request. Furthermore, since the opcodes are re-created every execution, a normally
highly beneficial step of optimizing the opcodes created after parsing cannot be realized
since the efficiency gained would be totally lost having to do it every time. Thus, there
are many various opcode caches available for PHP that change the flow of Figure 4-1 as
shown in Figure 4-2.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 73

Note It is worthwhile to note that caching opcodes and optimizing opcodes are two very distinct steps.
In fact, optimizing opcodes without caching them actually reduces performance! You can, however, cache
unoptimized opcodes and still see a significant performance boost.

Figure 4-2. Optimizer/opcode cache in the execution of a PHP script

Simply by introducing an opcode cache into your PHP technology stack, it is possible
to increase the speed of your script executions from anywhere to 50 percent to 200 per-
cent! So how do you take advantage of this performance boost? There are many options

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP74

available, both open source and commercial. If you are interested in open source tech-
nologies, you should take a look at APC (), but for the purposes of
this book we will be focusing on the PHP stack provided by Zend Technologies through
Zend Platform, which provides both the opcode optimization and caching technology out
of box.

Tip If for whatever reason you want to disable the opcode cache for a specific file, you can do so from
the Zend Platform admin panel under the File View submenu of the Performance tab. Select the file for which
you would like to disable the opcode cache file, and click the Blacklist icon to disable opcode caching (called
Acceleration in the GUI), output compression, or both.

Full-Page Caching
When it comes to caching in PHP, nothing is simpler than opcode caching. It is so simple
in fact, you can forget there are lots of other different caching strategies and techniques
that any high-performance application will need to employ correctly in order to handle
the maximum requests per server. Thankfully Zend Platform provides all of these tech-
nologies in easy-to-use APIs and web interfaces. To begin we’ll take a look at a feature of
Zend Platform called full-page caching and how it can help you dramatically increase the
performance of applications under the correct circumstances.

What Is Full-Page Caching?

Full-page caching is, simply put, the caching of the output of a complete PHP request
based on input parameters from that request. Figure 4-3 outlines how full-page caching
fits into the execution cycle of a PHP request.

While full-page caching can be highly effective in increasing the performance of a
web site, there are many caveats that must be taken into consideration before this style of
caching can be employed. Full-page caching works by caching the output of a PHP script
based on the input data it receives from an outside source, including HTTP, GET, or POST
requests; cookies provided by the request; or variables stored within the session of the
request. Effectively, when using a full-page caching mechanism, a dynamic PHP request
is turned into a static request with no PHP logic whatsoever based on the criterion speci-
fied. This can be extremely useful when there is no need to place any dynamic content on
the page (such as perhaps a page of a product catalog), but it should be used with care!
For instance, if you are attempting to optimize a blog it probably doesn’t make sense

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 75

to use full-page caching on the main landing page of the blog (which displays multiple
blog posts) as that page is mostly based on highly dynamic content. On the other hand,
on the individual pages that display only a single, mostly static blog post, full-page cach-
ing could be used to create a significant performance gain. In both cases it is critical to
ensure that you craft your cache criteria carefully by making them generic enough to have
a high percentage of cache hits and specific enough to not create errors (such as caching
the user’s name and displaying that name to another person who isn’t that user).

Figure 4-3. How full-page caching works

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP76

Setting Up Full-Page Caching

Setting up full-page caching is quite simple thanks to the Zend Platform admin console.
To get started, first you must choose the way you will cache the output of a request by
selecting either file-based or URL-based caching. File-based caching is useful when the
PHP script that is executed for a request is directly requested from an URL entered into
a browser such as . On the other hand, URL-
based caching is useful when the PHP script that is executed isn’t directly connected
to the URL entered into the browser such as from a Zend Framework MVC application:

. We’ll first look at file-based full-page caching and then
move on to the URL variety.

File-Based Full-Page Caching

File-based full-page caching can be accessed from the Zend Platform GUI by clicking
on the File View link under the Performance tab. You can see an example of this view in
Figure 4-4.

Figure 4-4. The File View tab showing full-page caching in Zend Platform

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 77

From this interface you can browse the document root of your web server (using the
file navigation on the left) and set up specific PHP scripts that should be cached and how
that caching should take place. To enabling caching of a specific PHP script, select it by
placing a check next to the file and click the Cache icon above the file list. This will enable
caching for this file using the default caching setup (found under the Settings link in the
Performance tab). Once the script has been set up to be cached you can select the file
again and click Define Cache, bringing up the interface shown in Figure 4-5, allowing you
to define the particulars of one or more cached files.

Figure 4-5. Caching conditions setup screen in Zend Platform

As you can see in Figure 4-5, for each file being cached you can define not only the
lifetime of the cached file (how long it will remain cached before it is considered stale
and will be automatically refreshed) but also create one or more caching conditions that
define the criteria used to determine whether a cached version of the request exists or
not.

Once you have completed the setup of your cache you will need to restart the web
server for the new settings to take effect. You can do this either manually or by clicking
the Restart Webserver link in the Zend Core interface.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP78

Tip Set your caching conditions wisely! We have personally seen numerous people create completely
ineffective caches of their data because they mistakenly either misused full-page caching when it wasn’t a
good option or included a variable in their conditions that changed nearly every request and thus only served
to fill the cache with megabytes of cached outputs that never were used. Besides being a huge waste of disk
space, a cache polluted in this way can actually slow down the application in a big way, defeating the pur-
pose of the cache in the first place.

URL-Based Full-Page Caching

As previously mentioned, sometimes caching based on the literal PHP script to be
executed doesn’t make sense such as in Zend Framework MVC applications, where all
requests are routed through a single bootstrap PHP script. For these circumstances Zend
Platform provides the ability to define a full-page cache based on the request URL to be
cached. To get started, click the URLs link on the Performance tab, bringing up the URLs
caching interface shown in Figure 4-6.

Figure 4-6. The URLs full-page caching interface

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 79

Like the File View interface shown in Figure 4-4, the URL-based interface allows
you to manage the various URLs that you are interested in caching. When adding a new
URL, however, keep in mind that the URL by default will be a wildcard and thus

 will cache not only that URL but
as well. To prevent this behavior, make sure you select the Exact Match check box when
entering the URL to be cached.

Final Thoughts on Full-Page Caching

Full-page caching is a significant performance booster, but as we previously mentioned,
if it is improperly set up, it can actually do more harm than good (or even worse—break
your application)! Be very mindful of your caching conditions and only select conditions
that will result in the greatest number of cache hits without breaking the application.
If for whatever reason you would like to flush your cache, you can do so by clicking the
Clean icon in the File View tab or the URLs tab.

Semi-Full-Page Caching
While full-page caching is highly effective at improving the performance of an application
there are times when the criteria available in Zend Platform are not sufficient to make it
a viable option. An example of such a situation is a blog post that contains an advertise-
ment—while the vast majority of the page is a prime candidate for a full-page cache, it
can’t be used since the advertisement image shown has no connection at all to any input
parameter given to the page. While Zend Platform itself does not address this issue, if you
are using the Apache web server there is a technique you can employ that achieves the
same caching effects as Zend Platform with a relatively minimal amount of code.

Warning This section requires that you to be running the Apache web server and to have the mod_
rewrite server module installed. Please refer to the Apache HTTP server documentation at

 for information on enabling mod_rewrite.

To achieve semi-full-page caching you will have to leave the comfortable GUI
interface of Zend Platform and instead develop your application to employ the caching
mechanism defined in this section. For the purposes of this explanation we will assume
that the page you are interested in caching is the aforementioned blog post, wherein all of
the content except a single advertisement can be cached. To get started, let’s assume that
the following URL can reach your blog post:

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP80

To achieve a semi-full-page cache for this request, you could use the data-caching
techniques described later in this chapter—at best a cumbersome effort—or you could
harness the module to make the solution much more elegant. To get started
we will assume the creation of a new top-level directory in the document root called
“posts” (writable by the web server), within which we create a rule such that
the following URL:

is mapped back to our original URL, automatically populating the ID parameter of the
 request with the file name from the URL (without the suffix, in this case “4”).

So far, so good—doing so has created a secondary way to reach the same content, but the
original script all still dynamically generates it. To achieve a performance gain,
we must now look at the script itself and change its logic. Typically in a script
with the behavior of you can assume safely a basic pattern of operation:

1. Execute business logic and queries that do not need to change every request.

2. Execute the business logic and queries to generate the advertisement code (must
change every request).

3. Generate the output HTML and display to the user.

Rather than do this every request, what if we instead created a script that
behaves as follows?

1. Execute the business logic and queries that do not need to change every request.

2. Generate a new PHP script that contains static HTML for all cacheable aspects of
the output and includes PHP code for the business logic and queries to generate
the advertisement code.

3. Write the generated PHP script to the file, where is the
requested ID given by the user.

4. Include at the end of the request.

Again, by changing the flow of this logic as shown, we have returned our hypotheti-
cal application back to a fully functional status. However, we have introduced a major
performance benefit. While on the first request everything will happen as expected and
the script will execute, on the second request you will find that you no longer
need to execute this script to generate the page. To understand why, you need to realize
an important detail about the module—rewrite rules can be crafted to not be
executed if the URL requested resolves to a real file to be served. Thus, while on the first
request the rule caused the script to execute when that execution
was complete, the script wrote the semicached version of its output back to

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 81

the file system. This file was then served on the second and every future request, bypassing
all of the unnecessary actions, including only those that were deemed absolutely neces-
sary. To make this behavior a little easier to understand, we’ve included a flowchart of its
function in Figure 4-7.

Figure 4-7. Semi-full-page caching using Apache mod_rewrite

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP82

Using this pattern can be incredibly powerful for complex sites where standard full-
page caching doesn’t quite provide the flexibility needed and also fits into a paradigm
of output generation some developers find more comfortable than data-caching tech-
niques. Incidentally, if you ever wanted to invalidate the cached entry you could do that
as well very simply—just delete the generated file from the directory and the next request
will regenerate it! In either case though, be mindful of security when implementing this
sort of solution as write access to a document root could be abused by a malicious user
if they can somehow get your application to write a file you didn’t intend to write into
document root.

Programmatic Caching
In some circumstances, no full-page caching technique will accomplish the necessary
goals for a particular PHP script. Perhaps there is too much logic, or the logic that does
exist within the script is dependent on data received from a source outside of the script
itself such as a database or web service. For these circumstances you must use some
form of programmatic caching or the introduction of caching logic as part of the overall
operation of your application or script. There are many different implementations and
approaches you can use to cache data at this level, and thankfully all of them are encap-
sulated nicely within the Zend Framework component , which will be our tool
of choice as we discuss the subject.

Components of Caching in Zend Framework

When you examine how programmatic caching is approached in Zend Framework
through the component, you will see that the process is broken down into
two aspects: the front end and the back end. In this discussion the front end refers to the
nature of the data being cached itself, while the back end refers to the storage medium
used to store the cached data. The following is a brief introduction to each of the sup-
ported caching front ends and back ends.

The following are caching front ends:

: A generic caching front end from which all other front ends are
based; useful for storing arbitrary data in a cache

: A front end to cache the output of a particular seg-
ment of your application’s logic

: A front end to cache the output of a function call

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 83

: Similar to , a front end
that allows you to cache static and non-static method calls of classes

: A front end for caching data based on the status of a file
in the file system

The following are caching back ends:

: A file-based cache-storage engine

: A SQLite database–based cache-storage engine

: A Memcached-based cache-storage engine

: An APC-based cache-storage engine

: An Xcache-based cache-storage engine

: A Zend Platform–based cache-storage engine

: A special cache-storage engine designed to allow
you to store the same cached data in two different storage back ends

Note We have intentionally omitted from the list of available front-end
cache mechanisms. If you desire to use full-page caching it is strongly recommended that you use the GUI
provided by Zend Platform.

Because the usage of is already extremely well documented both in
printed text as well as on the Zend Framework web site (),
we will forego an in-depth explanation of the syntax and usage of the component itself.
Rather, we will focus on the characteristics of a successful caching implementation from
a variety of angles interesting to enterprise applications. These characteristics are the
correct identification of a caching opportunity, correctly choosing caching keys, and the
various strengths and weaknesses of the various caching back ends.

You Can (Almost) Always Cache Things

Before you can ever hope to truly benefit in any measurable way from any caching tool,
you first must know what in your application both can be cached and what will ben-
efit from caching. The first is surprisingly simple and can be answered using a single

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP84

question: under a given time frame can the operation acceptably be described as deter-
ministic? We have mentioned the notion of determinism before, but now that we are
discussing the implementation of caching mechanisms on a programming level, it is
worth hammering out in explicit terms. In computer science, calling an operation deter-
ministic is another way of saying that the operation is predictable. For example, the
function call is deterministic if you will always receive “4” given those input
parameters. Unfortunately, when you look at a practical application’s performance, the
bottleneck within the application (remember, there is only one bottleneck in any par-
ticular logic path of an application) is almost never the result of a deterministic function
series of operations. So how does this issue get addressed? By introducing a time frame
to the discussion. While most bottlenecks in applications are not caused by deterministic
operations, most bottlenecks can be considered deterministic operations under a short
enough time frame.

For example, consider a popular web script that receives 300 requests per second, and
for each request the script must perform an expensive query against the database. This
means that over the course of a minute this application will perform this single constant
query 18,000 times. You may argue that such a query is necessary, and we personally have
heard all too often the argument that real-time updates of data eliminate any possibility
of a performance boost through caching, but we disagree. As a matter of practicality when
dealing with humans, the difference of a few seconds of delay between updates rarely has
any impact at all on user experience (even live television has a seven-second delay!) yet
can yield significant performance improvements. In the original hypothetical example of
a script receiving 300 requests per second (18,000 requests per minute) we could cut down
our queries from 18,000 per minute to 2,572 per minute (18,000 divided by 7) or improve
the overall performance of the query by 85 percent! Even a two-second cache on the query
would yield an overall performance improvement of 50 percent. The point here should
be obvious: it is extremely rare that the developer of a real-time application can’t still find
places to cache data, even for short periods of time, that produces a benefit—especially in
heavy-load applications.

Caution In this example, showing an 85 percent overall improvement in performance could be mislead-
ing. If the query takes five seconds to execute from a user experience perspective you are basically covering
up the problem instead of solving it. (Eighty-five percent of the requests will execute fine, but 15 percent of
them will still be very slow.) If you find yourself in this situation, caching at the application level is indeed
important, but care must be given to identify the root inefficiencies of the underlying bottleneck.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 85

Knowing Your Cache Effectiveness

Once you have identified a potentially cacheable operation, the next pitfall too many
developers fall into is thankfully a relatively obvious one to understand and solve—bad
cache-key generation. This is a critical calculation for your application, as it will deter-
mine the effectiveness of your caching mechanism when caching data based on variable
input. Since there are a million ways to generate a cache key for any given cacheable
piece of data, it behooves the developer not to focus first on the cache key itself but
instead to focus on the cache hit/miss ratio—the number of times a request for data
results in data being returned from the cache (a cache hit) vs. the number of times the
data must be calculated because it was not found in the cache (a cache miss). Often
represented as a percentage of cache hits vs. total attempts, in a high-performance appli-
cation it is often in the 90th percentile. It is critical that you are aware of the effectiveness
of your caches as much as it is important that you profile your applications to understand
where a cache might be useful in the first place.

Note There are other reasons a cache can miss other than a poor cache key; for example, an expired
cache item or the caching mechanism removing items because it has to make room for newly entered
cached items due to an uncharacteristically high cache miss rate.

The Various Zend_Cache Back Ends

Now that we’ve discussed the general techniques used to implement successful caching
mechanisms (presumably using one of the front ends) we can now look at the
various storage mediums available to your cached data through Zend Framework and the
pros and cons of each. For this discussion we will group the various available back ends
into three categories.

The following are file-based back ends:

The following are local memory back ends:

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP86

: An APC-based cache-storage engine

: An Xcache-based cache-storage engine

: A Zend Platform based cache-storage engine

The following is a server-based back end:

File-Based Back Ends

The simplest of all cache-storage mediums is the local file system of the web server, and
it can be implemented using either the or

 back-end cache engines. These back ends are useful for smaller setups but ulti-
mately have scalability issues due to their reliance on the I/O abilities of the underlying
file system. Starting with , this back end will store cached data as
a file (whose name maps to the cache key itself of the data) and store one cache record
per file. Let’s take a look at some basic usage in Listing 4-1.

Listing 4-1. A Simple Usage of the File Back End to Cache a Function Call

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 87

In this simple example, we use the component to cache the results of a
function that calculates the value of a number in the Fibonacci sequence (in this case the
50,000th number in the sequence). In our test environment when we ran this program the
first time it took roughly five seconds to calculate. However, since the result is cached,
subsequent executions yielded an almost insignificant execution time as expected. In
this example, we stored the cache data as multiple individual files in the local file system.
Alternately, you could also make the management of your cache a little easier by replac-
ing the call to in Listing 4-1 with a back end of instead of

 and specifying the configuration option to the full path
and file name of the SQLite database to use (which doesn’t have to exist) in place of the

 configuration setting.
While the biggest benefit of a file-based caching back end is simplicity, as previously

stated one of its downsides is that you are limited by the capabilities of your file system for
performance. For the file-based back end, there are a few things you can do to improve the
performance. Let’s take a look at a few of them.

Disable file locking: While you risk cache corruption, disabling the back-end
locking of a cache file using the “file_locking” configuration setting can improve
performance.

Use a RAM disk: Creating a RAM disk to store your cache files can significantly
improve its performance but at the cost of losing your cache entirely in the event
of a power failure.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP88

Disable or tweak read control: By setting “read_control” to false you can disable the
check to ensure that the data was read from the file system properly. Of course you
run the risk of the data being read incorrectly, but it will increase performance. You
can keep read control on and speed things up a little bit as well by changing the
read control type using the “read_control_type” configuration parameter (see the
Zend Framework documentation).

Create a hashed directory structure: Using the “hashed_directory_level” configu-
ration parameter, you can specify how many levels deep the engine will create
directories to store cache files in. If you intend to have huge quantities of cached
data (number of individual pieces, not size of the data itself) it is strongly recom-
mended that you use this to distribute the resulting files into multiple directories.

If for whatever reason you cannot get the performance you want out of the file-cach-
ing mechanism (for example, if you are unable to create a RAM disk) or maybe just don’t
want to use files, an alternative is to consider using one of the local memory back ends
such as that provided by Zend Platform. This solution, rather than being file-based, stores
the data in shared memory, allowing the entire server to benefit. Of course, like a RAM
disk, data stored in the cache is only as persistent as your power supply but is as easy to
set up as a file-based back end with all performance benefits built in.

Regardless of the solution you use for your back end, be it file-based, SQLite, or local
shared memory, there is a major performance problem with each of them—they are all
local server solutions. Since there is no way to share data that is cached across physi-
cal servers, in all of the solutions mentioned so far, at best every server in the farm must
calculate and store data in its cache locally. To solve this problem (and create the most
powerful caching solution) we will need to introduce Memcached and the Memcached
caching back end.

Caching with Memcached

One of the latest success stories in the space of scaling and performance is a tech-
nology called Memcached. Created originally for the massive blogging site

, it is now used by the biggest web sites on the planet to improve per-
formance on scales most of us will never have to worry about. So what is this miracle
technology exactly and how does it work? Thankfully there is no magic. All Memcached
does is provide a mechanism for storing a piece of data with a unique key and then
retrieve that value later by providing the key, like any other cache. The key difference,
however, is that Memcached is a network-based cache, meaning to store data within it
you must open a network connection to the server to do so, and it is distributed, allowing
you to run multiple instances and store data across them.

This may not seem like a huge deal, but it offers a wide range of possibilities that
would otherwise not be possible. For starters, you can create massively large shared

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 89

caches that normally would violate the maximum memory the system allows for a single
program by running multiple instances on the same machine. Additionally, you can run
multiple instances across multiple physical machines creating single-function caches
that span incredibly large server farms.

Installing Memcached and Friends

All of this sounds great; so how do you get started? You’ll be happy to know there aren’t
any configuration files to worry about. Simply download and install the Memcached server
and run it from the command line. First, download the latest version of Memcached from
the web site and build it for your system:

Note You may have to install libevent as well if you don’t already have it on your system. You can
find download and installation instructions on the libevent web site at

.

Once installed you can start it up by executing the command as a daemon:

Of course, while functional, this is the most basic setup you can use, and it should be
adjusted to your own needs (see tips later in the book). With the server up and running,
next you must install the Memcache PECL extension and include it in PHP. This involves
the following steps:

1. Download libmemcached ().

2. Compile and install libmemcached.

3. Download the memcache PECL extension ().

4. PHPize the extension by running the phpize command.

5. Compile and install the extension.

6. Enable the extension in your file.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP90

Following is a listing of the commands you must execute to accomplish the previous
steps. It is assumed that all necessary files have been downloaded.

To test your installation, call the function and look to see that the mem-
cache extension is loaded into your PHP. Once completed, you’re ready to start using it.

Naming There are two memcached extensions available for PHP, one called “memcache” and a newer
one called “memcached.” At the time of this writing, in order to take advantage of memcache from within
Zend Framework using the component, only the more stable “memcache” extension can be
used.

Using Memcached

Using Memcached ultimately is simple. You only need to specify the Memcached back
end when creating a Zend_Cache object. Listing 4-2 demonstrates its use using the same
fundamental example from Listing 4-1.

Listing 4-2. Example of Using Memcached from Zend Framework

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP 91

Note that in Listing 4-2 we specify an array of Memcached servers. This can be (as
in our example) a single server or a collection of Memcached instances to use as part of
the cache. These instances can run on a single machine (useful when you want to make
a cache that is larger than the maximum process size allowed by the kernel) or span
multiple machines. Optionally you can also enable cache compression, whereby Zend
Framework will automatically compress the data being cached before sending it to
Memcached, allowing you to store more data per instance.

Download at WoWeBook.Com

CHAPTER 4 DATA-CACHING STRATEGIES IN PHP92

Now that you have everything set up, here are a few tips and things you should be
aware of before you start using it as your cache back end:

-
raphy will prevent unauthorized clients from connecting to the cache
(i.e., only accessible from a private network between the servers).

data if there is a loss of power or the server is taken offline. Be careful to store data
you need to retain in a persistent storage mechanism such as a database.

 Zend Framework support for Memcached does not
allow you to specify different server weights. If you require support for these
advanced features of Memcached, please refer to the new memcached extension
mentioned previously.

Conclusion
In this chapter you were introduced to a wide range of caching techniques from full-page
caching to powerful server-based solutions such as memcache. More important than
the technology alone, you should have also acquired a better sense of how to cache data
(even if it seems it can’t be cached) to squeeze significant performance out of even out of
applications that have operational requirements to function seemingly in real time.

We’ve covered a lot of material in this chapter, but all of it is incredibly important in
the creation of high-performance web applications. Caching, in all of its forms, is without
a doubt one of the most critical skills to master. Like many things in PHP, experience goes
a long way, but if you can distinguish when to use full-page caches vs. dynamic caching,
you’re off to a good start. The most important thing to remember, though, is that just
about everything can be cached and that even a cache that seems incredibly short-lived
(like seven seconds) can save you thousands of cycles without having to give much up.
In all, it comes down to knowing the behavior of your application under high-load envi-
ronments, which is where the concepts introduced in Chapters 2 and 3 on using tools to
determine your bottlenecks can go a long way in helping you. If you skipped over those
chapters go back and at least read the latter portion of Chapter 2 on Zend Studio profiling
tools, which often are the most useful to identify cacheable points in your application.

Download at WoWeBook.Com

93

C H A P T E R 5

Asynchronous Operations
with PHP

The notion of asynchronous operations is not a new one to the web space; technolo-
gies like Java have employed it for years for their web development tooling. However, for
PHP the notion of performing inline asynchronous operations is a new one—and a very
powerful one at that. In this chapter we’ll explore what and how to use asynchronous
operations in your PHP applications to maximize performance with almost zero impact
on your application’s abilities.

In PHP, the only way to take advantage of asynchronous operations without a lot of
pain is to use the various asynchronous technologies available as part of Zend Platform—
specifically the Zend Job Queue. This technology allows you to, sometimes completely
transparently, take a load off of your web servers by executing PHP logic or other tasks in
an asynchronous fashion.

Before we get too much further into it, what exactly it means to be asynchronous in a
web context is something worth discussing. An asynchronous operation is an operation
that happens simultaneously alongside another one. The savvy developer may ask what
the big deal is then, since obviously a web server allows you to execute multiple requests
simultaneously and therefore must be asynchronous. This is true; however, we are not
talking within the context of a single web request.

In a standard PHP application, the time between when a client connects to the server
to perform a request (executing PHP code along the way) and when the client breaks
the connection is considered a single web request. The number of these requests you
can execute per unit of time is a significant measure of web application performance
(requests per second) and in fact is an entirely synchronous set of operations. This is why
performance materials around PHP should always be careful to avoid mentioning if pos-
sible the execution of “blocking” operations in a PHP request, as they can be fatal to even
the largest web farms. However, let’s be honest—if you really need to send that e-mail to
the user, where else are you going to do it but from within PHP? This is where a technol-
ogy like Zend Job Queue earns its stripes.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP94

Note A “blocking” operation is an operation that prevents any other operations from moving forward until
it is completed. Many PHP operations are blocking, especially ones dealing with database requests and all
communication with servers (i.e., sending mail or web services). They can be fatal to a web server because
a blocking operation not only ties up the PHP script but also the web process controlling it, preventing it from
servicing any other requests.

So how does something like Job Queue work? Basically, the Zend Job Queue man-
ages a completely different set of PHP processes for the execution of scripts outside of
the web server. These PHP processes can be utilized by the PHP scripts executing within
the web server to offload expensive or otherwise blocking operations to the Job Queue,
allowing them to execute in a leisurely fashion while keeping the user experience (i.e., the
web request) as fast as possible. A diagram demonstrating this difference can be found in
Figure 5-1.

Figure 5-1. The difference between a standard web request and one utilizing asynchronous
operations

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 95

As shown in Figure 5-1, in a standard web request, a potentially blocking and
expensive operation has to be executed while the user is connected (and must wait to
complete). However, in a web request utilizing the Job Queue, this operation can be
executed in an entirely different PHP instance. This allows the web request and user
experience to remain as fast as possible without sacrificing any functionality. Moreover,
because the Job Queue is an entirely separate binary from the web server, you can run
these PHP scripts on a completely separate machine and in fact run multiple Job Queue
servers together to create an entire farm of asynchronous processing power.

Getting Started with Job Queue
So how do you take advantage of this functionality in your PHP applications? To begin,
you need a version of Zend Platform installed with the Job Queue server enabled. This can
be on the same machine as your web server, or you can install a new server specifically to
handle Job Queue functionality (please refer to the Appendix for assistance in the instal-
lation of Zend Platform). Once installed, you can access the Job Queue web interface by
logging into Zend Platform and clicking on the Job Queues tab shown in Figure 5-2.

Figure 5-2. The Zend Platform web management console, Job Queues page

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP96

While this interface does not provide complete access to all of the abilities of the Job
Queue, all of the major aspects of the usage of a Job Queue server are covered, including

In a fresh installation, before you can use the Job Queue you must configure it appro-
priately. To do this you need to click the Settings link, which brings up the Queue Settings
page shown in Figure 5-3.

Figure 5-3. The Queue Settings page

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 97

When using the Job Queue, the Queue Settings page is an important place to start, as
it identifies among other things the “Scripts folder,” the location where you will store the
PHP scripts that are executed in the Job Queue. By default, this directory is the
directory located under the root of your Zend Platform installation. If desired, this direc-
tory can be changed to anything you desire. Following is a brief listing of the rest of the
settings available from within the Queue Settings page:

Maximal queue depth: How many backlogged jobs to allow in the Job Queue
before no more jobs will be accepted

History refresh interval: The amount of time in hours between refreshes or remov-
als of old historical data from the Job Queue

Maximal history time: The amount of time in hours to keep historical Job Queue
data before it is purged

Maximal re-queue times: The number of times a failed job will be re-queued
before the job will no longer be attempted

Sliding-window to collect Job Queue Statistics: The window of time, in seconds,
that is used to populate the statistics of the Job Queue statistics page in the Zend
Platform queue

Client-Daemon Connection timeout: The amount of time in seconds without activ-
ity before a connection between a Job Queue client and the server is broken

Queue alias: The alias used to represent the Job Queue server

Advanced Job Queue Configuration
As previously mentioned, there are a number of different aspects of the Job Queue that
cannot be configured from the web console. In the next few sections we will introduce
each of these aspects through examples that will need to be followed in order to continue
on with the rest of the examples in this chapter.

Replacing Job Queue’s PHP with Your Own

In any serious Job Queue setup one of the first tasks that should be undertaken is the
replacement of the PHP binary that ships with Job Queue with one of your own choos-
ing. While this may seem like it should be unnecessary, it is strongly recommended if you
require any extensions that are not immediately available in Job Queue. The reason for

-
ries do not come with the necessary tools (and) to build shared modules

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP98

for them. While it is entirely possible to compile your own PHP binary for use with the Job
Queue from scratch using a PHP distribution from , it is much easier to

that has the necessary tooling (and a lot more precompiled and supported extensions).

Note If you must compile your own PHP binary for Job Queue, you must match the major version of PHP
exactly (the first two digits of the PHP version, e.g., 5.2.x) and compile a FastCGI-compatible version of the
binary. Job Queue uses FastCGI for executing the PHP scripts managed by the queue.

To change the binary used by the Job Queue, open the file
(from the base of your Platform installation), an example of which is shown in Listing 5-1.

Listing 5-1. The File of Zend Platform

Note The file shown in Listing 5-1 is a standard FastCGI configuration file. If you
are curious as to the meaning behind all of the other directives within it, please consult the FastCGI docu-
mentation for more information.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 99

-
mandLine parameter with the default value of
(depending on your installation location, your path may vary). To make the PHP version

this line to point to the binary that can be found in the directory of your Zend
).

With this binary adjusted, you must now alter the configuration of the PHP itself to
adjust the directory used to locate extensions to load in PHP. We will discuss this now.

Modifying the Configuration of Job Queue’s PHP

If, for whatever reason, you ever need to modify the configuration settings of the PHP used
by Job Queue itself (for instance, following from the previous section you have to modify the

it in the file (from the Zend Platform base installation directory). If you
followed along with the previous section of replacing the PHP binary that ships with Zend

the
).

To follow along with the examples in this text, you will need to at least add the
bcmath extension to your Job Queue PHP. Assuming you have followed along with all of
the exercises in this text, you should just have to add the following line to the

 file to enable this extension:

Once added, restart the Job Queue. (Instructions on doing this from the command
line follow in the next section.) In the next section you will learn how to create your first
job (a simple PHPInfo script), and at that point you can test to make sure the extension
was loaded properly by checking for it in the output of that script.

Controlling the Job Queue from the Command Line

At times, especially for system administrators, it is desirable to control various services
that execute on a server from the command line. This can be done for the Job Queue as
well by using the script found in the Platform directory. This script functions
in the same way as any other common management script and supports the options
“start,” “stop,” “restart,” and so on. If you have modified the binary used by Job Queue
or changed the PHP configuration settings of the Job Queue PHP as was discussed in
the previous two sections, you can restart the server and have the changes take effect by
executing the following command as root or super user:

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP100

Using the Job Queue to Execute PHP Scripts
Now that you have an introduction to the Job Queue web interface, let’s create our first
job—a simple PHPInfo script.

Creating Your First Job

Start by creating a file in your Job Queue script directory (found in the Queue
Settings page) with a single function call to within it. You can now create a new
job by clicking the icon in the Add Job column near the end of the Queues Statistics table
(Figure 5-2). This will bring up the Add New Job page shown in Figure 5-4.

The Add New Job page allows you to create an arbitrary job to run either once or on a
recurring basis as desired. Following is a listing of the various fields in this form and their
meaning:

Name: The name of the job, a simple arbitrary human-readable identifier

Priority: The priority of the job in the queue in relation to other jobs pending

Application: The name of the application this job relates to; used for grouping pur-
poses in the web interface and accessible from the API (to be discussed)

Script File: The script file (within the Job Queue scripts directory) to execute for
this job

Dependency: A numeric job number indicating what job must complete success-
fully first before this job can be executed

Scheduling: The time when, and how often, this job should execute

For the purposes of a PHPInfo script it’s safe to fill out this form in any way you see
fit; however be careful to ensure that the PHPInfo script you created (and stored in the
Job Queue scripts directory) is properly identified. Once you have filled out the form, click
Save, and you should be informed that the job has been created.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 101

Figure 5-4. The Add New Job page

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP102

Searching for Existing Jobs

Because at this point you likely have no jobs executing, the job described in the previous
section should execute immediately, and when you are brought back to the Job Queues
page (Figure 5-2) you should note that the number of jobs in the Successful column is
now 1 instead of zero. To see what this job did, you will need to find it first by searching
for it on the Jobs search page (the Jobs link on the Job Queues page). This page is shown
in Figure 5-5.

Figure 5-5. The Job Queue search interface

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 103

Note You can perform some typical searches for things such as “Successful Jobs” or “Failed Jobs” sim-
ply by clicking on the statistical number found in the Job Queues status page (Figure 5-2).

Using the Job Queue search interface, you can search for jobs that are known in the
queue (successful, complete, pending, failed, or otherwise) using the filtering mechanism
found at the top of the page. To examine the details about a job, click on the desired job—
resulting in the Job Details pop-up window shown in Figure 5-6.

Figure 5-6. The Job Details screen

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP104

From the Job Details screen you can see everything that is known about the job in
question including its status (did it succeed?), the output of the script after its last execu-
tion, and all of the variables that were defined at the time the job executed. If you have
been following along in this book, then it is very likely that the job you look at will be your
PHPInfo script job added from the previous section. If you would like to see the output

bring up the Job Output viewer shown in Figure 5-7.

Figure 5-7. The Job Output viewer in Zend Platform

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 105

The Job Output viewer allows you to view any and all output produced by the PHP
engine that executed the job through its entire life cycle. You can use this output for
informational or debugging purposes, and it can be rendered in “Secured output” mode
(meaning that all HTML will be escaped, the default), or “Original output” mode (shown
in Figure 5-7, where all HTML is rendered). Being able to view the output of jobs (from a

 statement or otherwise) and consequently their logs and other information through
the console is a very powerful feature that should be leveraged in all of your Job Queue
scripts.

Using Input Parameters in Job Queue Scripts

One of the more powerful features of the Job Queue server is that, when you create a job,
you can specify variables to pass into it before it executes. These values can be any valid
PHP variable and can be passed in from the API (discussed later) or created from the web
interface. Once passed into a job, these variables are then available to your Job Queue
PHP script by accessing them from the global scope. Let’s examine such a script, shown
in Listing 5-2.

Listing 5-2. The Job Queue Script

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP106

In this simple script to calculate Fibonacci sequences, we have a single function
 that does the calculation, executed by the code in the global scope. As you

can see, this by all accounts is a standard PHP script, but there is one significant differ-
ence—the variable. This variable is not set anywhere in the script, because it
is expected that this variable will be set by the Job Queue server when it executes this job.
Thus we must confirm that it was indeed an input value and consequently we check to
make sure it is defined before allowing the job to execute. Assuming it exists, we execute
the remainder of the script and calculate the value for that particular number in the
sequence.

Note You will also notice that our first Job Queue API function, , is used in
Listing 5-2. This function is used within a PHP script run from the Job Queue to trigger a logical “Job failed”
to the Job Queue server. It takes a single parameter (a string error message) and causes the immediate exit
of the PHP script. We will discuss this function and others in more detail later in the chapter.

To use this script, we simply need to put it into the path where all of the Job Queue
scripts are stored (as specified in the configuration of the Job Queue) and create a job
from the web interface to execute it just as we did with the PHPInfo script earlier in the
chapter. However, for this particular script we need to go through the one extra step of
defining the input parameter for the job as well. To do this, when creating
the job simply click the “Define user variables” link at the bottom of the Add New Job
page (Figure 5-4), bringing up the interface shown in Figure 5-8. Simply add the variable
names and values you need, and click Save.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 107

Figure 5-8. The Define User Variables page for new jobs

Note From the web interface, your ability to add values is limited to strings only. From the API interface,
you can add much more complex values such as objects and more.

Once you have set up the input parameters of the job and saved it, the job will be exe-
cuted per your scheduling specifications. Ultimately the job will execute and the sequence
will be calculated and be available for viewing from the web interface. An example of this
execution is shown in Figure 5-9.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP108

Figure 5-9. The output of the script from the Job Queue console

Creating Jobs Programmatically Using the Job Queue API

Thus far we have only used the web interface provided by Zend Platform to create and
view the output of jobs, and hopefully you have done so with complete success. While
useful, the real power of the Job Queue is creating jobs logically from your web applica-
tion as necessary. In this section, we’ll explore how this is done using the Job Queue API

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 109

provided by Zend Platform to not only create jobs from your web applications but also
retrieve the results of jobs after they have executed.

To demonstrate the usage of the Job Queue functionality from within a PHP script,
we first must create an application. For this application we will of course use Zend
Framework; for the sake of brevity we will not discuss every aspect but will focus only on
the relevant logic to the Job Queue functionality. Note that in the code examples provided
with this book you can find the complete application for your own inspection. That said,
specifically we will be looking at three different scenarios of using the Job Queue that
adequately exercise its API functionality:

For all of these demonstrations we will continue using the Fibonacci Job Queue script
developed in previous examples.

Note We will not be discussing every single API call available to the classes and functions of the Job
Queue API, as these API calls are largely self-explanatory and are described in detail within the Zend Platform
User’s Guide, available on the Zend Technologies’ web site:

.

Adding a Single Job to the Queue

To begin our examination of the Job Queue we will first look at an example of adding
a single asynchronous job to the queue through PHP API calls. This is done in the

 of the class, shown in Listing 5-3.

Listing 5-3. The Method for Adding a Job to the Queue

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP110

Examining Listing 5-3 you can see a number of objects and methods called that are
related to the Job Queue. The first is the object created—this class is an
internal class available to PHP installations with Zend Platform job queuing enabled and
takes a single parameter (the hostname and port number of the Job Queue you are con-
necting to). The second object created is an instance of the class, which is
again available to job-queued-enabled PHPs and represents a programmatic representa-
tion of a job within the queue. The class is both accepted as a parameter to
methods within the class (for instance, when adding a new job) and also
returned as a value when requesting information (such as retrieving a job’s details by job
ID). In this case we are using it to add a new job to the queue, so we must first create an
instance of it and pass it the name of the Job Queue PHP script to be executed (in this
case). Once we have created our job object, we can set numerous values
such as scheduling, priorities, name of job, user variables to pass into the job, and so on.
For our purposes we simply call two methods—first the method (setting a
human-readable name for the job in the web interface) and second the
method, which accepts an associative array of key/value pairs defining the variables and
their values to pass into the job when executed.

Tip When calling the method from the API you may desire to send complex
data types such as object instances to the Job Queue script instead of simple primitive values or arrays. If
this behavior is desired, you must ensure that these classes are defined in advance in the Job Queue PHP
instances by adding an auto-include file that resolves their class declarations. Failure to do this will result in
the objects either deserializing incorrectly or causing a fatal error.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 111

With our job object defined, we can begin the process of adding the job to the queue.
The first step in this process is to establish a connection to the server by calling the

 method, passing in the password you defined when the queue
was set up, and ensuring that it returns , indicating that a connection was made.
With the web PHP successfully connected to the Job Queue server, you can add the job to
the queue by calling the method and passing in the object defined
earlier in the script. Upon success, the method will return an integer represent-
ing the ID of the job within the queue for future reference if needed. As expected, when
this script is executed a new Fibonacci sequence job calculating the Fibonacci sequence
number 50,000 is triggered to execute as soon as possible. (The results of this execution
can be seen in the Job Queue web interface.) For completeness’ sake our provided demo
application displays the resulting job ID, allowing you to quickly find it within the Zend
Platform interface.

Adding Multiple Jobs in a Single Web Request

Just as prepared statements in databases allow you to reuse variables bound to the state-
ment (just by changing their value and executing the statement again), Zend Platform’s
Job Queue API allows you to reuse your objects to add multiple similar but
independent jobs concurrently. An example of this is shown in Listing 5-4 in the

 method, which adds 25 Fibonacci sequence calculations to the
queue in a single web request.

Listing 5-4. The Method for Adding 25 Jobs in a Single
Request

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP112

While the example shown in Listing 5-3 is very similar to that found in Listing 5-4,
the latter is interesting because it demonstrates how through the use of the job queu-
ing functionality of Zend Platform you can schedule significant amounts of work to be
done asynchronously from a single web request. The result upon executing this script (if
looking in the Zend Platform web interface) would be the creation of 25 jobs, each being
executed at the earliest moment until completed.

Note The number of concurrent asynchronous jobs that can be executed at any given point in time is lim-
ited entirely by the number of FastCGI processes available to the Job Queue server and is thus limited by the
number that can be kept in memory at once on the Job Queue server.

Using Job Queue for Long-Running Real-Time Operations

One of the most interesting applications of the Job Queue is using it to perform expensive
real-time operations without preventing your web servers from serving other requests
during that operation’s execution. This process is described in Figure 5-10.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 113

Figure 5-10. The workflow of performing expensive real-time operations effectively using the
Zend Platform Job Queue

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP114

As shown in Figure 5-10, the secret to making expensive real-time operations feasible
using the Job Queue is broken down into three fundamental components:

So why is this a better method of performing real-time expensive operations than
simply running them within your PHP script residing on the web server? Because, despite
the long-running nature of the operation in question, the burden of that execution is
carried by your Job Queue while the web server itself is quickly freed to answer other
requests. Of course, some of these requests will be from the JavaScript code checking
the status of the job placed into the queue (hardly an expensive operation), but all of the
others can be users taking advantage of that web process/thread to do other useful and
completely unconnected things.

As you may expect, each of these three steps has some level of PHP code associated
with it. Let’s explore them now.

Tip The workflow described in Figure 5-10 can be expanded. For example, instead of simply checking
whether the job failed or succeeded, you can check the output of the job once it has succeeded to determine
how the user currently waiting will continue in your application instead of simply checking for a fail/succeed
condition.

To begin, let’s take a look at the method, shown
in Listing 5-5.

Listing 5-5. The Method

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 115

Looking at Listing 5-5, you’ll notice that it is basically identical to our earlier
 shown in Listing 5-3. This is because we have not fun-

process can be found in the view template for this action, shown in Listing 5-6.

Listing 5-6. The View Script

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP116

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 117

Looking at Listing 5-6, you’ll notice that there is a fair amount of JavaScript used.
This JavaScript is used to create a Ajax request object under various browsers (the

 function) and then perform an asynchronous browser request to
our server, ultimately calling the method. Per
Figure 5-10, the purpose of the request is to check the status of the job by providing its
ID to the back end. Once a status has been established, the JavaScript then redirects the
user to a result (or error) page. To see how this works, let’s look at Listing 5-7, which is
the method.

Listing 5-7. The for Asynchronous Job Queue Status
Requests

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP118

While Listing 5-7 is a fairly decently sized code block, most of the logic contained
within it exists for the purpose of error checking rather than anything of particular

where a call to the method is made to retrieve the job details
from the Job Queue server where things get interesting. This call accepts a single param-
eter (the job ID in question) and upon success will return an instance of
that contains all of the details of the requested job ID. Using this object, we can simply
call the method to return an integer status of the job back
to the server. Since our request is being made through an Ajax request we use the

 method in all cases to produce JavaScript Object Notation
(JSON) output for any return value provided.

Note The integer status provided by the method is a valued repre-
sented by one of the job status constants provided for by the Zend Platform Job Queue API. For a complete
listing of these constants, values, and meanings please consult the Zend Platform User’s Guide.

The final piece of our real-time example is to redirect the user to the success page and
display the Fibonacci value for the requested sequence. Looking back at the JavaScript
of Listing 5-6, this is handled by the whose job is,
given the completed Job ID, to retrieve the output of the job and display the full calculated
Fibonacci number. This code is shown in Listing 5-8.

Listing 5-8. The Method

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 119

Looking at the Listing 5-8, again we are using the method to
retrieve an instance of representing the job referenced by the provided job
ID. However, instead of using the action we call the

 method to retrieve the output of the request.
This is where things get a bit interesting, because if you recall from the original jobs

we created using the Job Queue earlier in the chapter, the output of our job (including
the Fibonacci sequence answer) was meant to be read from the browser by a person, and
it included some basic HTML for formatting. Since we are using the exact same script
for this example, how exactly are we to retrieve the answer from the job without going
through the hassle of parsing the HTML content? The answer is simple: we simply pro-
vide two versions of the output for each job. The first version is exactly as we have seen
before (human-readable HTML) so that it can be examined from the web interface. How-
ever, the second version should be machine-readable so your web server PHP instances
can retrieve the output and extract the output easily.

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP120

For these purposes we can simply add to the bottom of the output of the job a unique
separator that can be used to identify the start of the machine-readable output and then
follow that separator with the machine-readable data. In our case we are only interested in
the actual Fibonacci sequence, so that is all we will provide, but more complex use cases
can return serialized objects or any other serialized data. To put code to this discussion,
let’s look at Listing 5-9, a replication of the original Fibonacci sequence Job Queue code
base shown in Listing 5-2 with the machine-readable additions described in this section.

Listing 5-9. The Modified Fibonacci Job Queue Script to Allow It to Be Machine-Readable

Download at WoWeBook.Com

CHAPTER 5 ASYNCHRONOUS OPERATIONS WITH PHP 121

Looking at Listing 5-9 and comparing it to Listing 5-2 you can see the slight
modifications. Most notably, the sequence value itself is displayed twice—once in a
human-readable HTML format and a second immediately following the unique identifier

. This unique identifier is searched for in Listing 5-8 when retrieving
the output of the job to locate the sequence number and ultimately display it to the user.

With that, we’ve explained both in concept and code how expensive operations can be
performed in real time without sacrificing your web server’s ability to respond to requests!
Obviously the concepts illustrated in this section can be refined and improved, but in
principal the concepts shown here can be used in a very effective manner for important
real-time transaction such as credit-card processing.

Conclusion
Thanks to Zend Platform’s Job Queue functionality, PHP can now enjoy the same benefits
of asynchronous operations that other languages such as Java have been utilizing for years,
adding yet another tool to your arsenal as a developer. From simple reoccurring scheduled
jobs to complex asynchronous image manipulation, as should be obvious after reading
this chapter, the Job Queue functionality provided by Zend Platform is hands-down one of
the most powerful performance features ever introduced into the PHP landscape. I hope
through the guidance in this chapter you have learned enough to begin utilizing this excit-
ing technology in your own applications to gain more performance from your applications
and enhance the overall user experience.

Download at WoWeBook.Com

Download at WoWeBook.Com

123

C H A P T E R 6

Securing Your PHP Applications

As the Web has evolved over the years it has become a critical, nearly transparent part of
our everyday lives as people. As developers, this evolution has meant an ever-growing risk
of abuse from those with malicious intent to our applications—and more importantly our
data. In this chapter we’ll discuss these threats in both their tangible and abstract forms
and help you prepare yourself to defend not only from the attacks we know of today but
also the ones to emerge tomorrow.

Setting the Context
The first thing we believe it is important for you to understand is the lens through which
we will be discussing security. That is to say, you could follow everything we say in this
chapter word by word and implement every single thing we suggest and still find your-
self the victim of a security breach. The reasons for this are numerous, but we think that
the most important is that security involves vastly more than your web application itself.
While abusing the logic of an application is clearly a possible way to attack you, it is by
far not the only potential attack. In this chapter when discussing concrete security issues
we’ll be looking only through a PHP-colored lens and avoiding potential vulnerabilities
that may exist elsewhere in your technology stack.

We have decided not to rehash in their entirety every detail of every type of attack you’ll
find out there in the vast Internet. To do so would be to repeat the message of others when
they have done a magnificent job of speaking on the subject. Rather, the goal of this chapter
is to create in you a security-aware mindset that will hopefully prepare you to identify and
defend against attacks on any level—even if you tend to lean toward the PHP layer.

Note For those of you who are interested primarily in concrete security examples beyond those provided
in this chapter we recommend that you supplement this book with Essential PHP Security (O’Reilly, 2005) by
PHP security expert and friend Chris Shiflett. Chris has dedicated the majority of the past five or more years
to studying the security implications of PHP applications, and we highly recommend his book.

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS124

Defining Security
Over the years John has spoken worldwide at various technical conferences on the sub-
ject of security, and one thing he has always found interesting is the fundamental lack of
understanding most developers have when it comes to what exactly security is. Ask most
developers about security and you often will find their responses to be entirely focused
on specific attack vectors and the defenses against them. While having an in-depth
knowledge of these things is indeed important, a postmortem discussion of the causality
between a known attack and its defense will hardly protect your application.

We say this because chances are that if you are aware of a particular attack then so is
your attacker, and they fully expect all of the previously exposed and used attacks to be
ineffective against your application. Rather than studying attacks and countermeasures
as if you were studying the game of two chess masters, study the attackers themselves.
The more you understand about the attackers trying to compromise your system the
more you will be able to target your defenses against them, and the more effective your
overall security policy will be. After all, every time you read in the news or hear about a
successful attack against an Internet application, typically you don’t hear that the victim
was negligent in their security practices, but you do hear how it was a new, unique attack
that no one had seen before.

In short, realize that the practice of security is first to understand who your attacker
is and second to find out what interests them in your application. Is your greatest threat
an 18-year-old who wants to become the most popular kid on a social networking site, or
is it a member of a dark criminal organization looking to steal the money and identities of
your customers? It is an important question, because it not only tells you what is the most
likely thing to be attacked but also helps you balance the annoyance of security defenses
in an application with the ultimate business expectations your application serves.

Ultimately security is about one thing: information. Your job is to keep the private
information of your application and that of your users away from attackers while attempt-
ing to collect as much information as possible about potential attackers to use against
them. Ultimately that is the best you can do. Applications will always have bugs, and even
if they don’t, history has shown us that browsers, operating systems, and databases will.
The best you can hope to do is be as proactive in identifying these threats as possible
before they can be used against you.

With that said, let’s discuss some more tangible aspects of security.

Common Threats and Defenses
When discussing security in a PHP application there is a common set of threats and
defenses that you should be aware of. The vast majority of threats in web application
security can be prevented with one simple rule: filter input, escape output.

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 125

You will see as we discuss the various attacks in this chapter that almost all of them
can be prevented following this single simple rule. The problem is that while this rule is
simple to understand, you will see that it applies in so many ways to so many different
situations. It is often quite easy to overlook a particular aspect of it and in turn create
security vulnerabilities.

A corollary to this rule of filtering input and escaping output is an even more valuable
notion: defense in depth. This notion represents the idea that no single layer of security is
suitable to defend you from an attack and that the only viable defense is one that consists
of many defenses working together to ward off attackers. As we go through the following
concrete examples of threats and their defenses, it is important to realize that they should
be followed at all levels of your application. For example, just because you have sanitized
a given piece of input at the beginning of your application does not mean you shouldn’t
sanitize it later. It may seem redundant, but it will help you prevent attacks that you may
not realize exist!

Let’s take a look at some practical examples of security attacks and their defenses.

Input Security

The best way to prevent an attack against your PHP application (assuming no one has lit-
erally coded in a back door) is to prevent an attacker from finding a way to trick the logic
of your application into doing something the developer didn’t intend. There are many
subcategories to this topic, but they all break down to these basic concepts:

Input Sources

The first thing all applications should do is be careful where they accept data from and
accept data from the outside only under very specific and controlled circumstances.
This is actually a bit of a problem for PHP applications because historically ease of devel-
opment trumped any potential security implications. One great example is the
superglobal. This array contains all of the input (specifically GET, POST, and HTTP cookie
data) received from the user and was originally created to simplify the transition from
older PHP scripts that had the configuration directive enabled. The

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS126

problem with this concept from a security perspective is that you still have absolutely no
idea where exactly the data you are using has come from. Consider the code snippet in
Listing 6-1.

Note Unlike many other authors, we will not again point out the utterly unacceptable security practices
of writing an application that relies on the directive to be enabled in order to function.
For those applications that do require this directive the only reasonable security practice is to remove this
dependency as the first and highest priority before continuing on with the other threats discussed in this
chapter.

Listing 6-1. An Example E-mail Address Update Script

Listing 6-1 is intended to represent a very simple script that accepts a new e-mail
address from one of the application’s users. The intent of the developer is that this script
would receive an HTML form submission from the user (that contains a text form ele-

 approach was used to access this user input, the developer has no way
to be certain of the source of the data. In fact, it is possible that if an attacker was able
to trick the user’s browser into creating a cookie with a name of (perhaps through
another vulnerability on the site) they could trick the previous script into storing any
e-mail address that the attacker saw fit. Why is this important? Well, how many web sites

to the e-mail address on file for that account?

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 127

To prevent this sort of attack vector from being successful your application should
always be very specific about where it expects its input to come from. For example,
instead of using the superglobal (that could mean it was a GET, POST, or cookie
value), use the specific data source superglobals of , , or as needed for
the logic of your application.

Another common source of attack vectors comes from an unhealthy trust of the
 superglobal within PHP applications. While there are certain data elements of

this array that you could argue are indeed worthy of trust, many of the more commonly
used values are provided by the client during the request and are just as dangerous as any
data found in . For example, while the field is a safe value
(the IP address that originated the request) the variable
(used if the requesting client is behind a proxy) is not and must be validated to ensure
that data was not interjected. Likewise, the variable (the URL of
the previously requested page) is entirely determined by an HTTP header sent by the cli-
ent and must be scrutinized before usage.

Of all of the variables, however, the ones that are the most dangerous are
also the ones that are used by far the most in PHP applications: the ,

, , and variables.
These variables are dangerous because their value is actually determined in significant
degree by the URL requested by the client to the web server and therefore are potential
attack vectors. For example, the variable is widely used as the action
attribute of an HTML form but is calculated based on the URL used to request the cur-
rent page. Since a request to a URL such as is a
completely valid request (causing the script to be requested with as the

), using this variable blindly allows an attacker to encode JavaScript
into the path information and ultimately cause it to be executed in the application when
the output is returned. That said, the bottom line is clear: just because it is data you are
receiving from the underlying web server doesn’t mean it is secure. There are a number of
times the web server simply passes the data it receives from the requesting client along to
PHP, and therefore all of it should be filtered and validated as any other data is.

Data Filtering and Validation

Once you have limited your input data sources to the specific ones expected by your
application (and identified the untrustworthy data), next it is important that you filter
the data from these sources and then validate that data to ensure that it meets your
assumed criteria. For example, if you expect the variable to be an alpha-
betical string between 2 and 20 characters, you would first filter that variable to remove
any non-alphabetical characters that may exist and then validate that the resulting string
is between 2 and 20 characters in length.

This process of input filtering and validation can be a time-consuming process and
often is a place where corners are cut in order to meet deadlines. Thankfully however,

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS128

Zend Framework provides numerous facilities to make this important security measure
less painful to implement through the and family of classes and
components, which we will now discuss.

The family of components is nothing more than simple classes that each
accept a value as input and return filtered against some criterion that the class repre-
sents. For example, the component, when given an input string, will
return that string minus anything that is not an alphanumeric character. In contrast,
the family of components is used to validate a given input string after it
has been filtered to ensure that it meets the assumed criteria such as the

 component, which validates that the input is within a specific length range.
 and component

classes can be used completely individually to filter and validate data. However, for the
sake of simplicity Zend Framework also offers an optional framework for using these
components to filter your input data through the class. We will be
leveraging this component in our following discussions of data filtering.

When using the component you start by defining two associative
arrays: one for the filters to apply to the input variables and a second to define the valida-
tion rules for those variables. These filtering and validation definitions are then passed
into an instance of the class along with an associative array of the data
you wish to validate. The result is an object instance that allows you to access the input
data in a clean and sanitary way. Listing 6-2 demonstrates how this functionality works
to validate that the input value contains only alphabetical characters and is
between 2 and 20 characters in length.

Listing 6-2. An Example of Using

As shown in Listing 6-2, we start off by creating two arrays, and ,
that contain input variable names as keys (in this case a single variable identified as)
and attaches those variables to a single filter (the filter identified by the
string) and a single validator (the validator).

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 129

Note For a full explanation of the syntax accepted by the and supporting
components, please consult the Zend Framework documentation at .

Once the individual filters and validators have been applied to the input variables, both
these arrays plus the superglobal input source (i.e., for GET parameter input variables)
are passed in to the constructor of the class. The resulting object can then
be used to access all of the input parameters from the original source array in a safe and san-
itized manner by referencing them as properties of the object (i.e., corresponds
to a sanitized and filtered version of in Listing 6-2).

White-List Validation

When working with input data that is based on a primitive (such as a string), the filter-
ing and validation components provided by the component can work
very effectively. However, for other common types of user input such as option boxes,
check boxes, radio groups, and even hidden form elements, sometimes creating a simple
white-list validation mechanism is a much faster and more secure approach to data input
security. Listing 6-3 is an example of using a white-list validation routine to ensure that
an attacker cannot compromise the logic of your application by manually submitting
an HTTP request with different values for a radio button.

Listing 6-3. An Example of White-List Validation of User Input

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS130

As you can see, a white list is as simple as creating a list of known accepted values for
a given input variable and disallowing any value that isn’t explicitly defined in the list.

implement than using and or, alternately, can be used
in conjunction with the component as necessary.

Note Often developers attempt to use a blacklist approach to security. Instead of defining the accept-
able values, they attempt to define the unaccepted values. This is always a bad idea, as by its very nature
the majority of successful attacks are caused by attacks that haven’t been identified yet and thus can’t be
predicted.

Securing File Uploads

For web applications, file uploading over HTTP can pose numerous security risks that
need to be handled properly. To begin, unless your application has a need to accept file
uploads, the best security practice is to disable them entirely by setting the

then there are a few different things you need to consider from a security perspec-
tive. For starters, you should limit the size of files being uploaded by making sure the

 and configuration directives are set to values that are
as conservative as is reasonable for the nature of the file being uploaded. Note that even
if you elect to disable file uploads, the directive should still be configured
to a reasonable maximum value to prevent denial of service attacks caused by concurrent
massive post requests.

Another important and often overlooked configuration directive when it comes to
security is the directive. This directive controls where PHP will store files
it receives over an HTTP upload. By default it is set to the operating system’s global tem-
porary directory. This can be problematic from a security perspective, as in most every
system this directory has the loosest permissions of anywhere in the system and may very
well give anyone with any access to the machine access to any file uploaded from your
application. To prevent this, it is recommended that a special directory (one per applica-
tion) be created to handle file uploads with a permission setting more suitable to keep
prying eyes at the shell or FTP level from accessing the data.

Once you have configured your file-uploading directives to their appropriate values,
we are ready to start looking at how to handle file uploads in a secure fashion.

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 131

How PHP Accepts Uploaded Files

When a file is uploaded via a PHP script, a reference to the file is stored in the
superglobal under a key defined by the submitting POST request. Within this key you will
find an associative array of values defining various details of the uploaded files. Listing 6-4
provides an example of the structure of this superglobal.

Listing 6-4. An Example Entry

When looking at the previous set of associative keys within an entry of the
superglobal, the first thing to realize from a security perspective is that only the ,

, and keys can be trusted, as all of the other values are provided to PHP from the
request itself and therefore could be falsified by an attacker. Knowing this, the remaining
array keys and should be considered as vulnerable to compromise as any other
user input, and they should be filtered and validated appropriately. In the following sec-
tion we will explain how this is done.

As described in Listing 6-4, the name key represents the file name as it was stored in
the submitting client’s local file system. Since this data is provided by the browser, it is
best at the very least to filter and validate it to ensure that it does not contain unexpected
content. For many purposes this can be as simple as filtering it using the func-
tion (to remove any path information) and then filtering it to contain only alphanumeric
content and the period character. However, obviously you can apply any filtering and
validation rules needed to suit your application.

The MIME type, like the file name, is also provided by the client uploading the data
during the POST request and therefore cannot be trusted. Unfortunately since you can-
not trust this type you must go through a fair amount of extra effort to determine the
exact MIME type of the file uploaded before you can filter or validate it. To do this you
must have a PECL extension
the actual content of a given file and determines the type of file it is based on its struc-
ture. Please refer to the PHP manual for PECL extensions (

) for instructions on adding this extension to your PHP installation.

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS132

Note For certain file types (such as images) PHP provides alternative approaches to validating the
nature of the file uploaded. If you are dealing with images being uploaded you can use the
function to validate the file as a valid image instead of installing and using the fileinfo extension.

Once you have the fileinfo extension installed you can use it in a fashion similar
to that shown in Listing 6-5 to validate the nature of the file (in this case, a white-list
validation of the MIME type).

Listing 6-5. An Example of Using White-List Validation and the fileinfo Extension to
Validate an Uploaded File’s MIME Type

In Listing 6-5, we are accepting a file uploaded under the POST key of and are
validating to ensure that the uploaded file is either a valid PNG or GIF image based on
the actual content of the file, not the reported MIME type from the user. This is the only
secure way to validate the content of an uploaded file and should always be used.

Once you have filtered and validated the file, because of the way PHP works you now
must process this file within the request it was uploaded in. (PHP will delete the origi-
nally uploaded file at the end of the request.) Under most circumstances this involves
moving the file from its temporary storage location (identified by the key in the
uploaded file’s superglobal entry) to its final location. However, unlike a normal

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 133

file operation, in PHP there are two important functions for dealing with uploaded files:
 and . These two functions will move a file

uploaded over HTTP to another directory or tell you whether the given file is a file that
was uploaded over HTTP, respectively. The reason the standard PHP file operations are
not recommended is because HTTP uploads themselves are tracked internally within
PHP, and when these specific functions are used, before any operations are performed
a check against this internal list is performed to ensure the file being treated like an
uploaded file was indeed uploaded and was not some sort of attack. Listing 6-6 dem-
onstrates using both of these functions to move an uploaded file to a more long-term
location safely.

Listing 6-6. Using and to Deal with HTTP File
Uploads

Securing Round Trips of Data

One common thing that is done in PHP applications is using hidden HTML form elements

array or object is serialized using the standard PHP function and then stored
as the value of a hidden key or stored into a cookie. This value is then provided back to the
server on the next request, and the data is unserialized and used as part of the applica-
tion’s logic. From a security perspective, it is critical to realize that once the data has left
your server and been provided to the user, any subsequent time that data is returned to
you it has to be treated as insecure as any other user input. For complex serialized objects,
however, you have an advantage of knowing what the data should be before the user
receives it and can validate that when that data is returned, it was done so unmolested by
any potential attacker.

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS134

To do this is a matter of accompanying the serialized data with a hash fingerprint of
it combined with a secret key known only to your server. When the data is returned, the
hash can be recalculated using the user-supplied serialized data and validated before any
attempt is made to use it. There are many different ways this can be accomplished. For
the purposes of our example in Listing 6-7 we will use the SHA1 algorithm to generate a
hash when creating our form and then validate that hash in Listing 6-8 before using the
data.

Listing 6-7. Generating a Hash for a Complex Serialized Value Used in a Form

Listing 6-8. Validating the Hash of a Form with a Complex Hidden Variable

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 135

Note In Listing 6-8 we used the constant , which is fine but does leave the possibility of
an attacker figuring out what that key is and breaking our encryption. A more complex and more secure
approach would be to randomly generate the key per session and use that value for our “secret key,”
effectively making it different for every user.

As shown in Listing 6-7 we use the function to create a hash value of the serial-
ized data we are providing to the user, but we also append a secret value known only to
the server in the hash calculation. Then, in Listing 6-8 when this submission is returned
we recalculate the same hash using the complex data type provided by the user in the
form submission (along with our secret key) and compare it to the hash also provided by
the user. Since a potential hacker has no means to determine the secret key used in the
original hash calculation they cannot modify the serialized data, thus protecting it from
unwanted manipulation.

Output Security

When it comes to output security, the name of the game is simple: since the browser
will automatically in 99 percent of the cases execute JavaScript code returned to it from
a request, it is critical that your application never leave room for misinterpretation by
properly encoding all output based on input from the user. Failure to ensure that the
user’s input is treated literally when displayed as part of the output can be leveraged by
an attacker to perform a nearly unlimited number of severe attacks against your users,
your application, or a third party.

As simple as it sounds, the notion of properly encoding the input of a user to prevent
this sort of misinterpretation is an incredibly complex subject. With multiple different of
encodings to consider and the fact that not all browsers (ahem, Internet Explorer in par-
ticular) interpret these encodings the same way, there is plenty of room for error.

For the sake of brevity we will not walk you through all of the nuances of this problem,
as this alone could be an entire chapter in a security book. In fact, to read the various books

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS136

on the subject, they all say the same thing basically anyway—the func-
tion, while useful at solving some of the problem, is not in any way suited for dealing with
encodings that are not ISO-8859-1. Since browsers like to honor other encodings regardless
of the stated encoding for the page (again, some versions of Internet Explorer), attackers
can effectively sidestep this function by pre-encoding the content before submission.

Properly Encoding Output with Non-ASCII Support

For example, take an input string of from the user. To the browser,

attacker. Of course you could pass that string through the function,
,

converting the string to . This may be acceptable to
ISO-8859-1 character sets (since there is no reason not to use the character itself to rep-
resent an ASCII character), but a legitimate user looking to display a non-ASCII character
would be unable to do so—not the most ideal solution.

To solve this problem and make a truly acceptable encoding and escaping mecha-
nism, you must couple the function with regular expressions. The
concept is simple. Use the function to escape the output, but then use
regular expressions to clean up double-encoded entities when they represent non-ASCII
characters (and thus run no danger of being misinterpreted as code by the browser).
Thankfully there are very intelligent people in the world who have already looked at this
problem, one of whom is Ilia Alshanetsky, who wrote php|architect’s Guide to PHP Security

of the function to perform the necessary encoding. His solution is
presented in Listing 6-9.

Listing 6-9. An Example of Properly Encoding for Multiple Character Sets for Display As
Output

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 137

Along with handling our example user input of cleanly,
Listing 6-9 also handles
value except using hexadecimal values instead of decimals when representing each char-
acter (yet another encoding circumstance to be aware of). Not quite as simple as just
calling the function but not too cumbersome either once the problem
is correctly understood. It is important to note that these solutions are quite useful when
the goal is to prevent an attacker’s malicious input from compromising the integrity of
your output to a degree that allows the execution of unauthorized JavaScript through
property encoding of data, but at what cost?

Allowing User-Provided Markup

There are many times in the development of certain types of web applications (forum
systems come to mind) where it is desirable to allow user input to contain some degree of
markup such as a harmless set of tags. For situations where this is the case, how
do we filter and validate the input?

The short answer, unfortunately, is basically you can’t.

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS138

If you read the various PHP security books we have mentioned throughout this
chapter, you will find a few perfectly valid (and at times very complex) solutions that seek
to allow you to manage the HTML a user can use to a subset that is considered safe and
secure. While all of them are valid (and most written by people we consider personal
friends), in our opinion they all contain a fatal flaw from a security perspective: they are
all ultimately blacklist approaches.

We mentioned the notion of why blacklist approaches to security are a bad idea
earlier in the chapter when we discussed using a white list to validate and filter combo
boxes, radio buttons, and so on during a form submission, and the same holds true here.
Regardless of the complexity of the logic you use to filter and validate the data, you are
ultimately trying to predict how an attacker will attempt to compromise your system out
of potentially limitless possibilities, and you are bound to miss one.

Note MySpace learned the hard way how difficult it is to prevent security breaches in a web applica-
tion using a blacklist approach. The JS.Spacehero worm (also known as the Samy worm) was developed
by taking advantage of bugs in specific browsers that previously were entirely unknown. It became literally
overnight one of the most successful Internet worms of all time. The lesson from that experience is clear—
since you have absolutely no control over bugs in a browser, you can’t possibly predict what is safe and
what is not.

So how do you still allow users creative freedom within your web application but
maintain security? The only surefire way is to create your own markup-style language
that the server can translate into HTML when rendered. While this is most certainly the
most difficult approach (not to mention most expensive approach in terms of time and
processing resources), any attempt to allow users to provide you with HTML that your
application will then present to other users to render will most certainly expose it to a
potential JavaScript-based attack. Not to say our recommended approach doesn’t have
that same potential, but at least with a custom approach you have the benefit of actively
generating the HTML yourself, and you never give an attacker a previously known means
of sneaking a JavaScript attack past your filters and validation routines.

Conclusion
In this chapter we discussed many of the fundamental concepts behind security as it
applies to a PHP application. We discussed input filtering, using the
component, output escaping, and some of the more common problems faced by devel-
opers such as round-tripping data, allowing HTML input, and uploading files.

We will be the first to admit that in this chapter we have barely grazed the surface
of web application security, but we hope you have learned enough to realize one very

Download at WoWeBook.Com

CHAPTER 6 SECURING YOUR PHP APPLICATIONS 139

important fact: there are no magic bullets. For every new attack that emerges in the Web
there is quickly devised a countermeasure to defeat it, but the next attack will always hap-

a very difficult skill to master and cannot be done by memorizing patterns of past attacks
alone. How you apply those patterns in your application’s defense (remember defense in
depth!) and how much you understand about those trying to attack you are your primary
weapons, so use them wisely. We assure you, the attackers trying to get in your applica-
tion are doing the same thing and working hard to come up with creative new ways to
fool your application into doing their bidding.

Download at WoWeBook.Com

Download at WoWeBook.Com

141

C H A P T E R 7

Monitoring Your Applications

Any professional PHP application needs to have effective facilities for monitoring its
status and health in both development and production. Unfortunately many applica-
tion developers do not take the time to plan how their monitoring facilities will function
when they begin their development. This not only makes the entire process more painful
during development but also increases long-term upkeep costs. In this chapter, we will
explore some enterprise-class monitoring tools and technologies available to PHP appli-
cations and how they can be effectively used.

We will begin the chapter by introducing the tools available in Zend Framework for
monitoring your applications. We’ll begin with the component and then discuss
how to use it effectively in a Zend Framework MVC application. We will then move on to
the more powerful commercial solutions provided by Zend Platform by detailing the use
and customization of the PHP Intelligence functionality.

Effective Logging Through Zend_Log
Application logging is a critical aspect of any large-scale PHP development application.
As a general rule of thumb, your application should perform enough logging so that given
only your logs, you can determine what if anything has gone wrong in your application.
Thus a few simple rules should apply:

Thankfully, Zend Framework provides some wonderful tools that help you adhere to
these rules through its component. In this section we’ll look at this component
in detail and show you how it can be used to manage all of your logging needs.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS142

Getting Started with Zend_Log

The component is designed from the ground up to serve as a general-purpose
logging tool. Among its many features, supports logging to multiple different
backends using multiple formats along with filtering messages to appear in different
logs nicely. The component is broken down into three aspects that we will discuss in this
section:

Log writers: These subcomponents write the log data to a storage medium (such as
a log file).

Log filters: These subcomponents prevent a given piece of log data from reaching
a writer based on the business logic contained within it (such as ignoring log mes-
sages flagged as debugging messages).

Log formatters: These subcomponents format the content of a log message before
it is given to the writer.

These three aspects and their relationship with each other is shown in Figure 7-1.

Figure 7-1. The relationship between the various subcomponents

Using the component is quite simple. You create and assign a writer to store
the log messages and then use the component to send log messages to it. A simple exam-

 writer class.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 143

Listing 7-1. A Simple Example of Using

In the first line we create an object from the class.
This class requires at least one constructor parameter (the stream to open for the log), for
which we provide the file name . This writer is passed into the construc-
tor of the class to create the instance of our logger, which is used by calling the

 method to log a message with an “information” priority using the
 constant.

Note The second parameter to the method is called the “priority identifier” and
serves to classify the nature of the log message to be used later in filtering. By default defines
eight priorities available as constants in the class: , , , , , ,

, and . These priorities are assigned a numeric value (between 0 and 8) and use that value to
determine their ranking within the logging process. Please consult the Zend Framework manual for a detailed
definition of these logging priorities.

As expected, when this code is executed the result will be the creation of the
 file with a single line item representing our log entry formatted using the stan-

dard format provided by the component.

BEHIND THE SCENES OF ZEND_LOG

As represented in Figure 7-1, when a log action occurs by a call to the method, the
 component creates a data structure (array) that contains all of the relevant information for

that log entry. This includes the log message you provided, priority, the timestamp, and so on. From this
point forward your log data is represented in this format until the last step, where it is converted into
something else (and immediately written to the storage medium). This is an important point later in the
chapter when we discuss creating custom logging facilities, but for now just keep it in the back of your
mind.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS144

By default you can write logs to many different storage mediums by creating a dif-
ferent writer instance and providing it to the class. This can be a custom writer
component written by you (by extending the class), or it can be
one of the out-of-box writers provided by Zend Framework shown here:

: A stream-based writer that can write to any PHP-sup-
ported stream (such as a file, standard out, and so on)

: A database-based writer that can write to any database that
has an adapter in Zend Framework

: A unique writer that can be used to write log data to the
Firebug Firefox plug-in FirePHP

: A simple log writer wrapper around an array that can be
used to capture log messages within the application without writing them any-
where

: A black-hole log writer used in testing to simulate logging
without actually logging anything

Now, under some circumstances all of these writers and all of this functionality
would be enough for an application—but in many applications more is required. For
example, if your application would like to write your logs to multiple destinations at the
same time, you can use the component to add multiple writers to the

Listing 7-2. Writing to Multiple Log Destinations Using

there aren’t very many reasons you would like to write the exact same log content to two
separate log files. However, being able to log debugging messages in a separate file from
all other log messages could indeed be useful. To do this we must introduce filters.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 145

Using Zend_Log Filters

Filters in the component are used to prevent certain log messages from being
written to certain writers. These filters can be applied to all log writers (by attaching them
to the instance of being used) or applied to specific writers by attaching them to
those writers.

What determines when a particular log message is rejected by a filter is entirely up to
the business logic of the filter itself. Architecturally the only requirement for a filter is that
it conform to the interface defined by Zend Framework. As a
matter of convenience Zend Framework does provide a few useful filters out of the box:

: Filters log messages based on their priority

: Filters log messages based on whether the message
matches a regular expression

writing two separate log files much more useful by logging debugging messages to one
file and everything else for another. To do this we will need to use the

 filter

Listing 7-3. Using with to Filter Log Entries to Writers

-
ate a priority filter. This filter accepts two parameters in its construction. The first is the
log level to filter against, and the second is a string representing the operator to use in the

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS146

comparison. This operator is identical to that used in the PHP function
and allows you to filter on an open-ended range of log messages. (Please consult the Zend
Framework reference manual for default priority rankings.)

technique on the base class to exclude entirely any debugging messages from
the logs.

Listing 7-4. Using Filters to Filter an Entire Log Instance

Formatting Logs with Zend_Log

The last concept we will discuss in our introduction to is its ability to format logs
using a series of formatting plug-ins. While similar from an API perspective, there are a
few notable differences between the formatter components and filters previously dis-
cussed. For starters, formatters are applied only to writers directly and cannot be applied
globally to all writers by assigning them to the instance directly (as was the case
with filters). Second, only writers that write the log data as textual lines of data may have
formatters applied to them (i.e., a database writer cannot have a formatter as it writes to
columns, not lines of text).

Out of box the component comes with two formatters: the
 component and the component. We will

examine both of these formatters in the examples that follow.

Note If you attempt to use a formatter with a writer that does not support formatting, the writer in
question will throw an exception when you attempt to do so.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 147

 formatter. This formatter is used to
perform simple formatting of a log line item and supports a basic variable-replace syntax
to represent various keys in the event data structure (i.e.,). This can be useful
to make basic formatting changes to a standard log file. For example, if no formatter is
explicitly specified, the component uses the following format for its log mes-
sages using this component:

If you wanted to alter this line item format (for instance, remove the

Listing 7-5. An Example of Using to Format Log Line Items

Note In Listing 7-5 we make use of the constant. This is a PHP constant that represents the
correct end-of-line string for the particular operating system you are running the code on. If you plan to cre-
ate cross-platform PHP applications this is the correct way to terminate a line in a text file instead of writing
code to distinguish between the string and yourself.

Another useful formatting component available to the component out of the
box is the component. This component allows you to render your

-
toring systems. To use this component you simply create an instance of it and assign it to

, however, the constructor takes an optional

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS148

configuration array as a parameter that allows you to define the specific tags used in the
-

Listing 7-6. The Default Format of the Subcomponent

If you would prefer to change the tags used to represent a log entry within the appli-
cation, including removing some data points from the log, you can do so by passing your
preferences in as the class constructor. This is done by setting the root tag name as the

Listing 7-7. An Example of Custom XML Log Formatting Using the Component

 that it
structure shown

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 149

Listing 7-8. The Output of Listing 7-7

Advanced Monitoring
Using the component provided by Zend Framework alone can make your appli-
cations much easier to manage, debug, and keep secure—but only if you both implement
it and monitor your logs regularly! While surely a best practice, it would be extremely
helpful if there were a way to call out particular key problems with your application and
perhaps even notify someone in your organization.

the PHP application begin to fail and your logs begin filling with errors. To make matters

no one notices the problem until the next morning, potentially costing you thousands of
dollars in downtime.

Unfortunately, no matter how good your logging practices were in the situation
described it wouldn’t have helped you notice the problem when it occurred (although
likely it would be very valuable in fixing it). Preventing these sorts of situations requires
something more, and thankfully that something more is provided by Zend Platform in the
form of PHP Intelligence.

What Is PHP Intelligence?

PHP Intelligence is a key feature of the Zend Platform package and provides white-box
monitoring of PHP and the application code it executes. Following is a brief list of the
types of things PHP Intelligence can monitor on your behalf:

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS150

All of these monitoring facilities are extremely easy to set up and can be attached to
actions such as sending e-mails, SNMP pings, or completely custom logic.

Getting Started with PHP Intelligence

Setting up PHP Intelligence is as simple as installing Zend Platform and configuring it. To
get started you need to log into Zend Platform and select the PHP Intelligence tab, bring-

Figure 7-2. The PHP Intelligence dashboard

system and is designed to give you a quick overview of the overall health of not just the
server you are currently logged in to but also the entire cluster of web servers. If you
would like further analytics, the Graphs submenu item can provide them, or to get very

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 151

now, however, we are interested in learning how PHP Intelligence is set up, and for that

Figure 7-3. The Event Triggers configuration screen of Zend Platform

From this interface you can define the monitoring rules used by Zend Platform to
watch your various PHP servers and create notifications (events) for anything that falls
within the defined parameters. There are two types of events in the PHP Intelligence sys-
tem (warnings and errors), and the thresholds for each event type can be identified by the

the various metrics the PHP Intelligence system can monitor.

PHP Intelligence Event Triggers

We will walk through each of the possible event triggers, describe their purposes, and make
recommendations as to what these values might look like under ideal circumstances. Note

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS152

that some self-explanatory triggers are omitted from discussion; please consult the Zend
Platform User’s Guide if you require more explanation on those items.

Note In this section we will make some blind recommendations as to how event trigger values should
be set up. These values should be validated against your own needs and adjusted accordingly. From a
performance perspective, PHP Intelligence can cause significant problems if it is constantly creating events
(instead of when there is really a problem), so it is important that you give realistic values instead of the ideal
ones used in this text.

At the beginning of the Event Triggers list we have two Slow Script Execution triggers.
These triggers are used to monitor how long a script has to execute before it is consid-
ered a problem by Zend Platform, expressed in both absolute (real time) and relative (a
threshold deviation from statistical expectations) values. Typically in an enterprise PHP

-
onds, with many powerhouse applications responding even faster. In relative terms we

being a clear sign of error. In this section you also have the ability to suppress these trig-
gers if server load gets too high (which is recommended). Unfortunately because of the
highly variable circumstances behind load numbers in connection to performance, it is
impossible to provide recommendations on how this number should be set in your spe-
cific situation.

The PHP Error event monitors any PHP error (i.e., ,) that occurs dur-
ing the execution of a script and reports it as an event within Zend Platform. Because this
is a fairly straightforward trigger (just select which error codes trigger which event types),
we will simply say that the default configuration provided by Zend Platform is sufficient
for most needs.

The Function Error trigger is used to identify PHP functions by name (either inter-
nal or user-defined) that should trigger an event within Zend Platform if an error occurs
during their execution. A default list of functions and methods that behave this way is
provided by Zend Platform in the file (from the base of the
Platform install). The format of this file is one function per line. In the case of methods,
you can specify a method by using the syntax, or you can specify an entire
set of methods under a class using the syntax. This particular event trigger allows
you to specify multiple definition files to parse on startup, so it is recommended that you
create your own list rather than modify the one provided by Zend Platform.

The Slow Function Execution trigger is a combination of the Slow Script Execution
and Function Error triggers. It allows you to monitor the performance of specific func-
tions within PHP (internal or user-defined functions) and create an event if one of these
functions exceeds a threshold of real execution time. Typically (based on our general
experience), no single function should execute for more than a handful of milliseconds,

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 153

-
tion of something gone awry.

The Slow Content Download trigger monitors the function in PHP in
the same way as the Slow Function Execution trigger does. It only exists because of the
special purpose of the function in PHP scripts. Because typically this func-
tion is used to send significant amounts of data to the client, it isn’t uncommon for this
function’s runtime to be much higher than that of other functions in PHP. An appropriate
value is directly connected to the size of the data you are sending, making it impossible to
make a blind recommendation.

The Maximum Apache Processes Exceeded trigger is specifically for Zend Platform/
PHP installations running on an Apache web server and is used to monitor the number
of Apache HTTP processes currently active and report an error or warning if that number
exceeds a maximum threshold. While each server is different, typically the defaults pro-

That said, it is important that this value be adjusted if you increase the maximum number
of process configuration directives in the Apache file to prevent unnecessary
error and warning reporting.

The Excess Memory Usage triggers, expressed in both absolute and relative terms,
monitor memory usage of every PHP script and allow you to be notified if the memory
needs of any given script exceed the defined thresholds. As with other triggers in PHP
Intelligence, it is impossible to make an accurate blind recommendation as to the
memory requirements of your PHP scripts. We will point out, however, that these values
should always be less than the maximum values for memory usage set in the file,
as an out-of-memory error will take precedence over this trigger, causing memory errors
to show up as errors instead of being properly reported.

The Inconsistent Output Size trigger is useful for monitoring the behavior of your
PHP applications in a passive manner by keeping track of the average size (in bytes) of the
output you respond to the user with. For any given script, if the amount of data returned

very wrong. Typically this trigger is most useful when your responses are fairly large to
begin with (in terms of byte count), as small responses have a greater chance of fluctuat-
ing over a broad range, making it harder to set thresholds.

Note The Inconsistent Output Size trigger is often useful in identifying problems, because when some-
thing does go wrong, often it has a measurable impact on the output of the script. For instance, a fatal PHP
error would cause the output to stop and in all likelihood result in a much smaller output than that of a nor-
mal function. It is important to realize, however, that by no means is the output size designed to be a surefire
monitoring technique but only one spoke in the wheel of a more complex set of monitoring rules.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS154

Viewing Events

Once an event has been recorded into Zend Platform, you have various means to view the
-

menu item under PHP Intelligence. Regardless of how you arrive there, you can open up
the details of the event by clicking on it, bringing up an interface similar to that shown in

Figure 7-4. Viewing the details of an event in Zend Platform

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 155

From the detailed view of an event you are presented with a wealth of information
about the event that allows you to completely understand and diagnose the problem that
triggered the event, including the entire context of the event. The context can be invalu-
able to a developer trying to diagnose an issue, as it provides all of the data passed into
the function (if the event was caused by a function) as well as any superglobals or vari-
ables that were passed into the script.

You are also provided with a number of tools to help you debug and diagnose the
issue. Assuming you have properly set up debugging of your application through Zend
Studio for Eclipse, you can debug and profile the event (reproducing the circumstances
that caused it) with a simple click, or at the very least review the offending lines of source
code that caused the event.

Creating Advanced Monitoring Facilities

Some of the event triggers that were omitted from the discussion in the previous section
were the Custom Event and HTTP Error triggers. These triggers are tied to a set of PHP
functions only available in versions of PHP with Zend Platform installed that allow you to
tie your application logic directly into Zend Platform’s PHP Intelligence facilities. In the
text to come we will explain how these functions can be used by connecting them directly
to some custom components to create a truly integrated error-handling and
monitoring solution. But first, let’s look at some of the more advanced features available.

Attaching Actions to Events

One of the most powerful features of the PHP Intelligence tool in Zend Platform is not
just the ability to trigger events but also the ability to have those events trigger actions. In
this section we’ll introduce how event actions work. These actions are found under the

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS156

Figure 7-5. The Event Actions interface in Zend Platform

Attaching an action to an event is a two-step process. The first step is to create the
various actions to execute, and the second step is to create rules to define which types of
events should execute which actions. Actions take three different forms:

Send an e-mail: Sends a report of the event to an e-mail address

Send SNMP trap: Sends a report of the event via SNMP trap to the target machine
(very useful for integrating with other enterprise monitoring systems)

Send an HTTP POST
HTTP POST (sent as the variable)

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 157

the Zend Platform User’s Guide):

Once you have defined one or more actions, you can attach those actions to events or
groups of events by creating an action rule using the following criteria:

You can create extremely complex rule and action sets that allow you to monitor your
PHP applications in the most effective way possible. In the next section we will take this
one step further by introducing the PHP APIs provided by Zend Platform that allow you to
create custom events based on the logic of your application.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS158

The PHP Intelligence API

In addition to the web interface provided by Zend Platform’s PHP Intelligence, an exten-
sive PHP-based API is provided that allows you to integrate it with your web applications
on a much more fundamental level. In this section we’ll introduce the various API calls
and their usage.

The most useful of the API calls related to PHP Intelligence provided by Zend Platform
is the function, which has the following prototype:

This method is used to create events within Zend Platform as if PHP Intelligence had
detected them as any other event. These events can then be tied to actions to cause a
multitude of actions to take place. The first parameter of this method, ,
is a string identifier of the developer’s choosing (used to create multiple different types
of custom events), followed by the actual event message itself, . The last
two parameters are optional, the first being the severity of the event (an integer value of
1 means it is a severe event, a value of 0 means it is a warning event) and the last variable
being user data. This user data variable is to provide context information you would like
to accompany the event, which will be made available as part of the event details.

Note See the “Customizing Behavior and Integrating with Zend Platform” section of this
chapter for an example of the function.

Supporting the function are two additional functions, the
 and functions. The first of these

functions is used to provide some context for a custom event when dealing with a consoli-
dated error-reporting architecture. The purpose of this function is to identify what logical
part of the application you are currently executing in when an error occurred so when you
trigger an event using the function, it will be identified in such a
way to help you understand the origin of the error better. Its prototype is as follows:

where is a “hint” string that will be attached to every event created through
a call to . This function can be called as many times as neces-
sary within an application. This can be useful, for example, in an MVC model, where the
aggregation hint can be the controller and action being executed, or in any other place
where there is a primary script that is consistently executed in front of the real logic
(potentially causing Zend Platform to report all errors occurring in that script).

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 159

The second function, , is a special-case version of the
 function used specifically within a custom PHP error handler implemented

through a call to the function. The prototype of this function is as
follows:

For this function, these parameters match exactly those of the callback set by
. The purpose of this function speaks to a behavior of PHP Intelligence as,

by default, setting a custom error handler will prevent PHP Intelligence from logging any
PHP errors as events. To restore this behavior this function must be called from the cus-
tom error handler callback.

Another function related to custom events is the used to

The prototype is as follows:

is the severity. (In the third parameter, just as in , a value of 1 indi-
cates a severe error, and 0 indicates a non-severe error.) The primary use of this function
would be in a circumstance where HTTP errors are being handled by PHP directly (i.e., a
Zend Framework MVC application) to ensure that these events are still recorded within
Zend Platform.

Note There are additional API functions provided by Zend Platform that are primarily for internal uses: the
 and functions. While documented to some

extent, they should not be used by the general public as they are not stable.

Customizing Zend_Log Behavior and Integrating with
Zend Platform

Thus far in this chapter we have only discussed how the component is used out
of the box. Often this can be sufficient, but there are many circumstances (especially in
enterprise systems) where the built-in behavior of any component isn’t enough. Thank-
fully, like all Zend Framework components the component architecture allows
you to create custom behaviors quickly and easily for your application.

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS160

From the beginning of the chapter (and Figure 7-1), you will recall that the time
between the call to from your application and when that data is actu-
ally stored in a medium by a writer is represented as an associative array of key/value
pairs that is passed into the various writers, formatters, and filters and acted upon. One
thing we have not mentioned yet is that this data structure can be augmented to include
data not natively available. This is a key bit of knowledge if you are interested in creat-
ing application-specific filters, formatters, and writers. To add data to this data structure
(and have it available to every log message data structure internally), you call the

 method and pass it two parameters: the key used to retrieve the

method by combining it with the formatter to add custom data
to the log file.

Listing 7-9. Using the Method to Set Custom Event Data in a Log
Message

 method to set a custom piece of
data that has a random number between 1 and 10. This value is then refer-
enced in the format of the formatter for every subsequent log
message. Because the value of this key is only set once before any log messages
occur, you can expect the same value to be displayed in both log lines.

In addition to setting custom log data points for log items, the component
also allows you to create custom priorities through the use of the
method. This method can only be used to add new priorities (the ones provided by

 by default are unchangeable), but it can be useful depending on the needs of

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 161

 class
to add a new priority and then using it in a logging action.

Listing 7-10. Extending to Add Custom Priorities

Tip Depending on the nature of what you are trying to do, it may make sense to extend the
(or any framework component) to do setup of custom behavior instead of building logic around the default
component to do so. In the case of Listing 7-10, since all of the constants for the priorities existed in the

 class, it made sense to extend the class to add a new one instead of calling the
 method from an external logic.

Building Custom Writers

In order to really customize the behavior of you will have to write some custom
components. If you’d like to create a log that stores to a custom storage location (to per-
haps store log data in a medium not provided for out of the box), you will have to create a
custom writer. As previously discussed in this chapter, one great example of a facility not

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS162

provided directly by Zend Framework that is of value to enterprise users is a writer that
allows you to record log messages into the Zend Platform PHP Intelligence system.

To build such a writer subcomponent for , you have to extend the
 class and implement the abstract method

 within it. This has been done for you (along with some logic to check to make

Listing 7-11. A Custom Writer Component for Zend Platform PHP Intelligence

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 163

described earlier in the chapter to create a log destination that displays within Zend Plat-
form. In this writer we use two of the Zend Platform APIs:
to allow a hint to be set in the event through a call to and of
course the method to actually write the log data to Zend Platform.

Note This writer, while useful, should be used only in conjunction with the proper filters to ensure that
only log entries that truly are warnings or errors are funneled into Zend Platform. From a performance per-
spective the volume of events logged into Zend Platform per request has a direct impact on the speed and
response times of your application. Thus it should only log real problems.

Building Custom Filters

To complement our custom writer using the Zend Platform APIs, let’s create a custom
filter that will ensure that only those events that truly deserve to be logged into Zend
Platform are logged. To do this, we must create a class that implements the

 that (at the time of this writing) was nothing more than a single method
 that returns a Boolean true if the message was accepted. An example of this sort

of custom filter is provided in

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS164

Listing 7-12. A Custom Filter Component

Note If the purpose of Listing 7-12 weren’t to demonstrate how to create a filter component
with custom logic, it wouldn’t be a proper implementation. The built-in
filter was more than sufficient to perform the necessary behavior.

Building Custom Formatters

To complete our discussion of customizing the component, we will look at cre-
ating a custom formatter. To recall the discussion earlier in the chapter, a formatter is
applied to a writer and provides a means to change the format of the event before it is
written to the log. While there is no clear-cut use case for this functionality in the same
thread as our integration of with Zend Platform, we’ll still provide a simple

and represents it in a comma-separated format. This is done (as with filters) by creating
a class that implements the interface. As was also true with

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS 165

filters, this basically means implementing the
method

Listing 7-13. An Example of a Custom Formatter

As the note pointed out for filters, if it wasn’t for the need for an example, the code in
 out-of-the-box

formatter is more than suitable for displaying a log in CSV format.

Logging and Performance
With all of our discussion of the importance of logging, one thing you should be aware
of is that there is always a performance cost to logging. Every logging operation means
that more data is being passed through the script (increasing memory requirements) and
is being written to a storage medium (increasing I/O activity). Thankfully you can use
solutions we present in this chapter, if implemented correctly, with a minimal impact on
performance. For using , the most important consideration is to take advantage
of the various logging levels available to you and use them to distinguish between logging
data that is informational vs. logging data that is critical. By making sure these are distin-
guished in your code, you can create filtering mechanisms as discussed in this chapter to
ignore log messages that lack the necessary severity in a production environment without
sacrificing the power of detailed logs in development and testing.

When it comes to a technology like PHP Intelligence, the name of the game is entirely
setting your rules up to minimize your logging traffic in production in the same way
logging levels minimize logging in your application. Being a low-level technology, PHP
Intelligence is very fast, however, it was never designed to be a debugging tool and should
only be used to monitor and react to log messages of a severity that warrants action on

Download at WoWeBook.Com

CHAPTER 7 MONITORING YOUR APPLICATIONS166

behalf of the development team in production. Failure to do this can cause significant
performance problems and should always be considered.

Conclusion
In this chapter we discussed two very powerful tools to monitor the health of your
applications both during their development and as they operate in production—Zend
Platform’s PHP Intelligence and Zend Framework’s logging components. PHP Intel-
ligence provides engine-level monitoring of your application’s health using a variety of
predetermined metrics, while the component allows you to implement applica-
tion-level logging of your business logic.

That concludes our discussion on monitoring and logging in PHP applications. As
was mentioned at the beginning of the chapter, an enterprise-class PHP application must
have well-designed and frequently used logging facilities in order to make it maintainable
long term without excess cost and a lot of frustration. We hope that by reading this chapter
you have begun to formulate how the combination of and the PHP Intelligence
of Zend Platform can be used to accomplish this critical task. You should always err on the
side of overlogging than underlogging, and more importantly you should take advantage
of the various priority levels provided in the component! Doing so will allow you
to adjust your logging for the circumstances without being intrusive.

Download at WoWeBook.Com

167

C H A P T E R 8

Web Services and
Zend Framework

Over the past few years web services in the fabric of Internet application development
have grown from a useful technology to a cornerstone of enterprise development. A wide
range of technologies and protocols has emerged. From heavier (complex) technologies
such as Simple Object Access Protocol (SOAP) to lightweight protocols such as JavaScript
Object Notation (JSON), no clear winner has emerged, resulting in a great deal of confu-
sion as to how best to execute a plan to develop a service-oriented architecture. History
tells us that as with all technologies, it may be quite a while before a clear winner takes
the throne. Thankfully however, with a little preplanning and Zend Framework it is more
than possible to create an architecture that can service all of them.

In this chapter we’ll discuss a framework for creating web services that supports
three different protocol formats: SOAP, JSON, and a standard XML serialization format
while only writing the business logic behind the fundamental service once. This is of
key importance in our future of uncertain services standards. We will also look at what it
takes to consume these web services from within PHP using the tools provided by Zend
Framework.

The Multi-Transport Services Architecture
Using ZF
Let’s start our discussion by creating the architecture to support multiple web services
methods. This architecture is the standard MVC application built on top of Zend Frame-
work (meaning it can serve normal web pages as well), except we will construct a special
controller named the that can handle the execution of service requests
by clients. A key requirement of any such architecture is that duplication of business logic
code is minimized as much as possible. (You don’t want to have to write the same busi-
ness logic for two different protocols, right?) We will start by introducing the command
pattern.

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 168

The Command Pattern

The command pattern is a design pattern in object-oriented programming useful for
abstracting business logic into discrete actions we know as commands. The command
pattern in implementation can be broken down into the following concepts: a client, an
invoker, and a receiver. We will discuss each in detail as it relates to the architecture.

Why are we introducing the command pattern in a web services discussion? The
command pattern is an incredibly valuable object-oriented technique for abstracting
the business logic of a web service from the way that web service is invoked. It allows us
to write web services that are based on JSON, SOAP, XML, and so on without having any
duplicate logic for how that service behaves.

The first two concepts of the command pattern we will discuss are client and invoker.
The client’s job is to determine the appropriate command to execute based on input
and to create an instance of that command to be executed at a later point in time. The
invoker’s job is (as its name implies) to invoke the command itself that was created. This
may sound familiar to you, and it should, as the command pattern shares many common
traits with the model-view-controller pattern found in modern web applications. To us,
the interesting piece regarding the command pattern is that both input and output to and
from the receiver is abstracted, an important concept when we are trying to abstract the
method by which commands (services) are executed.

Looking at how this pattern could be used more specifically in our particular services
architecture, there won’t be much of a distinction between the client and invoker since
there will be little need to delay the execution of a command once it has been determined
during the web request. For us, it is the receiver that is most important—the class that
actually contains the business logic of our server request. These receivers are implemented
as objects extending the abstract class shown in Listing 8-1.

Listing 8-1. The Class

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 169

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 170

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 171

The purpose of the abstract command class shown in Listing 8-1 is to provide the first
piece of framework needed to create our services architecture. The
class is responsible for the following tasks:

Shown in Listing 8-1, the abstract implementation of our command pattern is
provided a reference to the Zend Framework MVC by being given the instance of

, which executed the command. This technique accomplishes two
goals. It provides us a common means to access the request data for the service call, and
it provides us with the necessary context data to take advantage of the Zend Framework
MVC architecture from within our commands.

In order to encourage data filtering and validation, our class
also implements facilities for identifying, filtering, and validating those pieces of input
that are relevant to the particular command being implemented through the use of a
series of predefined protected arrays ,

, , and). The class
defines the relevant input parameters, their corresponding filters and validators, and
the protected method that processes these arrays. From a logi-
cal workflow perspective, as a developer extending the class you
would populate the arrays with the necessary information (examples provided later in
the chapter), and the services framework itself would call the
method, ultimately populating the final array with the relevant input prefil-
tered and validated for the command.

Along with the various input validation logic functions provided by this class is a
mechanism for capturing the output of any service command executed through the

 object found in the property. Just as the
 class provides a framework for the construction of a command and its

input and output, the object is used to provide a consistent
means of returning output from a command back to its invoker, shown in Listing 8-2.

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 172

Listing 8-2. The Class

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 173

A relatively simple class, the class is designed more
to distinguish between server and logical errors than it is to enforce rules around an
acceptable successful response. To these ends, this class has a single property defined,

, which contains one of the string constants defined (or
) respectively. These two status values are then used in conjunction

with the provided methods , , and to notify the
invoker if there is a server-related error that caused the service to fail. Assuming no such
server error exists, arbitrary public properties may be added to the response object at
runtime by a concrete implementation of the class to return values
back to the invoker.

Note It is important to again state that the failure properties and methods of the
 are not for logical business errors encountered during the execution of a command but

rather for server errors. For example, if you create a service command to update a record in the database,
the response object should be set to failure if a connection to the database cannot be made but should return
success if a connection was made but the record to update was not found. For the latter circumstance, the
service call happened correctly, so the response object should instead set its own error properties or mes-
sage as public member variables to be returned to the invoker.

Now that we have discussed both the and
 classes, let us now look at the logic that encapsulates the client aspects

of the pattern. In this implementation we use the factory pattern to locate and return
instances of concrete command implementations and serve the needs of the client
through a class called shown in Listing 8-3.

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 174

Listing 8-3. The Class

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 175

Note In Listing 8-3 we make use of the component to load the correct
command class. This component is useful because it will automatically handle the mapping between a
standard Zend Framework object (i.e.,) to the correct path on the file
system based on the Zend Framework naming convention (in our case, the

 file).

The purpose of the class is to take a string representation of
a command name following the syntax and return a concrete
command class object to be executed by the invoker. To facilitate this, the

 class has a single static method, , which requires at least one param-
eter (the command string) and accepts up to two additional parameters (used to define
the command class location on the file system).

Using a combination of regular expressions and string manipulation, the goal of this
class is to convert a string such as into a concrete class name—in this case

. This class name is then resolved into a concrete class through
the use of the class and an instance of the class returned to
the caller.

This code allows you to create a Zend Framework style library of commands that are
executed as service calls. Assuming you have the library path of your Zend Framework
project as part of your include path, creating a new service () should be as sim-
ple in most cases as creating the script and implementing
the class within it.

Note The path and class name assumes you have not passed different pre-
fixes to the class or otherwise modified the constants representing these prefixes
within it. If you prefer different prefixes, of course these can be modified. Also note that the

 class must extend the class to be considered valid!

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 176

With the class we have implemented the majority of the com-
mand pattern used in our service architecture through the implementation of the client
and receiver concepts. Now let’s move on to the next level of the implementation han-
dled by a specialized Zend Framework controller class, the invoker.

The ServiceController Action Controller

With the command pattern introduced in the previous section, it is now time to move into
the MVC aspect of the service architecture and introduce the specialized .
In this controller, the goal is to use the service command class architecture introduced in
the previous section along with some additional code to accept a service request in one of
three distinct formats, execute the relevant command class for the request, and return the
response in the desired format. For this we will be combining the standard

 class with the controller helper (also a standard in Zend Framework)
to implement a calculator service that can be accessed via a service call in SOAP, or GET/
POST with XML, or JSON responses. In addition we will also introduce a rough notion of
service API versioning, allowing you to create multiple versions of the same service without
necessarily having them conflict with one another.

To get started we will create a standard MVC Zend Framework controller called
 and use the callback to set up our environment as shown in

Listing 8-4.

Listing 8-4. The Beginning of the Web Services Controller

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 177

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 178

Looking at Listing 8-4, you can see that it is indeed a standard Zend Framework Con-
troller that contains one action, . Since this is a special controller, we simply
redirect the requestor to the for this action (we will discuss
the service-specific actions a little later). For now, we are interested primarily in the

 method, which sets up the various contexts for the service requests being made.
The first step in our method is to determine the response format the request-

ing client is looking to retrieve by looking in the
method for the variable. (By default we assume it will be a JSON response.) Next we
validate that the format received was indeed one we expected through the creative use of
a statement to assign the property of the controller. With both of
these completed we are now ready to start setting up the various contexts available in this
controller by using the Zend Framework Controller Helper.

The Zend Framework ContextSwitch Action Helper

The purpose of the Action Helper is to facilitate the return of different
response formats other than HTML from within a Zend Framework application. To use
this helper, we must define the contexts available to the controller and then provide a
mapping of which contexts are available to which actions within that controller. When a

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 179

context is activated for a particular action, a number of things take place internally within
the MVC architecture:

 are disabled if previously enabled.

response is sent.

) is used, allowing
the developer to create a different view script for the context.

Zend Framework’s MVC out of the box supports the automatic encoding of JSON as
a context, but for the other two contexts we wish to create (the XML response and a SOAP
context) we must first add those as available contexts for the class. To
these ends we create two context arrays, and , which contain
the configuration values used by the helper to determine how the contexts
should be handled. While in our particular example these contexts basically have the same
context configuration, if desired details between the two could be changed. (Please consult
the Zend Framework manual for a full list of options.) Once we have defined
each context’s configuration we can call the method of the
helper to add that context (identified by a string key). We are ready to map that context as
an available context for an action.

Within the same chained statement as the call, we proceed to map a yet-to-
be-defined action as accepting the three contexts we would like to make available
for our service calls. This action will be the sole action used in our to make
use of the command pattern defined earlier to execute Service classes, and we named it to
indicate that it is “version 1” of these service calls. Listing 8-5 shows the implementation of
this method.

Listing 8-5. The Method

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 180

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 181

Examining the method in Listing 8-5, you can see that the first step in our
controller is to determine the ultimate command or service call that is being made by the
client by looking for the parameter in the request object. Assuming this param-
eter exists, we move forward by using the helper’s method to
switch the response context to the one previously determined in the controller’s
method. The next part, however, is where things become a little more complicated and
will require a bit of explanation.

If we were to create a class that simply accepted parameters
using the standard input methods of Zend Framework (GET, POST, PATH_INFO, and so
on) and were only concerned with ensuring that the response format was correct, this
controller actually would be rather easy as the problem could be solved entirely by the

 helper. However, since we have also included the SOAP protocol in the mix
(a protocol that exclusively uses POST to send XML documents that contain the request
information), we have to treat it separately from the other two protocols. Moreover, SOAP
is also special in the sense that the services for it are largely defined by popular consensus
through Web Services Description Language (WSDL) documents which should be retriev-
able from the service by passing as a GET parameter for the request. Thus, we will
return to the special case of SOAP later in the chapter. For now, assume we are working
strictly in JSON or XML response formats.

Assuming the response format is JSON or XML, you can see how it is the
 that acts as the invoker in our original command

pattern discussion. As you may expect, once we have initialized the context of the
request through the , we then proceed to locate and execute the service
command being requested, thus executing the service business logic. In order to
provide the input data needed to perform this action, we provide the entire controller
class to the command prior to execution. While in these examples surely passing just

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 182

the object would have sufficed, there is little reason not to
provide the controller itself and thus ensure that future possible enhancements to the

 or MVC models can be taken advantage of from within the com-
mand architecture being implemented.

Once the command has executed, we can expect the response to have been stored
within the same Command object itself and to be available through the
method call. The only thing left to do is, based on the response format requested, serial-
ize this response object into that format. For JSON-encoded responses, this is very trivial
as Zend Framework will automatically serialize all view variables in JSON format if the
action has been set to the JSON context. For XML it is nearly as easy, as we should be able
to simply print an XML document as output containing the response. However, there is
a snag—there is no XML serializer currently available in Zend Framework. To overcome
this hurdle we fall back on the trusty PEAR component library ()
and the class to take our response object and convert it into XML on our
behalf.

At this point, discounting the SOAP protocol, we have discussed everything you need
to take advantage of the command pattern to create web services that work in both JSON
and XML response formats. Unfortunately we’re still not ready to bring SOAP into this
picture just yet. Instead we will briefly walk through a concrete implementation of this
service architecture by creating a simple calculator web service.

Creating a Simple Web Service

Now that we have explained the majority of the code behind the web services architec-
ture built on top of Zend Framework, we are ready to start implementing a simple web
service for us to play with: a simple four-function calculator. Thanks to our architecture
this should be an extremely easy thing to accomplish as it simply involves creating four
Command classes that accept two operands as input and produce a single result as out-
put. However, since all of these services are so simple, we have gone the extra step and
produced a fifth abstract class to consolidate the filtering and validation logic of the four
operations. Two of these five classes are listed in Listing 8-6.

Listing 8-6. The and Classes

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 183

For any intermediate PHP developer with object-oriented experience, these classes
should be fairly straightforward. As previously explained, we start with an abstract

 class, which implements the method

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 184

previously discussed to set up any filter and validation rules needed. This class is then
extended by the class, which completes the service by imple-
menting the method and performing our calculation. This answer is then
stored into the variable (a instance), and the
method returns. When placed into the include path, you can give this service a quick test
by going to the following URL:

Assuming you have everything set up correctly, you should get an output similar to
the following:

For your reference, the sample code that comes with this book includes all four ser-
vices (Add, Sub, Div and Mul) as a fully functioning example.

Dealing with SOAP in Zend Framework MVC

Thus far in this chapter we have intentionally ignored how the SOAP part of our web ser-
vices architecture works, and it was previously mentioned this was because it functioned
fundamentally different than other architectures. Specifically, the issue that you find
implementing SOAP services within the MVC is the fact that the SOAP server provided by
Zend Framework wasn’t necessarily designed to function within the MVC. Thus, when
we expect to be dealing in terms of the SOAP protocol, we must treat this differently (and
thus the special conditional block in Listing 8-5 earlier in the chapter). Listing 8-7 high-
lights the specific code block within the class relating to dealing with
SOAP requests.

Listing 8-7. The SOAP-Specific Routines Within the Class

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 185

Examining the previous code block (a subsection of Listing 8-5), you can see that we do
some of the same general things we did for JSON and XML to convert the command name
(i.e.,) into a class, which is then used in conjunction with the Zend Framework

 component. However, SOAP is unique in not only the way data is trans-
mitted to the server but also in the way SOAP is implemented, which requires special care.
The issue boils down to the fact that SOAP as a web service implementation is designed to
be introspective, meaning that any PHP class should be able to be exposed as a web ser-
vice by making the component aware of it. To accomplish this feat the

 component (and helper class) rely on PHPDoc
comments preceding each method within a given class being used as a web service end
point to determine the typing and so on of information used. Unfortunately, that doesn’t
make as much sense when our services are implemented using the command pattern, as
each Command only has one method , and that method takes no parameters.

To solve this problem, an extra step must be taken to enable SOAP services in our
command pattern by introducing yet another object-oriented pattern called the proxy
pattern. The proxy pattern is quite simple. We create another class that represents the
service in the way we would like it represented, and rather than duplicating the business
logic of our commands, proxy each method into a valid command to be executed. In this
way, we can also include the necessary PHPDoc comments to autogenerate the WSDL
document and execute the service request previously discussed. As was true with the con-
crete command classes, we start our implementation with an abstract SOAP proxy class
shown in Listing 8-8.

Listing 8-8. The Class

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 186

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 187

As shown in Listing 8-8, there is only one major method in the
 class worth discussing: the method. This method accepts two

parameters. The first is the command to execute (), and the second is an array
of key/value pairs representing the parameters the command needs to execute. Given this
data, the method then proceeds to construct the correct Command object
(as the client in the command pattern), set the parameters for the command, and then
execute the command as the invoker. Upon completion the response is processed and
converted into an exception if necessary; otherwise it is returned as a standard object.

Note In this context an exception is handled automatically by the component and
translated transparently into a SOAP “Fault” object and returned to the requesting client. Always make sure
then that you throw exceptions for errors when using SOAP, as this is the correct behavior.

The purpose of the method in our abstract class is to make the actual
proxy classes we create for the SOAP server easy to implement (or even automatically
generate potentially), as each “method” within the Proxy translates its parameters into
a call to the method of its parent. For the class, this is shown in
Listing 8-9.

Listing 8-9. The Class

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 188

As shown in Listing 8-9, the is an extremely simple class,
but it implements some very important details necessary when using the SOAP protocol.

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 189

First, it encapsulates all of our individual Commands (implemented as individual classes)
under a single unifying class. Second, it provides a different API to access those methods
that is completely documented using PHPDoc, making the auto-generation of WSDL
documents possible. Note, of all the web service implementations we have discussed,
this extra step of producing a Proxy class is only relevant for the SOAP implementation.
If you plan on using JSON or XML for your transport mechanism, you can simply use the
implementation discussed in this chapter significantly to those ends.

Consuming Web Services Using Zend Framework
Now that we have discussed in detail the production of web services using Zend Frame-
work in a modular and robust fashion, let us turn our attention to consuming them. Web
services are a major aspect of Zend Framework in ways no other framework for PHP (or
for that matter, really any language) can claim. At the time of this writing Zend Framework
version 1.8 provides direct APIs for 23 web services providers including Yahoo!, Twitter,
Google, and even the Amazon EC and S3 technologies. These APIs will not be discussed in
this book in detail as they are well documented within the Zend Framework manual. They
are designed to make using these technology services as streamlined and easy as pos-
sible. For those services not directly supported by Zend Framework as components, Zend
Framework provides an extremely robust set of generic web-service clients for processing
the entire range of service requests that make up the fabric of Web 2.0 including REST,
JSON, SOAP, RSS/ATOM, and XML-RPC. In this section we will explore how these compo-
nents can be used to bring the power of web services into your application.

Note It is worthwhile to note that, like most Zend Framework technologies, the service components
provided by Zend Framework are “use at will” and are not limited to applications written on top of the Zend
Framework MVC but rather can be used in any architecture.

Consume REST-Style Services

The first set of services we will explore are what have been deemed REST-style services.
That is, these services typically use the standard methods of GET, POST, PUT, and
DELETE to transfer input into the web service (much like the services we created earlier
in the chapter) but then often return their response in some sort of serialized data format
such as XML or JSON. For these services Zend Framework does not provide any sort of
specialized component per se but rather expects you to use the standard HTTP client to
perform the request and to use a serialization component like to convert the
response into a meaningful object usable in PHP.

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 190

To demonstrate how this technology might work, let’s say for example there is a web
service at the following URL that is used for geocoding:

This service expects a single parameter address (a qualified street address) as a GET
parameter and will return a set of latitude and longitude coordinates representing where
that address might be found on a map in JSON format. Thus, a possible query might be

which may result in the following response:

To take advantage of this service from within PHP using Zend Framework, it is as
simple as creating an instance of the HTTP Client , configuring it for the
request at hand and then parsing the response as JSON using the component.
This process is shown in Listing 8-10.

Listing 8-10. Using and to Perform Web Service Calls in JSON
Format

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 191

As you can see, Listing 8-10 is quite straightforward. We start by creating an instance
of the class, configure it, provide it an endpoint URL and our GET
parameter, and call its method to execute the request. The response, if suc-
cessful, is then used in conjunction with the component to translate the
JSON-formatted body into a standard PHP object.

Tip In the previous example we assumed the service would respond in JSON format. If the service
responds in another format such as XML, you would use a different solution to deserialize it. Specifically for
XML we recommend the use of the standard XML processing technologies (i.e., SimpleXML or DOM).

Consuming SOAP Services

Often the service format that must be consumed, especially in enterprise environments,
is SOAP in order to interact with web services. Thankfully, Zend Framework provides the

 component, which is useful for not only creating SOAP-based web services but
consuming them as well. When using the SOAP client in Zend Framework it can oper-
ate in one of two modes: using a WSDL or manually. It is strongly recommended that the
SOAP client only be used in WSDL mode, as it is extremely rare in today’s Internet to find
SOAP-based services that do not provide a WSDL document describing them—and it is
an extremely tedious process to consume these services without it.

Assuming you have a WSDL document for your service (which is often attainable by
simply appending a GET parameter of to the end of your endpoint URI), the process
for consuming these services is very straightforward:

 component as necessary.

 object!

For example, if you were to use the to communicate with the cal-
culator service described in the previous chapter, you could do so as simply as using the
code in Listing 8-11.

Download at WoWeBook.Com

CHAPTER 8 WEB SERVICES AND ZEND FRAMEWORK 192

Listing 8-11. Using with a WSDL to Perform Service Requests

One thing you may notice in Listing 8-11 is the usage of the … block around
our service call to the method. The reason we add this … block is because
Zend Framework will automatically convert any error returned from the server (known
as a “soap fault”) into an exception class of type and throw it. Thus, to prevent
this exception from bubbling out of scope we must catch it to determine whether an error
indeed did occur.

Conclusion
In this chapter we have covered a great deal regarding the architecture and usage of PHP-
powered web services through Zend Framework. Using this architecture, it is possible to
not only make development of web services easy but also abstract away the challenges of
providing a single service in multiple output formats. Combined with the obvious ease
of consuming web services through Zend Framework, you have an extremely power-
ful tool for building and using service-oriented architectures across the Web. As always
there is more to learn, and we strongly recommend the excellent documentation in the
Zend Framework manual for the complete details of taking advantage of these exciting
technologies.

Download at WoWeBook.Com

193

C H A P T E R 9

Production Farms for PHP

Once an application has been built, you have to get it onto at least one production
server so that its intended audience can use it. The needs of your applications can vary
wildly, and in this chapter we will explore some of the common options and discuss some
of the common pitfalls that development teams run into when it comes to the server
needs of your application. We’ll discuss the general concepts behind production server
farm architecture, some things about the Apache HTTP server, and challenges commonly
faced in developing PHP applications.

Before we begin this discussion, it is worth stating (as we have often throughout the
book) that during the architecture and development phases of your application’s life
cycle, a little forethought to your production needs can go a long way toward making the
entire process less painful later. PHP has a specific, unique approach to web development
and deployment, and understanding it (discussed later in this chapter) is important in
avoiding many of the common pitfalls.

General Server Farm Architecture
One of the biggest perceived problems that server farm architecture is designed to solve
is that of scalability, which unfortunately is often mistaken with performance. This could
not be farther from the truth, and development teams who have made this mistake often
find themselves in a position where it simply doesn’t matter what their server farm archi-
tecture looks like. A scalable application can handle more users, processes, and so on
with the introduction of new hardware resources (more servers); a high-performance
application makes better use of the hardware it has. Thus it is critical that your applica-
tion has the ability to scale its architecture first and foremost. That means it has to work
on a single server and still be able to run on 20, 200, or 2,000 more servers without drastic
application changes.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP194

Why is this important in talking about server farm architecture? Well, it’s because a
standard LAMP stack application has a few unique traits to it that can affect whether, and
how, your server farm should be built. Understanding these traits is the key to scalability,
and they include the following:

-
cuting on the server are isolated from one another in pretty much every way.

drastically affect server architecture, such as the ability to function as a master or
slave, clustering, full-text searching, and so on.

Figure 9-1 outlines a classic LAMP stack server architecture on which most common
architecture is based.

The architecture shown in Figure 9-1 uses a total of six servers, three web servers and

master
machines are placed behind a load balancer as well, which the PHP application would
connect to.)

Note If you aren’t familiar with MySQL master/slave configurations, don’t worry. They are discussed
in more detail in Chapter 10. For now what you should take from this diagram is that the PHP application
is going to the database load balancer when it wishes to read data from the database, but connects to the
“master” database when it needs to write data to the database.

There are many assumptions made in the diagram shown in Figure 9-1 and many
possible pitfalls to consider. The biggest assumption is that there will be no need for
one web server to ever communicate with another one other than through the sharing
of a common database back end. This makes sense, but from a performance or scalabil-

doesn’t need to be updated every single request, such as a customer record, but what
about something that is likely to be updated every request, such as session data? This
brings up an incredibly important point regarding production farm architectures: more
often than not for PHP, it isn’t the web servers themselves that pose the biggest problems
scaling but rather everything (such as session data) used by the PHP application. As we
continue in this chapter we will address many of the common scalability problems and
how they might impact your server architecture.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 195

Figure 9-1. A classic LAMP stack production farm architecture

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP196

Session Data and Farm Architecture
As was mentioned in the previous section, Figure 9-1 leaves a lot of questions, among
other things, questions about session management. You have to make a decision and a
trade-off that will impact your server farm. On one hand it is relatively trivial to develop
a custom session-management script that can read and write each user’s session data
using the database as a storage mechanism. On the other hand, this puts a potentially
costly and unnecessary burden on the database that could affect the performance of the
entire application. Furthermore, since session data is likely to be updated every single
request, unlike what is depicted in Figure 9-1, each web server would probably have to
read and write to the master server—at least for the session data, making the complica-
tions on the application level more expensive.

Another alternative is to continue storing the session data on the individual web serv-
ers as would be the case in a single-web-server environment. However, if the data for a
user’s session is stored only on a local web server, that means the load balancer determin-
ing how traffic is routed has to be certain to route a user who has established a session to

do this, then it’s possible that your users will lose their session occasionally from request
to request, which would make for a horrible user experience. This is a common choice for
applications, but it’s far from a foolproof solution, as a number of things can go wrong:

distribute the traffic across all of the servers, resulting in one server attempting
to handle too much traffic and the other two servers not handling enough traffic.
Unfortunately since the server that started the session must continue to serve that
session, it can result in horrible user experiences or performance even with suffi-
cient hardware.

the server goes down then the user’s session is lost. This happening at the wrong
time can have major user experience consequences.

A third alternative to the session storage problem is provided as part of Zend Platform
using a technology called session clustering. This technology functions, as is the case
with sticky sessions, by storing the session data on the local web server with one major
difference: the load balancer does not manage any relationships between a session and

web server as part of the session clustering technology, allowing session data to be shared
between web servers. This is an ideal solution, as it allows load balancers to do what they

technology can also function in what is known as high-availability mode, where multiple
copies of the session data can be kept on multiple machines transparently and thus solve
the problem of losing session data if the originating server crashes for any reason.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 197

Note In extremely high-performance situations it is possible to sidestep the session storage problem
entirely. If you are storing less than 1,024 bytes of data, you can store the data you would have stored in
the session inside of a cookie and effectively “store” it on the client machine. Of course if you were to do
this it is paramount to take appropriate security measures as well. Specifically, if you aren’t concerned with
the contents of the cookie (but don’t want the values changed) you can sign the values using a combination
of the cookie value and a secret server-side salt. If it is important for security that the data in the cookie be
unreadable, you should use a strong encryption algorithm such as AES. Remember (as was discussed in the
Chapter 6), any data you send to the client makes it untrustworthy, and it should be handled carefully.

Database Concerns in Farm Architecture
Another concern in our generic server architecture is the database layer

the web servers, which poses a number of architectural problems to consider:

 fast enough.

crash or otherwise become incapacitated, the web application would cease to
function.

Note High availability in MySQL database systems can be an incredibly complex problem to solve and is
largely out of the scope of this book. For an excellent resource for this subject, we recommend High Perform-
ance MySQL by Jeremy Zawodny and Derek J. Balling (O’Reilly, 2004).

start with the generic architecture shown in Figure 9-1, there are two aspects to scaling

architecture can look a number of ways depending on the needs of your application
described in the next section.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP198

MySQL Slave Farm Architecture

architecture depends significantly on the needs of the application itself. Generally

servers. These slave servers are read-only, and the application running on the web servers
typically will connect to one of these servers through a load balancer as shown in Figure
9-1. One thing to consider is that there is really no limit to how slaves can be scaled. While
the master server is responsible for replicating its data to a slave, slaves can replicate from
other slaves, making the architectures shown in Figure 9-2 possible.

Figure 9-2. MySQL slave-to-slave(s) replication

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 199

-
ignated the primary slave. From there, this primary slave can replicate its data to a pool
of slaves it controls, and it can be scaled indefinitely. This is an important technique for

-

without any outward application code changes.

Tip For intermediate replication slaves, such as in an architecture shown in Figure 9-2, it may prove
useful to use the BLACKHOLE storage engine for all of the tables. For those who may not be aware, this stor-
age engine doesn’t actually store any data and would be equivalent to sending data to /dev/null on a Linux
machine. The reason this is useful is because a table’s storage engine does not have any impact on the
binlogs on which replication functions, thus while you could never query the primary slave for data directly,
using BLACKHOLE as the storage engine will increase its performance while still allowing it to serve as a
replication intermediary.

This technique can also be used when your application has special needs where read
queries can function better using different table-storage engines. One such example

situation.
Your application stores recipes for its users and is incredibly popular. Users of the

system have two methods of searching for a given recipe: by known ingredients or by a

the application increases in popularity, however, the techniques used to perform a full-

you’d lose performance everywhere else and key features such as transactions.

restrictions on consistency between database engines from one slave to another. This

the web application to perform specific queries under their best possible circumstances,
as shown in Figure 9-3.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP200

Figure 9-3. Using MySQL replication to create slave farms with different storage engines and
performance needs

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 201

As shown in Figure 9-3, we have created two separate pools of servers used for read-
only queries—the first from our original generic LAMP stack shown in Figure 9-1 and a
second used specifically for full-text queries only.

MySQL Master Farm Architecture

Earlier in this chapter we were quick to mention that we cannot cover all aspects of

highly scalable system. As was previously mentioned, the generic LAMP stack shown in
Figure 9-1 has a significant flaw in its scalability design—writing to the database is limited

material by discussing the concept of data federation.
 is a huge piece of building an application that can scale to meet the

needs of millions of concurrent users in the LAMP stack
create independent clusters of servers that each contains a different independent data

primary slave using the following generic technique:

top-level key. For example, perhaps different application users may be organized
into different tables.

top-level key.

your web application as to which cluster to use for its requests for that data.

How you determine which top-level key belongs to which cluster can be a complex

clusters is as even as possible. The end result however is always the same, demonstrated
in Figure 9-4.

Note This subject of data federation is discussed again in Chapter 10 when we discuss MySQL in more
detail. For the sake of understanding, however, consider the notion of using the first character of the user’s
last name as the top-level key to determine which cluster the user belongs to. This could be a very costly
decision financially because this requires 26 individual clusters for each alphabet character. The bigger prob-
lem, however, is that there are many more last names that start with the letter M than the letter Z, resulting
in an uneven distribution that impacts the scalability of the solution.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP202

Figure 9-4. Server farm architecture with data federation implemented

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 203

Dealing with Serving of Files
 simple act of serving static files in your web application can

often be overlooked in the architecture of both the application and its production farm.

files, and so on an afterthought of their architecture needs. As it turns out, however, in
a high-performance application these resources need to be considered more carefully
and should always be handled through a separate web server dedicated to serving only

content is much simpler but also potentially more time-consuming than executing the
scripts. Thus, to improve performance you want to separate the requests that execute
business logic (which have one set of performance needs) from those that simply shuffle
data to the client.

Typically this is done by creating separate web servers that are only capable of serv-
ing static content to the user and storing all static content used by the web application on
those servers. This makes the most efficient use of your PHP servers as they never deal with
a request that doesn’t execute a PHP script, and it naturally spreads the multiple secondary
requests for resources by the end-user client across multiple servers, improving scalability.

Listing 9-1. An Example HTML Output of a Hypothetical PHP Script

to the web application in order for the request to be finished. The first is to execute the
PHP script that generates the output in Listing 9-1, the second is to retrieve the style sheet

server that executed the PHP script to generate this output is the same server where the
resources are located, this means that out of three requests, only one of them was actually
spent executing business logic. From a performance perspective, this is less than ideal.

the output of our hypothetical script should reflect this as shown in Listing 9-2.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP204

Listing 9-2. A Modified Example HTML Output of a Hypothetical PHP Script

Taking this change into account, a more reasonable architecture for our generic
LAMP stack shown in Figure 9-1 is found in Figure 9-5 showing the static servers.

Another common concern when designing a production farm is dealing with what
we like to call runtime files. These are files that are created in the application as part of its
normal operation. One example is accepting files from the end user (uploading files to the
web application) that need to be immediately available. Because PHP applications have
a share-nothing architecture, this is another variation of the session management prob-
lem discussed earlier in the chapter. The file is uploaded to a single web server yet must
somehow be made available to the full set of users in a reasonable amount of time.

-
ferent approaches you could use to solve this problem, including (but not limited to) the
following:

across the web servers

the database

mod_proxy, squid, or other techniques

For the purposes of a discussion on production farm architecture we will focus on the
third option, the implementation of reverse proxies.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 205

Figure 9-5. A generic LAMP production farm with static servers included

The concept behind a reverse proxy is the creation of an intermediate collection of
caching servers between the source of the content (which maybe a single server) and
the requesting client. Typically the content being served is held in memory of the cache
server and allows for the scalability of runtime-created resources quite effectively.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP206

Take for example the notion of accepting uploaded files at runtime and having them

to a single server and then place 100 reverse proxy servers managed by a load balancer as
intermediate servers between it and the end user, as described in Figure 9-6.

Figure 9-6. Using a reverse proxy to increase the availability of a single resource

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 207

As shown in Figure 9-6, when a resource is uploaded to a single server, the web
application’s ability to serve that resource to the end users is limited by the capabilities
of that single server (we’ll assume around 300 requests per second). This is clearly unac-
ceptable for a large-scale application development and why a reverse proxy can be such
a powerful tool. Rather than attempting to have end users request the resource off of the
single server directly, or even attempting (at least immediately) to make multiple copies
of the resource across a farm of static resources, we can use a reverse proxy to proxy the

uploaded resource, the request is made ultimately to a proxy server, which then does one
of two things:

the request for the resource from its origin server and return it to the user. Once
a resource has been retrieved the server will cache it locally for future requests
(either in memory or on disk).

and never contact the origin server.

This is an incredibly powerful tool, as it allows you to take a single server that can
serve an assumed maximum of 300 copies of a given resource at the same time and with

simple 3:1 ratio because the file will be stored in much faster RAM on the reverse proxy.)

Note Reverse proxy systems can get very complex if you are concerned with the idea that there should
be more than one origin server that contains a runtime file resource, as you will have to not only have to
figure out how to copy that resource between a farm of servers (we recommend that you use asynchronous
operations described earlier in the book) but also intelligently spread the load of requests from the reverse
proxy servers to only those origin servers that have received the resources in question. Unfortunately, this is
outside of the scope of this discussion.

When using a reverse proxy server, it is strongly recommended that you use the URL
of the file in the origin server (through some sort of regular expressions or business logic)
to manage invalidation of data on the reverse proxies. This is to say, rather than attempt-
ing to flush a file from potentially hundreds of reverse proxy servers, it is much more
effective to change the origin URL of the resource that requires updating and to allow
each individual reverse proxy to naturally expire the original file from cache.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP208

Asynchronous Operations and the Farm
The final aspect of a production farm we are going to examine in this chapter is the

detailed discussion of the job queue). For the purposes of this discussion we will assume
you are using the job queue technology provided by Zend Platform introduced earlier in
the book.

asynchronous operation servers into the farm is a fairly straightforward concept. Each
job queue server is completely independent from the next, and since by its very nature a
queue has a nearly unlimited capacity, you could plan on having one server dedicated to
the task. Of course, what kind of performance you need out of your asynchronous opera-
tions is a direct function of how much time between when a job is entered into the queue

 to improve
performance of operations that must be completed in real time from a user perspective, it
is an entirely different game from sending out welcome e-mails to new users as they sign
up asynchronously.

into a job queue, then the job queue servers can be scaled out horizontally by purchasing
more machines and placing them all behind a load balancer to be used by the web serv-

(such as a credit card transaction), this solution doesn’t work, as you cannot commu-

across servers. For these situations unfortunately you are limited by the power of a job
queue server to process jobs and communicate with that server directly from your web
servers.

While real-time asynchronous jobs require you to be able to communicate directly
with the job queue server (making a load-balancer infeasible), there is nothing stopping
you from having multiple independent job queue servers in use by your web applica-
tion and defining rules as to which servers are used to process which real-time jobs. For
instance, if you have twelve web servers you can provide one dedicated job queue server
per four web servers, giving you a total of three job queue servers. An example of both
configurations is shown in Figure 9-7.

Download at WoWeBook.Com

CHAPTER 9 PRODUCTION FARMS FOR PHP 209

Figure 9-7. Examples of server farm configurations focused on dedicated job queue servers
(for real-time asynchronous operations) and job queue server pools

Conclusion

PHP-based web applications face trying to architect their applications to scale with their
user bases. We introduced the classical server farm for the LAMP stack and discussed how
to handle static files, uploaded files, and session management as your application’s needs

you might need to plan for. Finally, we discussed how asynchronous operation servers
may factor into your designs.

When designing both your application and your server farm, the key to success is
horizontal scalability. As much as possible your design should allow you to solve your
performance and power requirements by adding more hardware systematically as
requirements grow. That said, if you do find yourself in a position where horizontal scal-
ing is not an option because of technical limitations, scaling vertically (more powerful
hardware) is always at least a solid stopgap measure. Obviously we have only touched on
some of the issues when dealing with production farms in this chapter, but you will find
that we have discussed enough of the common circumstances that you should be able to
apply the concepts to other technologies as needed.

Download at WoWeBook.Com

Download at WoWeBook.Com

211

C H A P T E R 1 0

The MySQL Database

In this chapter we look at the MySQL database server and how to tune it. There are three
basic strategies we can employ to improve a database: adding hardware, tweaking settings
within MySQL, and tweaking the queries that we send to MySQL or adding indexes so they
will execute faster.

While it might seem easy to just throw hardware at the problem, it is very difficult
to improve execution time by orders of magnitude from this approach. By contrast, the
improvements that we can get from indexes or tweaking settings often can lead to perfor-
mance that is better by orders of 10, 100, or even 1,000.

The Storage Engine Concept
One distinct feature in MySQL when we compare it to other database management sys-
tems is how it handles data storage. While more traditionally there may be one database
storage format, MySQL elects to separate SQL from storage and to allow a series of stor-
age engines to plug into the server.

Each of these storage engines will have an entirely internal storage format, and as a
result each engine’s features and performance characteristics are entirely different from
that of others. From the developer’s perspective, all storage engines appear the same, and
you are to mix and match storage engines on a table-by-table basis (see Table 10-1).

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE212

Table 10-1. Comparing Storage Engines Available with MySQL

MyISAM InnoDB Archive Memory Cluster

Transactional No Yes No No Yes

ACID-compliant No Yes N/A No Yes

Crash recovery No Yes No No Yes

Full-text indexes Yes No No No No

Tree indexes Yes Yes No Yes Yes

Hash indexes No No No Yes Internal
hash only

Online backup No Yes No No Yes

Supported state-
ments

All All INSERT,
SELECT

All All

Foreign keys No Yes No No No

Page checksums No Yes No No No

Maximum indi-
vidual table size

256 TB, but
limited by
crash recovery

64 TB Information
not available

Limited by
memory

Limited by
memory

Maximum full
database size

No limit 64 TB No limit Limited by
memory

Limited by
memory

Locking level Table Row N/A Table Row

Isolation levels None All Four None None Read-
committed

Although newer engines are under development (both by MySQL/Sun Microsystems
and third parties), the most popular general-purpose storage engines today are MyISAM
and InnoDB. While MyISAM is more lightweight, it also has a number of drawbacks as
illustrated in Table 10-1. The biggest deal breaker using MyISAM is usually the incon-
sistency and unpredictable nature of crash recovery. To understand this point, try the
following example in Listing 10-1 in MyISAM and then again in InnoDB.

Listing 10-1. SQL Commands to Test Crash Recovery in the MyISAM Storage Engine

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 213

Note If you were to run and then
, you would discover that repairing the table and keeping all of the values consistent is not the

same thing. Half the rows will have a value of “bbbbb...” and the other half will have all “aaaaa….” There is
also the theoretical chance that one row might be half “a” and half “b”. To add to this pain, it is worth noting
that the crash recovery process in MyISAM is entirely dictated by the size of the table. If you have a single table
that spans into hundreds of gigabytes, it may take several days before it is repaired and ready to use again.

Optimizing Queries with EXPLAIN
By far the best way to improve application performance is to improve the performance of
individual queries. Sometimes this can be a case of just adding a simple index, but other
times it will require some additional input to be able to rewrite a query. MySQL exposes a
way for us to be able to see the internal path that it uses to execute a query via the
command. This internal path is often referred to as the execution plan, and in Listing 10-2
we can see by the type of ALL that the plan is to read through every row in the table one at
a time in order to return our result—certainly not an ideal situation.

Listing 10-2. The Execution Plan of the Query with MySQL’s Command

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE214

Note The world database can be downloaded from the MySQL Manual at .

Tip Not familiar with the statement terminator? It’s used to return the results in vertical mode, instead
of the default horizontal mode. With longer rows, it’s much easier to read.

To improve the execution of the query in Listing 10-2, we need to add an index. But
there are actually many different candidates to choose from. Here are just a few examples:

index on Name to scan the index and then find the rows we need.
Since the index would automatically be sorted, this could remove the expense of

.

index on Population to first filter the countries that have a popu-
lation greater than five million and then apply additional filtering on the row level
to determine which countries are in Asia.

index on Continent to find only those countries in Asia and then
check to see that they have a population greater than five million at the row level.

composite index on Population and Continent and then for the
rows that match, just return the name column.

composite index on Continent
and Population.

covering index on Continent,
Population, and Name. This index is special because Name is not specified as part
of the where clause but is the only column we are requesting to retrieve. A cover-
ing index is sometimes referred to as an index-only fetch since we do not need to
consult the data rows to be able to return the result.

Let’s look at what happens when we add the index on just Population and repeat the
same command (see Listing 10-3). We can see that under our newly
added index appears, but under (the key that ended up being used) the value is .

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 215

What MySQL is doing is actually very smart. It detects that you are looking for population
greater than 5 million, but it also knows that very few countries in the world have popula-
tions less than 5 million. MySQL ignores indexes that offer very little selectivity, so as a
result, it chooses to ignore the index and continue table scanning.

Tip In many texts you may see a reference to words such as “cardinality” and “selectivity” used in
describing this index selection process. Cardinality is the unique number of rows in a table, and selectivity is
the cardinality divided by the total number of records. For example, a primary key index on a table with
9,328 rows: 9,328/9,328 = 1.0.

This brings us to an important point—it is critical to revisit immediately after
adding indexes. The danger of adding unused indexes is that performance may suffer
during , , and statements.

Listing 10-3. Adding an Index to Try to Improve the Performance of the Query

Note In Listing 10-3, MySQL is favoring the sequential read of a table over the random IO that would be
required to keep switching between reading the index and then reading the data. The trade-off is that the
index has to filter on about 75 percent of the rows or it will not be considered for use.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE216

If we were to modify our query to search for countries of population greater than 50
million as in Listing 10-4, we can see that the index is now used.

Listing 10-4. Searching for Countries Whose Population Is Greater Than 50 Million

In Listing 10-5, we can see that if both indexes on and are pres-
ent, the index is preferred. If we look at the difference between the execution
plans (the output) we can speculate that MySQL made this choice because of the
following reasons:

 has changed from to . Comparison to a fixed string (
) is cheaper than comparison to a range ().

 is only one byte, down from four bytes. This means there is a greater
chance of being able to store this entire index in memory, where traversal will be
faster.

42 rows, down from 54 rows.

Tip We chose our words very carefully when we said, “we can speculate that MySQL made this choice
because....” There’s actually no functionality to be able to export and compare a cost breakdown between
query execution plans. The closest feature available is running
after executing the query.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 217

MySQL combines all of these factors together to determine what the query cost will
be. On every query that the server receives, it weighs options it has available to execute a
query and then arrives at the option it determines to be the cheapest.

As a follow-up to Listing 10-5, in Listing 10-6 we can see how the cost of the popula-
tion index plan becomes cheaper when we start searching for population greater than
500 million.

Listing 10-5. Comparing the Continent and Population Indexes for Population of 5 Million

Listing 10-6. Comparing the Population and Continent Indexes for Population of 500 Million

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE218

Our next example looks at some of the more advanced index usage, with composite
indexes spanning more than one column. Before we get to these examples, it’s important
to make two very important notes.

MySQL will seldom combine two indexes from the same table to execute a query. In
MySQL 5.0 an optimization called index-merge was introduced (see

), but its usage remains limited.
It would be a rare day that you would add all of these indexes in production. In fact,

you would be crazy to do so, since an index on makes the
 index redundant. We’re just adding a number of possible indexes to demon-

strate MySQL’s cost model.
In Listing 10-7 and Listing 10-8 we add indexes on and

. While from a glance these appear to be very similar, the opti-
mizer looks at them quite differently and teaches us an important rule: equality to the
left, ranges to the right.

Listing 10-7. Comparing the Population, Continent and Population, and Continent Indexes

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 219

Listing 10-8. Comparing the Population, Continent, Population and Continent, and Conti-
nent and Population Indexes

The last index we mentioned is the covering index on , , and .
In Listing 10-9 we can see that MySQL considers this to be the best index. We can see that
this is a covering index (with all data needing to be retrieved found in the index) by

 in the column.

Listing 10-9. Demonstrating All Previous Indexes and a Covering Index

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE220

If you’ve read to this point and you’re curious what happened to the index on ,
try it for yourself. As it turns out, the index is about as useful as our original popula-
tion index in that it is quicker to table scan than to index scan and fetch the rows in order.

Note In order to be able to test the name index you will have to drop all other indexes in order for it to
be considered and use the FORCE INDEX syntax to insist it be used, that is,

.

Workload-Driven Performance Tuning
The best way to tune a database system is to understand more about the sort of queries
that the system will be performing. For example, applications that have more que-
ries than , , and queries will often have more indexes, since the cost of
maintaining the indexes can more easily be justified.

In database-speak, we call these characteristics a workload. While every workload is
slightly different, the following should serve as some generalizations and optimizations
that can be made in response.

Tip This section makes heavy use of the command , which reveals a number of
internal statistics counters inside MySQL. For more information on , see

.

Read-Heavy Workload

A read-heavy workload has more queries that read data than queries that write data. A sim-
plistic calculation of reads to writes can be made from the following server statistics:

This formula has some limitations, since each of the counters are only incre-
mented each time the server receives a query, and they do not account for the number of
rows affected in each statement. An alternative formula could be one that considers the

 and statistics, which are incremented as individual rows are
read or updated.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 221

Many web applications tend to have a few times more reads than they do writes. If in
your workload you experience considerably more reads, the following recommendations
should serve as a good starting point in optimization.

Find Out Whether You Are Using Indexes Effectively

Indexes can slow down the performance of some of your write operations. But since these
are less frequent on read-heavy databases, it’s worth checking that you’ve invested in all
the indexes you need and that MySQL is not table scanning in instances it does not need
to. The first check you can perform is to see how MySQL is reading individual rows (see
Listing 10-10).

Listing 10-10. Handler Counts Showing Row-Level Access Inside the Server

These counters incremented as individual rows are read internally inside MySQL
(consider a synonym for “Storage Engine API”). If the value of

 is considerably higher than any of the other values, then this probably suggests that
you do not have appropriate indexing or that your queries need to be modified to take
advantage of indexes.

Note More information on is available in the MySQL manual at

.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE222

Log Queries That Are Slow

MySQL has a feature called the slow query log (enabled with) where you
can keep track of queries that take longer than a threshold () to
execute. The contents of the slow query log can then be aggregated with a utility such as

 or (recommended). There are two general strategies as to
how to best use the slow query log.

The first strategy is that you want to be able identify queries that are exceptionally
poor-performing and have the potential to deny service to other queries. As a general
rule, we recommend setting to a value low enough that you are able to
log 1/10,000 queries. However, this formula should be used as a guide as you may want
to capture fewer slow queries on systems in very heavy demand or capture more on
those under little load or still in preproduction. You can check what percentage of que-
ries you are logging by comparing the status variable to the status variables

+ + + .
The second strategy is that you also want to identify queries that execute quickly but

far too frequently or that are entirely redundant. These queries are often better served by
a caching system than a database server. As part of this strategy, we will normally log into
a system, lower the to zero seconds, and capture one to two hours of data
during peak load. When we’ve finished recording, we will set the back to
its original value.

Tip You can download from or
visit the Maatkit homepage at .

The shortest in MySQL 5.0 is one second, which makes the second strategy impossible.
To be able to set a lower , you will need to either upgrade to MySQL 5.1 or use a third-
party release of MySQL 5.0, such as the one offered by Percona at

.

Enable the Query Cache

The MySQL query cache is a feature that enables MySQL to save the results of
statements so that future queries will be able to avoid statement parsing and retrieval
from the storage engine. When enabled, the query cache can lead to massive increases in
performances for slower select queries, but it is worth noting that this feature also has a
number of drawbacks:

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 223

for-byte identical. For example, is not the same as
.

 statements that contain non-deterministic functions will not be cached, for
example, .

Tip A non-deterministic function means that if you give it the same set of arguments and the data in the
table is the same, it is not guaranteed to return the same result. There are actually a lot more non-determin-
istic functions than you may realize, since any query that makes use of , time functions, or specific

 functions is not guaranteed to return the same result if called again at another time by another user.

, , or statements to the tables referenced in the query cache
will result in all of these query cache items being invalidated.

which can lead to bad performance when the query cache is too large.

(improvements are not planned until after MySQL 6.0).

Given what we mentioned in the first three points, on a heavy-read system it’s often
a good idea to try enabling the query cache and seeing what efficiency it can deliver. To
read the query cache statistics, see Listing 10-11.

Listing 10-11. Query Cache Statistics from

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE224

In Listing 10-11, we can see that there were eight queries that were inserted into the
query cache but an additional 20 queries that were not considered. These queries may
have had results too large, too small, or incompatible for the reasons listed in the previ-
ous list. Of the eight queries inserted, five were still present in the query cache, and over
the lifetime of all the items in the query cache, 210 successful hits were made. This means
that the application is repeating the queries that it is sending to the database and that we
are getting some good usage.

Tip How do you enable the query cache? It turns out to be a very common source of confusion, since you
need to set both and a value for in your configuration file.
For more information, see the MySQL manual at

.

Alleviate MySQL

The fastest query is the one that never has to run. If you have too many queries reading
data, particularly in the form of (query cache hits), then the best way to scale is
probably to introduce caching such as memcached into your application. See Chapter 4 to
learn how to use the extensive caching tools available for your PHP applications.

Write-Heavy Workload

Identifying whether your workload is write-heavy can be done in much the same way as
the previous steps to identify a read-heavy workload. The additional considerations you
should have with write-heavy workloads should be as follows.

Focus on Your Disk Performance

The most critical factor in a write-heavy load is almost always going to be your hard disks.
RAID is the best way to improve disk performance, and by choosing a RAID configuration
with a higher number of disks, you should be able to boost concurrency. We cover RAID
in more detail later in this chapter.

Remove Unneeded Indexes

The official releases of MySQL from Sun offer no way of being able to check whether an
index is no longer in use (normally referred to as a dead index), but the MySQL team at

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 225

Google has written a patch to be able to do this. The patch has made it into third-party
releases of MySQL (the Percona and OurDelta binaries), which are not officially sup-
ported by MySQL. With this patch installed, a utility called can be run
to locate dead indexes (see Listing 10-12).

Listing 10-12. The Addition of a Third-Party Patch Providing Information on Unused
Indexes

Note You can download from the Google Code site at
. The patch to the server that makes this possible (often referred to as INDEX_

STATISTICS or “userstatsV2.patch”) is available in third-party MySQL downloads from both Percona and
OurDelta. For more information, see: and

.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE226

Online Transaction Processing

Online transaction processing (OLTP) is the name given to a workload that has a heavy mix
of concurrent reads and writes, with most of the working set of data usually fitting in main
memory. In addition, most of the queries tend to be based on primary key or secondary key
lookups. An OLTP workload is a typical workload for many PHP-based applications. Good
benchmarking utilities such as Sysbench () try to mimic
this behavior as part of their tests. Considerations to keep in mind in OLTP workloads are as
follows.

Tip A common question is how much is memory to allocate for a database server. The answer is that it
depends on the workload and what the working set is (what percentage of the data is actively worked on).
While some working sets will only be 1 to 2 percent of the total database size, others may find that they need
just as much memory as they do data.

Make Sure Table-Level Locks Are Not Reducing Your Concurrency

Some storage engines (such as MyISAM and Memory) use table-level locks internally
while updating rows. While under low load this is not always an issue, under concurrency
you may find that table locks have to queue waiting for another lock to be released. If a
significant number of table locks are waiting, you should consider switching the affected
tables to InnoDB, which uses row-level locking. In Listing 10-13 we can see that 0.625 per-
cent of the time table locks had to queue internally. There is no perfect ratio, as locking
contention tends to snowball into worse problems under load. This information is best
graphed with a monitoring tool.

Listing 10-13. Ratio of Table Locks That Waited vs. Table Locks That Were Immediate

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 227

Make Sure the Disk Is Touched As Little As Possible

Some queries and joins on tables with an clause require MySQL to
build temporary tables internally as part of their execution plan. While in many cases
the temporary table creation is quite fast, it has the potential to become a scalability
bottleneck.

Internal temporary tables that contain columns or exceed both the
 and configuration variables will result in the creation of

MyISAM tables, which are slower than their in-memory counterparts. This item is further
explained in the “Online Analytical Processing” section following this section.

Avoid Deadlocks in InnoDB

A deadlock is the name of the situation when two connections are trying to acquire a lock
to access information of which the other currently holds a lock for.

You can think of a deadlock as a type of race condition that occurs under concurrency.
When a deadlock occurs in InnoDB, the InnoDB kernel automatically picks the least expen-
sive transaction and rolls it back for you (this information can be seen in the command

). This is an expensive process. Often it takes InnoDB up to 30 times the
resources to roll back a transaction than it would have to commit it.

If you are frequently encountering deadlocks, it’s worth investigating whether any
changes to business logic in PHP can be made to reduce the risk of the condition hap-
pening, or making sure that everything is properly indexed so that transactions are much
shorter and less expensive.

Avoid Over-Committing Resources

A frequent mistake in OLTP systems is to attempt too much concurrency at once. When
a system becomes loaded, it’s normally a better policy to restrict activity to a few simul-
taneous connections and refuse any additional connections, rather than allow several
thousand connections, all being too slow and eventually denied service.

MySQL offers a configuration setting called to limit the number of
connections that MySQL will work on at any point in time.

Tip MySQL doesn’t have any pooling options on the server side, so you can’t configure a maximum num-
ber of connections and a maximum number of connections that are allowed to be actively worked on. It’s
your job to make sure that you don’t overload. One way that you could do this is to limit the number of con-
nections each Apache server allows and limit the number of Apache servers per database server. It’s never
easy to provide an exact formula of how many Apache connections per MySQL connections to allow, since
not all connections will necessarily need a database connection at all times.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE228

Cache an Optimum Number of File Descriptors

As part of its operation, MySQL often needs to keep open many files. Since the opening
and closing table events can take a small amount of time and resources, MySQL offers a
cache in the hope that files may be able to be reused by another connection. The cache
defaults to 64, which is conservatively low, since most operating systems should not have
a problem setting this to 512 or even 1,024. The notable exception is MySQL installations
on Windows, which have a hard limit of 2,048 file descriptors, so the cache should be left
very small. The efficiency of this cache can be determined in Listing 10-14.

Listing 10-14. Showing Open and Opened Tables Inside the Server

Set an Optimum Thread Cache

Each connection in MySQL represents a internally. As new connections come into
the server, it’s possible to reuse a previous thread rather than incur the expense of creating
a new one. This feature is known as the . A small value is normally acceptable
provided that it does not increase too much when trending the status variable

. You can be sure that you have arrived at an ideal cache size (see Listing 10-15).

Listing 10-15. The Threads Created Inside the Server

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 229

Online Analytical Processing

Online analytical processing (OLAP) is a workload that is used in business intelligence
or reporting functionality. It is characterized by expensive number-crunching queries,
where there are relatively few concurrent connections to the database but where each
take more resources to be able to deliver results.

Increase the Default Session Buffers

OLAP queries tend to be the kind of queries that are run in less concurrency but that indi-
vidually are more expensive. Given these requirements, it is often a good idea to increase
the defaults of individual session buffers.

Sorting Records

Queries that contain statements or statements (without)
result in MySQL needing to return the rows in sorted order. MySQL allocates a session
buffer called to be able to perform this operation. If the buffer is too
small, is incremented, as seen in Listing 10-16.

Listing 10-16. , Indicating the May Be Too Small

Temporary Tables

Many statements and some joins on tables without indexes require MySQL
to filter results first before they can return them to you. The default is to buffer these
changes in memory, but they will spill over to disk if either or

 is set too small or if the table that needs to be created contains text or blob
columns. The number of temporary tables created compared to the number of tables
created on disk can be seen in Listing 10-17.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE230

Listing 10-17. Created Temporary Tables

Divide and Conquer

Not all analytical queries have real-time requirements. Quite often the best way to return
the results for analytical queries is to cheat and have summary tables that are updated
only periodically.

If the parent tables are infrequently written to, it is also possible to write triggers that
can execute on modification events and update the summary tables automatically.

Note There are some missing features in MySQL, which makes some of the complex queries used in
OLAP hard to optimize. Competing database vendors will have parallelism in query execution, materialized
views, better algorithms when sorting larger amounts of data, and additional join methods. (MySQL only has
a nested loop join.) MySQL also lacks the ability to optimize most subqueries, but this limitation will be lifted
in MySQL 5.4.

Data Warehouse

A data warehouse is a workload where a considerable amount of data storage is usu-
ally required. In today’s typical data warehouses, the amount of data vastly exceeds the
amount of system memory, and data is often inserted, never deleted, and quite often
infrequently updated.

Table Partitioning

In data warehouses, performance can often be improved by breaking down very large
tables into a series of smaller tables. For example, a large table could be broken up
into , , and . This technique works best provided that the

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 231

access patterns do not require you to frequently retrieve from more than one partitioned
table at once.

From MySQL 5.1 onwards, table partitioning is supported natively, which means that
you can have a table appear as one logical table, but MySQL automatically separates it for
storage purposes, giving you all the benefits of a manual partitioning without any logical
separations. More information on partitioning can be found at

.

Optimization Advice That Applies to All Workloads

The following list of tuning tips is applicable for all workloads and can also be applied to
applications where you don’t yet know how to classify your workload.

Cache Efficiency

While having good cache efficiency is always a good idea, one of the nice advantages of
having a good cache hit efficiency is that you can potentially serve all requests without
having to even touch hard disks.

Caching in MyISAM

The main cache is the key buffer, which is responsible for keeping indexes in memory.
Listing 10-18 illustrates hits compared to misses, and the number of key blocks unused.
The count is the number you want to be as low as possible, since it indicates
that the index had to be read from disk. It is important to note that there will always be
some , since the server will start up with cold caches.

Listing 10-18. MyISAM Key Cache Efficiency

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE232

Caching in InnoDB

The InnoDB buffer pool is responsible for keeping both data and indexes in memory. In
newer versions of InnoDB, you can see the ratio of buffer pool hits compared to buffer
pool misses as in Listing 10-19. The rules for interpreting InnoDB cache efficiency are
similar to those for interpreting the key buffer hits and misses.

 is a cache hit, and is a cache miss. One important
exception to note is that because this is data and indexes, you may not as easily fit it
all in memory. In addition to reading the information, InnoDB will
also print a score out of 1,000 in the
command.

Listing 10-19. InnoDB Buffer Pool Efficiency As Seen in and

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 233

Binlog Cache Use

When enabled, the binary log records all statements that modified data or could have
modified data. It is used for both point-in-time recovery and replication. As part of its
operation, it needs to buffer the statements that have been executed in a transaction. This
buffer is configured via . If the maximum has been
reached, then the server creates a temporary file on disk, and the variable

 is incremented. If you have a high recurrence of , you may
choose to increase the to a higher value (see Listing 10-20).

Listing 10-20. The Binary Log Disk Cache Compared to Memory Cache Ratio

max_used_connections

The status variable shows the maximum number of connections the
server has received since startup. This is related to the configuration item ,
which restricts the maximum number of connections that can connect to the server (leav-
ing one additional connection free for a user with the super privilege). If you discover that
your equals or exceeds the setting, this indicates that
you more than likely had users who were refused connections (see Listing 10-21).

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE234

Listing 10-21. Maximum Connections the Server Has Received Since Startup

Select_full_join

This counter is incremented every time two tables are joined on each other and neither table
had an index. In many cases seeing this number greater than zero can be a bad thing, since it
indicates very poor use of indexes or an accidental Cartesian product (see Listing 10-22).

Tip A Cartesian product is created by joining two tables but without specifying a where clause, for exam-
ple, . This results in the query returning all of the rows in
multiplied by all of the rows in .

Listing 10-22. Indicating a Possible Error in Query Logic via Cartesian
Product

Tip For more information on this type of tuning, check out Matthew Montgomery’s Tuning Primer for
MySQL. See .

For help understanding how to tune InnoDB, a walk-through of can be found
on the MySQL Performance Blog at

.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 235

Applications with More Than One Workload

It’s not uncommon that an application will have a more hybrid workload. For example, in
an accounting system salespeople create invoices and sell products (OLTP), while man-
agement runs reports to judge the salespeople’s performance (OLAP).

The optimization order for these two systems (and indexes) can be quite different.
One situation you do not want is for the overhead added from the reports to impact the
sales people, who have real-time requirements. In these situations, it’s often a good idea
to use MySQL replication and perform the OLTP reporting from a slave. See “Scaling
MySQL” later in this chapter.

Using Appropriate Data Types
An often-overlooked topic is the selection of data types for storing basic information.
While a saving of four bytes of choosing an INTEGER over a BIGINT for a primary key may
seem inconsequential on modern systems, and varchar means variable length, when dig-
ging deeper we start to learn this is not always the case.

InnoDB loves small primary keys: For an internal row identifier, InnoDB uses the
actual primary key value that you have specified (a clustered index). This means
that primary-key lookups are very fast, but large primary keys will also result in
large secondary keys. Try to use only INTEGER types or very short CHAR columns
for primary keys.

Sorting data turns varchars to chars: Internal buffers including when you sort data
in MySQL use the full length specified by the varchar definition, not just the space

 can be a disaster and can result in much
larger temporary files than required. Try to explicitly specify the maximum num-
ber a varchar column would ever reach, such as .

Memory tables turn varchars into chars: The memory storage engine does not
support variable length columns and stores varchars as if they were char columns.
This is especially important, since the memory storage engine is used by default
when MySQL needs to create an internal temporary table, for example, if you write
a statement and one of the columns you select is a TEXT or BLOB.

Estimating Storage Requirements

MySQL has a built-in method to determine the optimum storage requirements for a given
set of data, called . This means that while you may have defined the
city name as , MySQL will look at every city name in the existing table and tell

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE236

you what the maximum required length is. An example of this command follows in List-
ing 10-23.

Listing 10-23. The Feature for Identifying Optimal Data Types

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 237

Tip There are a couple of caveats when running . The first one is that you cannot
take the result too literally while your data is still small. For example, the output recommended a
for the city name but decided that districts only go up to 20 characters.

A second caveat is that can be quite overzealous to recommend using ENUM and
SET data types. In the example we disabled ENUMs/SETs from being considered by adding two additional
arguments: See

.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE238

Just Throw Hardware at the Problem
Although we described at the beginning of this chapter that improving the hardware that
MySQL runs on may not improve performance by the same orders of magnitude as will
optimizing queries and settings, at some point all the quick wins have been made, and it
becomes more cost-effective to just throw money or hardware at the problem.

CPUs

Although work is being done in MySQL 5.4, MySQL tends to be very bad at making use of

few but fast instead of many but slow. For this reason, hyperthreading should also be
disabled.

Memory

Memory serves as a front-end cache for data that is significantly faster than the speed of
reading from hard disks. Provided that sufficient memory is available, reads can be served
quite efficiently with only writes having to touch the disk.

Disks

When disks are the bottleneck, it’s normally essential to group them together with RAID
(redundant array of inexpensive disks). When we talk about RAID and database servers,
RAID 10 usually provides the best option, as it offers both redundancy and performance.

When choosing a RAID controller, it’s important to note that not all are created
equally. We recommend focusing on buying a model that supports a battery-backed
cache. With the battery-backed write cache in place, the controller can safely be placed
into write-back mode, and expensive operating system commands (required by
storage engines such as InnoDB to guarantee consistency) will return almost instantly. In
practical terms, this can result in several-times-better write performance, since the RAID
controller can still guarantee that the data will be safe but will be able to optimize how
the data is written to disk (combining requests and trying to achieve as much sequential
IO as possible).

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 239

Network

Network is not always a bottleneck in itself, but the round trips that occur between issu-
ing many individual queries to a database can suffer from latency.

For the MySQL Cluster storage engine, it is especially important to focus on network
performance. The more expensive switches that have cut-through packet passing (rather
than store-and-forward) are recommended.

Scaling MySQL
Most architectures deploying MySQL use a technique called “scale out”—that is, they
tend to use many individual machines with MySQL rather than one very big machine
running one instance of MySQL (commonly referred to as “scale up”).

This technique is used in order to get the best price-to-performance ratio out of
hardware. While larger machines are able to offer better performance, they do so at an
exponentially higher cost.

It should be noted that a lot of the technology used to scale out an application is not
normally provided by any tools released by MySQL directly but by features implemented
by the application developer. One common example of this is read and write splitting,
where queries that read data are directed to a different set of databases to those that write
it (as seen in Figure 10-1).

Web Server

Master
Database

Slave Slave Slave
reads

writes

Figure 10-1. A typical read/write split architecture

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE240

When Replication Scale Out Works Well

Provided that the application is predominantly reads, it’s possible to continue scaling
via read/write splitting. It’s even possible to add slaves onto replication slaves in order to
increase the amount of reader machines that are available as seen in Figure 10-2.

Web Server

Master
Database

Slave Slave Slave
reads

writes

Slave Slave Slave

Slave

Slave

Figure 10-2. Providing further scaling to a read/write split architecture

Tip MySQL replication is implemented by replaying the same statements on the slave as they were writ-
ten on the master. One interesting side effect of this is that the master and slave do not need to be identical.
Index and storage engine configuration can be different, with the only requirement that the slave be able to
process from the binary log without error. This means you can have one table you write to using the InnoDB
storage engine and a replicated slave that has a MyISAM storage engine (allowing you fast writes without
losing the ability to perform full-text search, for example).

When Replication Fails

The dilemma of using a read/write split replication architecture is that each node has
to have the capacity available to reply the writes that it receives from the master. If the
application is read heavy, this should not be a problem (as seen in Figure 10-3). If the
application is write heavy or by sheer growth the theoretical peak of write capacity is
reached, then read/write slaves have a diminishing return on investment (see Figure 10-4).

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 241

Capacity left for READs

Capacity taken by WRITES

SlavesMaster

Figure 10-3. When replication read/write splitting is successful

Capacity left for READs

Capacity taken by WRITES

SlavesMaster

Figure 10-4. When replication read/write splitting will not work very effectively

Tip In practice, the slaves tend to have less capacity available for write queries than the master does.
While the master can accept write queries from multiple connections at once, exploiting the concurrency
available from having multiple CPUs and hard disks, the slave will only apply those writes in a single thread.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE242

MySQL Sharded Architectures

 the problem that replication does not scale writes may find that
they need to get creative in order to be able to scale. This technique is most commonly
referred to as sharding, although more traditional folks may still refer to it as a type of
partitioning.

Sharding works by dividing your one large database into a series of smaller MySQL
servers and having your application know where to retrieve the data based on some sort of
hashing algorithm or directory system indicating where each fragment of data is located.

Sharding by Application Function

One of the most successful methods of sharding is to divide the application by its core
functionality. In many cases, some features (such as logging or searching) will not need
to join on other tables and can easily be moved off to their own MySQL server. Another
example of sharding by function is how Wikipedia can use different pools of MySQL data-
bases for hosting each language.

The downside of sharding by function is that not all application functions are created
equally, and the amount of load placed on each shard may become unbalanced.

Sharding by Hash or Key

An easy way to implement sharding is to establish how many shards are going to be
required and then distribute the data based on some sort of key, for example, applying a
mod on the primary key of a record in a table (as in Listing 10-24).

Listing 10-24. Sample PHP Code to Shard Based on a Primary Key

The problem with this methodology is that some shards may receive more demanding
access than other shards, and there is no method to be able to rebalance the rows. Place
yourself in the shoes of photo-sharing web site Flickr. How much stress would the official
Obama photography user generate in the lead-up to the 2008 presidential election?

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 243

Caution We can’t stress enough that both users are not created equally and that it is important that the
hashing algorithm spread the data equally among shards. A naïve example of hashing would be to create 26
shards, one for each letter of the alphabet, and store based on the first letter of a username. At first glance it
seems reasonable, until you realize that there are a lot more names that start with the letter M than the letter
Z and that this a horribly uneven hashing algorithm.

Sharding via a Lookup Service

The most balanced method to implement sharding is to have a user-maintained lookup
database for identifying where rows will be stored, as can be seen in Figure 10-5, where
data is divided between a main user table and a series of user profile tables stored across
multiple shards.

Web Server

User Main
Database

le
Shard1 le

Shard2

le
Shard3 le

Shard4

Step 1:
What shard is it?

Step 2:
Retrieve data from the shard

Figure 10-5. Sharding a user profile database and storing the “shard address” in the main
user table

The advantage of using a directory-service-based sharding mechanism is that scripts
can be written to migrate more demanding or higher-profile users to their own shards,
and database resources can be adequately balanced.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE244

Caution Sharding is talked about a lot more often than it needs to be done. When choosing to imple-
ment sharding into your architecture, beware that separating the data into different nodes will result in the
irretrievable loss of some SQL functionality. Basic things like SQL table joins will need to be emulated as part
of your PHP application.

Using MySQL Proxy for Automatic Read/Write Splitting

MySQL Proxy is a new product currently in development that can act as a man in the
middle between the PHP application and MySQL. One of the core features of MySQL
Proxy is a Lua scripting interface, which means that it is possible to intercept, rewrite, and
redirect queries before they are sent to the MySQL server (see Figure 10-6).

MySQL ProxyWeb Server
MySQL
Server

Figure 10-6. The MySQL Proxy can intercept and modify requests before they are passed to
MySQL.

The only caveat when using MySQL Proxy is to remember that it is not yet a general
availability (GA) product. While the product appears stable in basic usage, it is possible
that the programming interfaces may change prior to final release. There have also been
no credible benchmarks released showing what impact it currently adds under standard
benchmarking tests. One blog post suggests that the penalty may be significant:

.
More information on MySQL Proxy can be found at

, and a list of sample Lua usage can be found at
.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 245

Backing Up MySQL
Backup has always been one of MySQL’s weaker features, with many different options
available but none a clear winner in all scenarios. Before introducing the backup methods
available (see Table 10-2), let’s cover a bit of theory first on what are the features of the
perfect backup.

As minimal impact as possible: The backup should ideally not affect other users on
the database system. This is usually defined using terms such as hot (does not block
readers and writers), warm (blocks writers), or cold (blocks readers and writers).

As up to date as possible: If the backup takes two days to run, then you will prob-
ably not be able to run it as frequently, and any backups will represent much older
versions of your data.

Quickness to recovery: Some backup methods will take significantly longer (days!)
than others to recover.

Flexibility in recovery options: If you have accidentally deleted a customer’s phone
number, then it’s very painful to justify having to perform a full recovery to restore it.

Table 10-2. A Comparision of Backup Options for MySQL

Engines Warmth Flex
Backup

Flex
Restore

Backup
Time

Recovery
Time

Binlog
Coord

Mysqldump InnoDB Hot Row Most Med Worst Yes

Mysqldump All Warm Row Most Med Worst Yes

Filesystem
snapshot

All Mostly
Hot

System System Med Med Yes

InnoDB hot
backup

InnoDB Hot Table Table Fast Fast Yes

All Warm Table Table Fast Fast Yes

MyISAM Cold Table Table Fast Fast Yes

Cold backup All Cold System Depends
on storage
engine

Best Best Yes

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE246

It’s important to note that not everything can be compared equally in this table. The
following are a few additional notes worth pointing out.

to be run. When this is successful, then the backup can be started, and immedi-
ately afterward, the tables can be unlocked. In practice this should only mean a
couple of seconds of the operation being not hot.

the storage engine. MyISAM tables (for example) can be recovered individually,
but the InnoDB tablespace files and log files will need to be restored together.

process upon restart. While no data should be lost, this process can take several
minutes to hours when using a larger setting of .

The Rules of Performance Tuning a Database
Before we get into making any tweaks, it is important to lay down the rules of engagement
and the process you must take to make sure that your changes do not have any negative
consequences.

Be Methodical

Change one setting at a time and record any differences to performance when your appli-
cation is under load.

Make Any Benchmarks As Realistic As Possible

A lot of developers make the mistake of testing a database change by only testing a small
part (or one page) of their application. This can result in queries that reach MySQL hav-
ing an exceedingly high cache hit ratio that may not be as apparent under real live usage.
This also prevents you from seeing issues such as deadlocks, which are race conditions
that only show up under concurrent load.

Additional skews of the results can be introduced by not having data in MySQL tables
that represents typical production use. As we saw in an earlier section, “Optimizing Que-
ries with EXPLAIN,” the distribution of the data will affect the index selection process.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE 247

Realize That Every Setting Has a Range

Just because you notice an increase in performance when changing your
from 32 KB to 128 KB that doesn’t mean you will see further improvement when you set
it to 10 MB. Operating systems are interesting beasts, and allocating larger amounts of

leading to negative performance.

Realize That Things Change over Time

Some performance-tuning tricks that you read on the Internet are really black magic
designed to work around the current limitations of software. As newer versions of MySQL
are released, your changes may have negative consequences. One item related to this
point (but outside the scope of this book, see

Realize That Some Settings Make Trade-offs

There are settings in MySQL you can enable that will lead to potential performance
increases but at the risk of lost data or slower crash recovery time.

Choosing a Larger innodb_log_file_size in InnoDB

A larger log file will mean InnoDB will not need to perform as many implicit checkpoint
operations, leading to increased performance. The trade-off is that recovery times after a
system crash can be significantly longer, although no data will be lost.

Setting Innodb_flush_log_at_trx_commit to Either 0 or 2

InnoDB allows you to change the behavior of the InnoDB log files so that as they are writ-
ten they do not demand that the operating system perform a sync operation (to flush the
write buffer down to disk). This leads to increased write performance but also the poten-
tial loss of data on system crash.

Setting delay_key_writes in MyISAM

On writing data to a MyISAM table, you can choose to not update the index file (since
all contents can be recovered from what was in the data file). This leads to better per-
formance but guaranteed corruption on system crash, resulting in an expensive rebuild
process when it comes back online.

Download at WoWeBook.Com

CHAPTER 10 THE MYSQL DATABASE248

Realize That Empirical Proof Is the Only True Test

When all seems well at what you estimate to be 10 percent load, don’t expect to handle 10
times more traffic. Often when a system becomes loaded, response times start to look like
a hockey stick on a graph. You will likely find a bottleneck that prevents you from reach-
ing your expectations, either in MySQL or in your operating system.

Conclusion
In this chapter we started with MySQL’s storage engine concept and then dived deep
into a crash course on how to performance tune your server. This expands on Chapter 2,
where we looked at identifying operating system bottlenecks, and Chapter 3, where we
profiled our PHP code.

A database server represents an important scalability challenge in system architec-
ture, since while we can introduce additional web servers to improve our application
performance, it is not always so easy to add additional database servers.

Download at WoWeBook.Com

249

Index

A
ab tool, 69
Add New Job page, 100
add_timestamp.sh Script, 61
addContext() method, 179
addControllerDirectory() method, 9, 12
addJob() method, 111
Alshanetsky, Ilia, 136
Amdahl's Law, 54
Apache HTTP server documentation, 79
Apache JMeter, 69
Application field, 100
Archive storage engine, 212
ArrayObject class, 30
asynchronous operations

farm architecture, 208
with PHP

defined, 93
Job Queue, 95–100, 121
overview, 93–95

auth.login string, 175
avggu-sz column, 66

B
backing up MySQL database, 245–246
basename() function, 131
binlog_cache_disk_use, 233
binlog_cache_size, 233
BLACKHOLE storage engine, 199
blacklist approach, security, 130, 138
"blocking" operations, 93
Blocks In column, 65
Blocks Out column, 65
bootstrap file. See index.php file
bottlenecks

bounding influence levels, 59
CPU bounding influence, 62–63, 66–67
I/O bounding influence, 65–68
memory bounding influence, 63–64, 67
overview, 59

remote procedure calls, 68
simulating load to identify, 68–69
vmstat tool, 59–62

breakpoints, defined, 50
browser view, 50

C
cache-key generation, 85
caching

effectiveness, 85
efficiency, 231–232
optimum number of file descriptors,

228
in PHP

full-page caching, 74–79
opcode caching, 71–74
overview, 71
programmatic caching, 82–92
semi-full-page caching, 79–82

caching conditions setup screen, 77
calculateFib() function, 106
callCommand() method, 187
Calls data point, 54
cardinality, 215
check_unused_keys utility, 225
class location, 3
class structure, 3
Clean icon, 79
Client-Daemon Connection timeout

setting, 97
clients, command pattern, 168
Cluster storage engine, 212
Code Coverage Summary tab, 53
Cold backup method, 245
comments, phpDocumentor-style, 36
compiler caching

overview, 71
PHP execution cycle, 71–74

ContextSwitch Action Helper, 178–182
controllers, defined, 5

Download at WoWeBook.Com

INDEX250

CPU bounding influence, 62–63, 66–67
CPUs, 238
Custom Event trigger, 155

D
data federation, 201
data types, 235–237
data warehouse, 230–231
database layer, farm architecture, 197
deadlocks, InnoD, 227
Debug Configurations window, 44
debugging, in Zend Studio for Eclipse,

38–51
default session buffers, OLAP, 229
defenses. See security
Dependency field, 100
determinism, 83–84
disabling

file locking, 87
opcode caching, 74
read control, 88

Disconnect button, 49
disks

bottlenecks and, 238
protecting, 227

dispatch() method, 12
dispatcher, 8
dispatchLoopShutdown() method, 16
dispatchLoopStartup() method, 16
Drop To Frame button, 49

E
effectiveness, cache, 85
efficiency, cache, 231–232
error handling, 27–31
ErrorController class, 29
ErrorController::errorAction() method, 29
Event Actions interface, 156
Event Triggers configuration screen, 151
events, PHP Intelligence

attaching actions to, 155–157
triggers for, 151–153
viewing, 154–155

EXCEPTION_NO_ACTION value, 30
EXCEPTION_NO_CONTROLLER value, 30
EXCEPTION_OTHER value, 30
Excess Memory Usage triggers, 153
_execute() method, 184–185

Execution Flow tab, 53
Execution Statistics tab, 53
EXPLAIN command, optimizing queries

with, 213–220

F
farm architecture

asynchronous operations, 208–209
database concerns in

MySQL master farm architecture,
201–202

MySQL slave farm architecture,
198–201

overview, 197
file serving, 203–207
general server, 193–195
overview, 193
session data, 196–197

fastcgi-jobq.conf file, 98
file locking, disabling, 87
file serving, farm architecture, 203–207
file uploads, securing

how PHP accepts uploaded files,
131–133

overview, 130
round trips of data, 133–135

File View tab, 76
file-based full-page caching, 76–77
file-based Zend_Cache back ends, 86–88
$_FILES superglobal, 131
Filesystem snapshot method, 245
filtering, data, 127–129
filters, Zend_Log, 145–146
Firebug, 58
FORCE INDEX syntax, 220
formatting logs, 146–148
front controller, 5–9
full-page caching

defined, 74–75
file-based, 76–77
overview, 74
setting up, 76–79
URL-based, 78–79

Function Error trigger, 152

G
\G statement terminator, 214
$_GET value, 127

Download at WoWeBook.Com

INDEX 251

getCommand() method, 175
getFailureStr() method, 173
getimagesize() function, 132
getInstance() method, 12
getRequest() method, 16
getResponse() method, 16, 182
getXmlHttpRequest() function, 117
GROUP BY queries, 227
GROUP BY statements, 229

H
hardware, 238–239
hashed directory structure, 88
headTitle() method, 25
"Hello World" application, 9, 27
History refresh interval setting, 97
.htaccess file, 10
htmlspecialchars() function, 136
HTTP Error trigger, 155
http_load tool, 69
httpd.conf file, 10
hybrid workloads, 235

I
ibbackup method, 245
Idle time, CPU, 63
Inconsistent Output Size trigger, 153
indexAction() method, 13, 178
IndexController class, 13, 22–23, 38
IndexController::indexAction() method,

22, 24–25
indexes, using effectively, 221
index.php file

defined, 8
Hello World! application, 10, 15

index.phtml file, 24
init() method, 8–9, 176, 178
initContext() method, 181
_initialize() method, 183
Initializer class, 17, 21
Initializer::routeStartup() method, 21
initView() method, 22
InnoDB

cache efficiency in, 232
hot backup method, 245
primary keys and, 235
storage engine, 212

input security
data filtering and validation, 127–129
input sources, 125–127
overview, 125
White-List Validation, 129–130

input/output (I/O)-bounding influence,
59, 65–68

installing, Memcached, 89–90
invokers, command pattern, 168
I/O (input/output)-bounding influence,

59, 65–68
iowait column, 66
is_uploaded_file() function, 133
isFailure() method, 173

J
JavaScript Object Notation (JSON), 167
Job Details pop-up window, 103
Job Output viewer, 104
Job Queue

advanced configuration of
controlling from command line, 99
modifying configuration of PHP, 99
overview, 97
replacing PHP, 97–99

overview, 95–97
using to execute PHP scripts, 100, 121

creating jobs programmatically using
Job Queue API, 108–121

input parameters, 105–107
overview, 100–101
searching for existing jobs, 102–105

Job Queues tab, 95
JobqueueController::add25Action()

method, 111
JobqueueController::addAction() method,

109, 115
JobqueueController::addbigAction()

method, 114
JobqueueController::checkjobAction()

method, 117
JobqueueController::getanswerAction()

method, 118
Jobs search page, 102
JSON (JavaScript Object Notation), 167
JS.Spacehero worm, 138

Download at WoWeBook.Com

INDEX252

K
key_reads count, 231

L
LAMP stack applications, 194, 201, 204
layouts, 22
log queries, slow, 222
logging

overview, 141
performance, 165–166
Zend_Log component

filters, 142, 145–146, 163–164
formatters, 164
formatting logs, 146–148
overview, 142–144
writers, 142, 144–145, 161, 163

long-running real-time operations, 112–121
Lua scripting interface, 244

M
max_connections setting, 227
max_used_connections variable, 233
Maximal history time setting, 97
Maximal queue depth setting, 97
Maximal re-queue times setting, 97
Maximum Apache Processes Exceeded

trigger, 153
Memcached technology

caching with, 88–89
installing, 89–90
using, 90–92

memory, 238
memory bounding influence, 63–64, 67
Memory storage engine, 212
MIME type, 131
mk-query-digest utility, 222
mod_rewrite module, 80
model, view, and controller (MVC)

pattern, 3–9
models, defined, 5
monitor_custom_event() function, 158
monitor_httperror_event() function, 159
monitor_pass_error() function, 158–159
monitor_set_aggregation_hint() function,

158
monitoring

logging
overview, 141

performance, 165–166
Zend_Log component, 142–148

overview, 141
PHP Intelligence

API, 158–159
attaching actions to events, 155–157
event triggers, 151–153
overview, 149–151
viewing events, 154–155
Zend_Log component, 159–165

move_uploaded_file() function, 133
multi-transport services architecture

command pattern, 168–176
creating, 182–184
overview, 167
ServiceController action controller

ContextSwitch Action Helper,
178–182

overview, 176–178
SOAP services, 184–189

MVC (model, view, and controller)
pattern, 3–9

MyISAM storage engine, 212, 231, 240
MySQL database

backing up, 245–246
data types, 235–236
hardware, 238–239
optimizing queries with EXPLAIN,

213–220
overview, 211
performance tuning database rules,

246–248
scaling, 239–244
storage engine concept, 211–213
workload-driven performance tuning

applications with more than one
workload, 235

data warehouse, 230–231
online analytical processing, 229–230
online transaction processing,

226–228
optimization advice, 231–234
overview, 220
read-heavy workload, 220–224
write-heavy workload, 224–225

MySQL master/slave configurations, 194,
197–201

Download at WoWeBook.Com

INDEX 253

MySQL Proxy, 244
mysqldump method, 245
mysqldumpslow utility, 222
mysqlhotcopy method, 245

N
Name field, 100
naming conventions

action, 9
class, 16
controller, 9
file system, 3, 16

network, 239
New Zend Framework project dialog, 36
Non-ASCII support, properly encoding

output with, 136–137

O
OLAP (online analytical processing),

229–230
OLTP. See online transaction processing
online analytical processing (OLAP),

229–230
online transaction processing (OLTP)

avoiding deadlocks in InnoDB, 227
avoiding over-committing resources, 227
cache optimum number of file

descriptors, 228
overview, 226
protecting disk, 227
setting optimum thread cache, 228
table-level locks not reducing

concurrency, 226
opcode caching, 71–74
optimum thread cache, 228
ORDER BY statements, 229
Others Time data point, 54
output

with Non-ASCII support, 137
properly encoding with Non-ASCII

support, 136
security, 135–138

allowing user-provided markup,
137–138

encoding with Non-ASCII support,
136–137

overview, 135–136
Own Time data point, 54

P
PDT (PHP Development Tools), 33
PEAR component library, 182
PECL extension, 131
performance

bottlenecks, 59–69
bounding influence levels, 59
CPU bounding influence, 62–67
I/O bounding influence, 65–68
memory bounding influence, 63–67
overview, 59
remote procedure calls, 68
simulating load to identify future,

68–69
vmstat tool, 59–62

logging, 165–166
overview, 57–58

performance tuning database rules,
246–248

perspectives, Eclipse, 35
pgscan_direct_high value, 64
pgscan_kswapd_high value, 64
PHP binary, Job Queue, 97, 99
PHP Debug perspective, 35, 48, 51
PHP Development Tools (PDT), 33
PHP Error event, 152
PHP execution cycle, opcode caching,

71–74
PHP Intelligence

API, 158–159
attaching actions to events, 155–157
event triggers, 151–153
overview, 149–151
viewing events, 154–155
Zend_Log component, 159–165

custom filters, 163
custom formatters, 164–165
custom writers, 161–163
overview, 159–161

PHP Intelligence dashboard, 150
PHP production farms

asynchronous operations, 208
database concerns in

MySQL master farm architecture, 201
MySQL slave farm architecture,

198–201
overview, 197

Download at WoWeBook.Com

INDEX254

file serving, 203–207
overview, 193–194
session data, 196

PHP Profile perspective, 52
PHP script

data-caching in
cache effectiveness, 85
full-page caching, 74–79
opcode caching, 71–74
overview, 71
programmatic caching, 82–92
semi-full-page caching, 79–82

output, 203
PHP Server Creation dialog, 45
PHP_EOL constant, 147
phpinfo() function, 90
placeholder() method, 25
post_max_size configuration, 130
postDispatch() method, 8, 16
preDispatch() method, 8–9, 16
preg_replace_callback() function, 136
Priority field, 100
priority identifiers, 143
PROCEDURE ANALYSE() method, 235,

237
profiling, in Zend Studio for Eclipse, 52–54
programmatic caching

cache effectiveness, 85
components of, 82–83
determinism, 83–84
overview, 82
Zend_Cache back ends

file-based, 86–88
Memcached, caching with, 88–89
Memcached, installing, 89–90
Memcached, using, 90–92
overview, 85–86

Zend_Cache front ends, 82–83

Q
queries

log, 222
optimizing with EXPLAIN, 213–220

query cache, MySQL, 222–224
Queue alias setting, 97
Queue Settings page, 97

R
RAM disks, 87
read control, 88
read-heavy workload

alleviating MySQL, 224
enabling query cache, 222–224
overview, 220–221
slow log queries, 222
using indexes effectively, 221

receivers, command pattern, 168
records, sorting, 229
register_event_handler() function, 159
register_globals configuration, 125
remote procedure call (RPC), 68
Remove All Terminated Launches icon, 49
$reqStatus property, 173
$_REQUEST array, 125
$_requestFormat property, 178
request/response objects, 27–31
responseObj variable, 184
REST-style services, 189–191
Resume button, 49–50
reverse proxies, 204, 207
round trips of data, 133–135
router, 7–8
routeShutdown() method, 16
routeStartup() method, 16–17
RPC (remote procedure call), 68
Run-queue time, CPU, 62
runtime files, 204

S
scalability, farm architecture, 193
scaling, MySQL database, 239–244
Scheduling field, 100
Script File field, 100
_scrubRequestParameters() method, 171
securing file uploads

how PHP accepts uploaded files,
131–133

overview, 130
round trips of data, 133–135

security
defining, 124
overview, 123
setting context, 123

Download at WoWeBook.Com

INDEX 255

threats and defenses
input security, 125–130
output security, 135–138
overview, 124–125
securing file uploads, 130–135

SELECT statements, 222
Select_full_join variable, 234
selectivity, 215
Selenium, 69
semi-full-page caching, 79–82
Send an e-mail action, 156
Send an HTTP POST action, 156
Send SNMP trap action, 156
$sequenceNum variable, 106
serialize() function, 133
server path mapping, 47
$_SERVER variables, 127
ServiceController action controller

ContextSwitch Action Helper, 178–182
overview, 176–178
v1Action() Method, 179–181

session clustering, 196
session data, farm architecture, 196
set_job_failed() function, 106
setJobName() method, 110
setRequest() method, 16
setResponse() method, 16
setUserVariables() method, 110
sha1() function, 135
sharded architectures, 242–243
SHOW ENGINE INNODB STATUS

command, 232
SHOW GLOBAL STATUS command, 220
SHOW INNODB STATUS command, 227
Simple Object Access Protocol. See SOAP
singletons, defined, 6
Sliding-window to collect Job Queue

Statistics setting, 97
Slow Content Download trigger, 153
Slow Function Execution trigger, 152
slow query log, 222
Slow Script Execution triggers, 152
SOAP (Simple Object Access Protocol)

services
consuming, 191–192
dealing with, 184–189

soap fault, 192

$soapContext array, 179
sort_buffer_size buffer, 229
sort_merge_passes, 229
Step Into button, 49
Step Out button, 49
Step Over button, 49
Step Return button, 49
"sticky" sessions, 196
storage engine concept, 211–213
storage requirements, MySQL database,

235–236
stress tests, 69
superglobals, defined, 7
Suspend button, 49
svctm column, 66
Swap-In column, 63
Swap-Out column, 63
switch() statement, 178
Sysbench, 226
System Health page, PHP Intelligence, 150
System time, CPU, 62

T
table partitioning, 230–231
table-level locks, 226
tables, temporary, 229
Terminate button, 49
thread_cache, 228
threats. See security
throwExceptions() method, 12, 28–29
top-down approach, problem-solving, 58
Total Time data point, 54
transform.phtml template, 39
try...catch block, 192

U
unregister_event_handler() function, 159
upload_max_filesize configuration, 130
upload_tmp_dir directive, 130
URL-based full-page caching, 76, 78–79
Use Step Filters button, 49
User time, CPU, 62
user-provided markup, allowing, 137–138
% util column, 66

V
v1Action() method, 181
validation, data, 127–129

Download at WoWeBook.Com

INDEX256

varchars, 235
views

defined, 5
design-pattern, 22
Eclipse, 35

vmstat tool, 59–62

W
Wait I/O time, CPU, 63
web services

consuming, 189–192
overview, 189
REST-style services, 189–191
SOAP services, 191–192

multi-transport services architecture
command pattern, 168–176
creating, 182–184
overview, 167
ServiceController action controller,

176–182
SOAP services, 184–189

overview, 167
Web Services Description Language

(WSDL), 181
White-List Validation, 129–130
workload-driven performance tuning

applications with more than one
workload, 235

data warehouse, 230–231
online analytical processing, 229–230
online transaction processing, 226–228
optimization advice

binlog cache use, 233
cache efficiency, 231–232
max_used_connections, 233
overview, 231
Select_full_join, 234

overview, 220
read-heavy workload, 220–224
write-heavy workload, 224–225

workspaces, Eclipse, 35
write-heavy workload, 224–225
WSDL (Web Services Description

Language), 181

X
XML_Serializer class, 182
$xmlContext array, 179

Y
YSlow, 58

Z
Zend Core login page, 41
Zend Enterprise PHP web site, 47
Zend Framework (ZF)

model, view, and controller pattern
error handling, 27–31
front controller, 5–9
"Hello World" application, 9, 27
overview, 3–5
request/response objects, 27–31

Zend Framework Library, 1–3
Zend Platform User's Guide, 109
Zend Studio for Eclipse (ZSE)

CPU bounding influence, 66
creating projects in, 36
debugging in, 38, 50
overview, 33–36
profiling in, 52–54

Zend Studio Server Settings page, 42
Zend Studio toolbar, 43
Zend Technologies web site, 34
Zend_Acl component, 2–3
Zend_Acl_Storage_Interface object, 3
Zend_Cache_Backend_Apc back end, 83,

86
Zend_Cache_Backend_File back end, 83,

86
Zend_Cache_Backend_Memcached back

end, 83
Zend_Cache_Backend_Sqlite back end,

83, 86
Zend_Cache_Backend_TwoLevels back

end, 83
Zend_Cache_Backend_Xcache back end,

83, 86
Zend_Cache_Backend_ZendPlatform back

end, 83, 86
Zend_Cache_Core front end, 82
Zend_Cache_Frontend_Class front end, 83
Zend_Cache_Frontend_File front end, 83
Zend_Cache_Frontend_Function front

end, 82
Zend_Cache_Frontend_Output front end,

82

Download at WoWeBook.Com

INDEX 257

Zend_Cache_Frontend_Page front end, 83
Zend_Cache::factory(), 87
Zend_Controller_Action instance, 171
Zend_Controller_Action::render()

method, 26
Zend_Controller_Front class, 12
Zend_Controller_Plugin_Abstract class, 16
Zend_Controller_Plugin_ErrorHandler

class, 30
Zend_Controller_Request_Http object, 27
Zend_Controller_Response_Http object,

27
Zend_Exception class, 29
Zend_Filter class, 128
Zend_Filter_Alnum component, 128
Zend_Filter_Alpha filter, 128
Zend_Filter_Input component class, 128,

129
Zend_Http_Client component class,

190–191
Zend_Json component, 190
Zend_Json_Encoder::encode() method,

118
Zend_Layout component, 22–25
Zend_Layout::startMvc() method, 22
Zend_Loader component, 3, 16
Zend_Loader_PluginLoader() component

class, 175
Zend_Loader::registerAutoload() method,

16
Zend_Log component

custom filters, 163
custom formatters, 164–165
custom writers, 161–163
filters, 145–146
formatting logs, 146–148
overview, 142–144, 159–161

Zend_Log_Filter_Message filter, 145
Zend_Log_Filter_Priority filter, 145
Zend_Log_Formatter_Interface::format()

method, 165

Zend_Log_Formatter_Simple formatter,
146–147

Zend_Log_Formatter_Xml formatter,
146–147

Zend_Log_Writer_Abstract class, 162
Zend_Log_Writer_Abstract::_write(), 162
Zend_Log_Writer_Db writer, 144
Zend_Log_Writer_Firebug writer, 144
Zend_Log_Writer_Mock writer, 144
Zend_Log_Writer_Null writer, 144
Zend_Log_Writer_Stream writer class,

142–144
Zend_Log::addPriority() method, 161
Zend_Log::log() method, 143
Zend_Log::setEventItem() method, 160
Zend_Soap_Client object, 191
Zend_Validate class, 128
Zend_Validate_StringLength component,

128
Zend_View component, 22–24
ZendAPI_Job class, 110–111
ZendAPI_Job::getJobStatus() method, 118
ZendAPI_Job::getOutput() method, 119
ZendAPI_Queue class, 110
ZendAPI_Queue::getJob() method,

118–119
ZendAPI_Queue::login() method, 111
ZEnt_Comamnd_Calculator_Add class,

182
ZEnt_Command_Abstract class, 168
ZEnt_Command_Calculator_Abstract

class, 182
ZEnt_Command_Factory class, 174
ZEnt_Command_Response_Values class,

171–173
ZEnt_Soap_Proxy_Abstract class, 185
ZEnt_Soap_Proxy_Calculator class, 187
ZEnt/Command/Auth/Login.php script,

175
ZF. See Zend Framework
ZSE. See Zend Studio for Eclipse

Download at WoWeBook.Com

Offer valid through 3/10.

Download at WoWeBook.Com

	Contents at a Glance
	Contents
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Author

	Introduction to Zend Framework
	Introduction to Zend Framework Library
	Zend Framework MVC
	Model, View, and Controller
	“Hello World” in Zend Framework
	Zend Framework Request/Response Objects and Error Handling

	Conclusion

	Introduction to Zend Studio for Eclipse
	Getting Started Zend Studio for Eclipse
	Creating Projects in Zend Studio for Eclipse
	Debugging in Zend Studio for Eclipse
	Profiling in Zend Studio for Eclipse

	Conclusion

	Web Application Performance and Analysis
	Locating the Bottleneck
	How Are You Bound?
	Using vmstat
	Determining Whether You Are CPU-Bound
	Determining Whether You Are Memory-Bound
	Determining Whether You Are I/O-Bound

	Where to Start Looking
	CPU Bounding Influence
	Memory Bounding Influence
	I/O Bounding Influence
	When the Bottleneck Is a Remote Procedure Call
	Simulating Load to Identify Future Bottlenecks

	Conclusion

	Data-Caching Strategies in PHP
	The PHP Execution Cycle
	Full-Page Caching
	What Is Full-Page Caching?
	Setting Up Full-Page Caching
	Final Thoughts on Full-Page Caching

	Semi-Full-Page Caching
	Programmatic Caching
	Components of Caching in Zend Framework
	You Can (Almost) Always Cache Things
	Knowing Your Cache Effectiveness
	The Various Zend_Cache Back Ends

	Conclusion

	Asynchronous Operations with PHP
	Getting Started with Job Queue
	Advanced Job Queue Configuration
	Replacing Job Queue’s PHP with Your Own
	Modifying the Configuration of Job Queue’s PHP
	Controlling the Job Queue from the Command Line

	Using the Job Queue to Execute PHP Scripts
	Creating Your First Job
	Searching for Existing Jobs
	Using Input Parameters in Job Queue Scripts
	Creating Jobs Programmatically Using the Job Queue API

	Conclusion

	Securing Your PHP Applications
	Setting the Context
	Defining Security
	Common Threats and Defenses
	Input Security
	Securing File Uploads
	Output Security

	Conclusion

	Monitoring Your Applications
	Effective Logging Through Zend_Log
	Getting Started with Zend_Log

	Advanced Monitoring
	What Is PHP Intelligence?
	Getting Started with PHP Intelligence
	Creating Advanced Monitoring Facilities
	Customizing Zend_Log Behavior and Integrating with Zend Platform

	Logging and Performance
	Conclusion

	Web Services and Zend Framework
	The Multi-Transport Services Architecture Using ZF
	The Command Pattern
	The ServiceController Action Controller
	Creating a Simple Web Service
	Dealing with SOAP in Zend Framework MVC

	Consuming Web Services Using Zend Framework
	Consume REST-Style Services
	Consuming SOAP Services

	Conclusion

	Production Farms for PHP
	General Server Farm Architecture
	Session Data and Farm Architecture
	Database Concerns in Farm Architecture
	MySQL Slave Farm Architecture
	MySQL Master Farm Architecture

	Dealing with Serving of Files
	Asynchronous Operations and the Farm
	Conclusion

	The MySQL Database
	The Storage Engine Concept
	Optimizing Queries with EXPLAIN
	Workload-Driven Performance Tuning
	Read-Heavy Workload
	Write-Heavy Workload
	Online Transaction Processing
	Online Analytical Processing
	Data Warehouse
	Optimization Advice That Applies to All Workloads
	Applications with More Than One Workload

	Using Appropriate Data Types
	Estimating Storage Requirements

	Just Throw Hardware at the Problem
	CPUs
	Memory
	Disks
	Network

	Scaling MySQL
	When Replication Scale Out Works Well
	When Replication Fails
	MySQL Sharded Architectures
	Using MySQL Proxy for Automatic Read/Write Splitting

	Backing Up MySQL
	The Rules of Performance Tuning a Database
	Be Methodical
	Make Any Benchmarks As Realistic As Possible
	Realize That Every Setting Has a Range
	Realize That Things Change over Time
	Realize That Some Settings Make Trade-offs
	Realize That Empirical Proof Is the Only True Test

	Conclusion

	Index

