
  



 2 

 
 
 
 
 
 
 

 
 
 

FOR DUCKEMS, BEASTLY, AND BRATFACE 
FOR WHOM I WOULD CHANGE THE WORLD 

IF ONLY I HAD THE SOURCE CODE 	
  



 3 

Contents	
  
Introduction 6	
  
PHP Basics 7	
  

Syntax 7	
  
Variables 9	
  
Constants 12	
  
Operators 14	
  
Control Structures 17	
  
Namespaces 20	
  
Errors 21	
  
Exceptions 22	
  
Configuration 24	
  
Performance 25	
  
Extensions 28	
  

Functions 29	
  
Arguments 29	
  
References 31	
  
Variable Functions 32	
  
Returns 32	
  
Variable Scope 33	
  
Callables, Lambdas, and closures 33	
  

Strings and Patterns 35	
  
Declaring Strings 35	
  
PHP and multibyte strings 37	
  
Matching Strings 38	
  
Extracting strings 40	
  
Searching Strings 41	
  
Replacing strings 42	
  
Formatting Strings 43	
  
Formatting Numbers 45	
  
String Patterns – Regular Expressions 46	
  

Arrays 52	
  
Declaring and referencing arrays 52	
  
Quirks of PHP array keys 53	
  
Filling up arrays 53	
  
Push, pop, shift, and unshift (oh my!) 54	
  
Comparing Arrays 55	
  
Iterating through arrays 58	
  
Sorting Arrays 60	
  
Standard PHP Library (SPL) – ArrayObject class 62	
  

Object Orientated PHP 64	
  
Declaring Classes and Instantiating Objects 64	
  
Visibility or Access Modifiers 65	
  
Instance Properties and Methods 65	
  
Static Methods and Properties 66	
  
Working with Objects 67	
  



 4 

Constructors and Destructors 68	
  
Inheritance 69	
  
Interfaces 71	
  
Exceptions 72	
  
Reflection 74	
  
Type Hinting 75	
  
Class Constants 75	
  
Late Static Binding 76	
  
Magic (_*) Methods 78	
  
Standard PHP Library (SPL) 80	
  
Generators 81	
  
Traits 82	
  

Security 87	
  
Configuration 87	
  
Session Security 88	
  
Cross-Site Scripting 90	
  
Cross-Site Request Forgeries 90	
  
SQL Injection 91	
  
Remote Code Injection 92	
  
Email Injection 93	
  
Filter Input 93	
  
Escape Output 94	
  
Encryption, Hashing algorithms 95	
  
File uploads 96	
  
Database storage 97	
  
Avoid publishing your password online 97	
  

Data Formats and Types 99	
  
XML 99	
  
SOAP 106	
  
REST web services 108	
  
JSON 111	
  
Date and Time 111	
  

Input-Output (I/O) 116	
  
Files 116	
  
Reading 117	
  
Writing 117	
  
File System Functions 118	
  
Streams 120	
  

Web Features 124	
  
Sessions 124	
  
Starting a Session 124	
  
Session Identifier and Session Variables 124	
  
Logging a User Out 124	
  
Session Handlers 125	
  
GET and POST data 125	
  
Encoding data into URLs 125	
  
Passing variables by POST 127	
  
Forms 127	
  
The Request Superglobal 128	
  



 5 

Form elements 128	
  
Cookies 129	
  
HTTP Headers 131	
  
HTTP Authentication 132	
  
HTTP Status Codes 133	
  

Databases and SQL 134	
  
Introduction to Databases 134	
  
Working with SQL 136	
  
Joins 139	
  
Prepared Statements 140	
  
Transactions 140	
  
PHP Data Object (PDO) 141	
  

 



 6 

Introduction 
 
Welcome to what I hope is an accessible reference that helps you quickly find and learn relevant facts about 
PHP programming.  I’m writing it with the following readers in mind: 
 

1. Intermediate PHP programmers with two or three years of experience who are hoping to sit the Zend 
certification exams. 

2. Programmers who are proficient in another language but want a quick reference book to dive into PHP. 
 
This book is specifically not an introduction to programming and no attempt is made to introduce basic topics.  
It is purely a reference to learn the idiosyncrasies of PHP.   Additionally it does not intend to replace the PHP 
manual but rather to focus the reader’s attention on aspects of PHP relevant to the Zend certification exams. 
 
It also won't make you a better programmer as I won't be discussing design patterns or programming concepts.  
This book just focuses on referencing the language of PHP. 
 
This document tries to avoid having an opinion about coding standards such as PSR2 but it is strongly 
recommended that a practicing developer learn these in parallel. 
 
Throughout this manual if a feature belongs only to a particular version of PHP I’ll use mark it in brackets.  As 
an example this (PHP 5.6+) will mean that the feature is available only in PHP version 5.6 and above. 
 
Liberal use of footnotes linking to manual pages and other reference pages is made.  This guide cannot possibly 
cover the full depth of the PHP manual and you cannot consider yourself prepared until you have worked 
through the manual pages.  It is essential to follow the footnote links, read the page, and even follow some links 
through the PHP manual related to the topic. 



 7 

PHP Basics 

Syntax 

PHP has its roots in C and was created by Rasmus Lerdorf to be a more accessible language to make webpages 
in than C.  Other languages like Perl and Java have influenced the language as it developed, but the idea that 
PHP should have a simple syntax has remained dominant. 
 
All statements in PHP must be terminated with a semi-colon.  An exception to this is if the statement happens 
to be the last statement before a closing tag.  Coding standards would normally require you to properly 
terminate every statement. 
 
Whitespace has no semantic meaning in PHP.  There is no need to line code up, but most coding standards 
enforce this to improve code readability.  Whitespace may not appear in the middle of function names, variable 
names, or keywords.  Multiple statements are allowed on a single line. 
 
Code blocks are denoted by the brace symbols { }. 

Inserting PHP into web pages 

Although PHP can be used for other purposes it is really intended to be a text processor to support web pages. 
Therefore the most common usage of PHP is within HTML pages.   
 
The server must be configured to recognize the PHP tags and pass the code inside them to a PHP processor.  
There are five ways to indicate to the server that it must include PHP.   
 

 Open Close Note 
Standard <?php ?>  
Echo <?= ?>  
Short <? ?> Deprecated 
Script <script language=”php”> </script> Discouraged 
ASP <% %> Discouraged 

 
The last three methods of including PHP onto web-pages should not be used. 
 
The echo tag allows you to easily echo a PHP variable and the shortened tag makes your HTML document 
easier to read.  Its usage is easiest to understand when it’s shown along with the equivalent in standard opening 
codes.  The following two tags are identical: 

<?= $variable ?> 

<?php echo $variable ?> 

It is quite common in PHP programs to omit the closing tag ?> in a file.  This is acceptable to the parser and is 
a useful way to prevent problems with new line characters appearing after the closing tag.  These new line 
characters would be sent as output by the PHP interpreter and could interfere with the HTTP headers or cause 
other unintended side effects.  By not closing the script in a PHP file you prevent the chance of new line 
characters being sent. 
 	
  



 8 

Language Constructs 

Language constructs are different from functions in that they are baked right into the language.  Language 
constructs can be understood directly by the parser and do not need to be broken down.  Functions, on the 
other hand, are mapped and simplified to a set of language constructs before they are parsed. 
 
Language constructs are not functions, and so cannot be used as a callback function. 
 
They follow rules that are different from functions when it comes to parameters and the use of parentheses. 
 
The PHP manual has a complete list1, but here are some of the constructs that you should be familiar with: 
 

Construct Used for 
echo Outputting a value  
print Outputting a string 
exit Outputting a message and terminating the program 
die This is an alias for exit 
return Terminates a function and returns control to the calling scope, 

or if called in the global scope terminates the program 
include Includes a file and evaluates it.  A warning is generated if the 

file can’t be read. 
require Includes a file and evaluates it.  If the file can’t be read then a 

fatal error occurs. 
include_once Include a file and evaluates it.  Subsequent calls will not result 

in the file being included and evaluated multiple times. 
require_once As for include_once, but a fatal error instead of a warning is 

generated if the file can’t be read 
eval The argument is evaluated as PHP and affects the calling scope 
empty Returns a Boolean value depending on whether the variable is 

empty or not.  Empty variables include null variables, empty 
strings, arrays with no elements, numeric values of 0, a string 
value of ‘0’, and Boolean values of false 

isset Returns true if the variable has been set and false otherwise.  
unset Clears a variable 
list Assign multiple variables at one time from an array 

Comments 

There are three styles to mark comments. 
 

 Single line Multiline 
Perl style # None 
C style // /* Multi-line  

comment blocks 
*/ 

API style None /** 
 * API documentation 
 */ 

 
                                                        
1 https://secure.php.net/manual/en/reserved.keywords.php  



 9 

API documentation can additionally conform to external standards such as those used by the PHPDocumentor 
(http://www.phpdoc.org/) project.  This tool examines your API style comments and automatically creates 
documentation for you. 

Variables 

Variable Types 

PHP is a loosely typed language.  It is important not to think that PHP variables don’t have a type.  They most 
definitely do, it’s just that they may change type during runtime and don’t need their type to be declared 
explicitly when initialized.   
 
PHP will implicitly cast the variable to the data type required for an operation.  For example, if an operation 
requires a number, such as the addition (+) operation, then PHP will convert the operands into a numeric 
format. 
 
You’ll be introduced to type juggling in the “Casting variables” section and you’ll need to know the rules PHP 
follows when changing a variable type.  For now, you just need to know that PHP variables have a type, that 
type can change, and although you can explicitly change the type PHP does this implicitly for you. 
 
PHP has three categories of variable – scalars, composite, and resources.  A scalar variable is one which can 
only hold one value at a time.  Composite variables can contain several values at a time. 
 
A resource variable points to something not native to PHP like a handle provided by the OS to a file or a 
database connection.  These variables cannot be cast. 
 
Finally PHP has the null type which is used for variables that have not had a value set to them.   You can also 
assign the null value to a variable. 

Scalar types 
There are four scalar types: 
 

Type Contains 

Boolean True or False 
Integer A signed numeric integer  
Float A signed numeric double or float value 

String An ordered collection of binary data 

 
Note that strings are not simply a list of characters and may contain binary information such as an image file 
that has been read from disk. 

Composite types 

There are two composite types: arrays and objects.  Each of these has its own section in this reference.   

In PHP 5.6 these are the only variable types that can be type hinted as parameters to a function.  In 
PHP7 support for type hinting scalar types is added. 



 10 

Casting variables 

This is a very important section of understanding PHP and even very experienced developers may not be aware 
of some of the rules that PHP uses to cast variables.   
 
In this section I aim to highlight some of the common pitfalls and link to the manual pages where the complete 
rules can be found. 
 
PHP implicitly casts variables to the type required in order to perform an operation.   
 
It is also possible to explicitly cast variables using one of two options:  

1. Use a casting operator 
2. Use a PHP function 

 
Casting operators are used by putting the name of the data type you want to cast into in brackets before the 
variable name.  For example: 

$a = ‘123’;       // $a is a string 

$a = (int)$a;     // $a is now an integer 

$a = (bool)$a;    // $a is now Boolean and is true 

There are also PHP functions which will convert a variable to a datatype.  These are named in way that is self-
documenting: floatval, intval, strval, boolval. 
 
You can also call the settype() function on a variable which takes the desired data type as a second 
argument. 

 
There are some rules that need to be remembered regarding how variables are cast in PHP.  You should read 
through the manual2 carefully because there are many trips and traps in type juggling.  Also make sure that you 
read the pages linked to from the type juggling page. 
 
Instead of exhaustively listing all of the rules I’ll focus on some of the rules that may be counter-intuitive or are 
commonly mistaken. 
 
Casting from float to integer does not round the value, but rather truncates the decimal portion: 

$a = 1234.56; 

echo (int)$a;    // 1234 (not 1235) 

Some general rules for casting to Boolean are that:  
• Empty arrays and strings cast to false.   
• Strings containing numbers evaluate to true as long as the number is not zero.  Recall that such strings 

return false when the empty() function is called on them. 
• Any integer (or float) that is non-zero is true, so negative numbers are true. 

 
Objects can have the magic method __toString() defined on them.  This can be overloaded if you want to 
have a custom way to cast your object to string.  We look at this in the section on “Casting Objects to String”. 
                                                        
2 https://secure.php.net/manual/en/language.types.type-juggling.php  

The boolval() function was added in PHP 5.5 



 11 

 
Converting a string to a number results in 0 unless the string begins with valid numeric data3.  By default the 
variable type of the cast number will be integer, unless an exponent or decimal point is encountered, in which 
case it will be a float.  
 
Here is an example script that shows some string conversions: 

<?php 

$examples = [ 

    "12 o clock", 

    "Half past 12", 

    "12.30", 

    "7.2e2 minutes after midnight" 

]; 

 

foreach ($examples as $example) { 

    $result = 0 + $example; 

    var_dump($result); 

} 

This outputs: 
int(12) 

int(0) 

double(12.3) 

double(720) 

Representing numbers  

There are four ways in which a number may be expressed in a PHP script: 
 

Notation Example Note 
Decimal 1234  
Binary 0b10011010010 Identified by leading 0b or 0B 
Octal 02322 Identified by leading 0 
Hexadecimal 0x4D2 Identified by leading 0x or 0X 

 
Floating point numbers (called doubles in some other languages) can be expressed either in standard decimal 
format or in exponential format. 
 

Form Example 
Decimal 123.456 
Exponential 0.123456e3 

 
The letter “e” in the exponential form is case-insensitive, as are the letters used in the integer formats above. 

                                                        
3 https://secure.php.net/manual/en/language.types.string.php#language.types.string.conversion 



 12 

Naming Variables 

PHP variables begin with the dollar symbol $ and PHP variable names adhere to the following rules: 
 

• Names are case sensitive 
• Names may contain letters, numbers, and the underscore character 
• Names may not begin with a number 

 
Coding conventions differ on the use of camelCase, StudlyCase, or snake_case but all of these formats are valid 
PHP variable name formats. 
 
PHP also allows for variable variable names (PHP7-).  This is best illustrated by example: 

<?php 

$a = ‘foo’; 

$$a = ‘bar’; // $a is ‘foo’, so variable $foo is set 

echo $foo;   // bar 

There are several caveats to using variable variable names, including security risks, and the fact that they are 
deprecated in PHP 7.  They can also make your code a little murky to read. 

Checking if  a variable has been set 

The command isset() will return true if a variable has been set and false otherwise.  It is preferable to use 
this function instead of checking if the variable is null because it won’t cause PHP to generate a warning. 
 
Variables become unset when they become out of scope. 
 
You can use the command unset() to manually un set a variable. 

 

Constants 

Constants are similar to variables but are immutable.   They have the same naming rules as variables, but by 
convention will have uppercase names. 
 
They are defined using the define() function as shown: 

<?php 

define(‘PI’, 3.142); 

echo PI;      // 3.142 

As of PHP 5.3 you can use the const keyword to define constants: 
const MILES_CONVERSION = 1.6; 

echo “5km in miles is “ . 5 * MILES_CONVERSION; 

 

  The unset command is not a guaranteed way to free memory even if you manually trigger garbage 
collection.  Although it’s beyond the scope of this document it’s worth reading up on how Apache with 
PHP installed as a module handles memory allocation compared to Nginx using php-fpm. 



 13 

The const keyword must be used to create a namespaced constant. 
 
As of PHP 5.6 you can use static scalar values to define a constant: 

const STORAGE_PATH = __DIR__ . ‘/storage’; 

Note the use of the “magic” constant __DIR__ that is set by PHP at runtime and contains the path that the 
script resides in on the file system.   These constants are discussed in the section “Magic Constants”. 

 

Superglobals 

PHP has a number of superglobals that are available automatically to the script.  Superglobals are available in 
every scope.  You are able to alter the values of superglobals but it’s generally suggested to rather assign a 
locally scoped variable to the superglobal and modify that. 
 
You need to know what each of the superglobals stores. 
 

Superglobal Stores 
$GLOBALS an array of variables that exist in the global scope 
$_SERVER an array of information about paths, headers, and other information 

relevant to the server environment 
$_REQUEST POST and GET request variables 
$_POST Variables sent in a POST request 
$_GET Variables sent in a GET request 
$_FILES An associative array of files that were uploaded as part of a POST 

request 
$_ENV An associative array of variables passed to the current script via the 

environment method. 
$_COOKIE An associative array of variables passed to the current script via HTTP 

Cookies. 
$_SESSION An associative array containing session variables available to the 

current script. 
 
The $_SERVER superglobal has many keys, and you should be familiar with them.  The PHP manual has a list 
of them4 and you should make sure that you’ve read through the manual and understood all of the keys. 
 
Note that the $_SERVER[‘argv’] contains arguments sent to the script, which is distinct from the $_ENV.  
Knowledge of this level of detail is required for the certification exam.  

Magic Constants 

Magic constants are those which PHP provides automatically to every running script.  There are quite a lot of 
them5 and you will need to know the error constants, as well as the commonly used constants6. 

                                                        
4 https://secure.php.net/manual/en/reserved.variables.server.php 
5 https://secure.php.net/manual/en/reserved.constants.php  
6 https://secure.php.net/manual/en/language.constants.predefined.php  

Constants may only contain scalar variable types. 



 14 

Operators 

Types of operators 

Arithmetic 
 Example Description 
Addition 1 + 2.3  Adds 2.3 to 1 
Subtraction 4 – 5 Subtracts 5 from 4 
Division 6 / 7 Divide 6 by 7 
Multiplication 8 * 9 Multiplies 8 by 9 
Modulus 10 % 11  Gives the remainder of dividing 10 by 11  
Power 12 ** 13 Raises 12 to the power of 13 (PHP 5.6+) 

 
The above arithmetic operators take two arguments and so are called binary.   
 
The unary operators following take only one argument and their placement before or after the variable changes 
how they work.  There are two unary operators in PHP, namely prefix and postfix.  They are named for 
whether the operator appears before or after the variable that it affects. 
 

• If the operator appears before the variable (prefix) then the interpreter will first evaluate it and then 
return the changed variable. 

• If the operator appears after the variable (postfix) then the interpreter will return the variable as it was 
before the statement executed and then increment the variable. 

 
Lets show their effects on a variable $a that we initialize to 1 and then operate on: 
 

Command Output Value of $a 
afterwards 

Description 

$a = 1;  1  
echo $a++; 1 2 Postfix 
echo ++$a; 3 3 Prefix 
echo $a--; 3 2 Postfix 
echo --$a; 1 1 Prefix 

Logic operators 
PHP uses both symbol and word form logic operators.  The symbol form are C based. 
 

Operator Example True when 
and $a and $b Both $a and $b evaluate true 
and $a && $b  
or $a or $b Either $a or $b evaluate true 
or $a || $b  
xor $a xor $b One of (not both) $a or $b is true 
not ! $a $a is not true (false) 

  
It is best practice not to mix the word form (e.g.: “and”) and the symbol (e.g.: “&&”) in the same comparison as 
the operators have different precedence. 



 15 

Ternary operator 
PHP implements the ternary operator as illustrated in this example: 

$a = ‘foo’; 

$b = (isset($a)) ? $a : ‘bar’; 

echo $b;    // foo 

If the true value is omitted in the ternary operator then the statement is evaluated as the expression, as follows: 
$a = true; 

$b = $a ?: ‘foo’; 

echo $b;   // 1 

This shortened version of the ternary operator is not suitable for testing if a variable exists as the interpreter 
will throw a warning in this case. 

Bitwise 
Bitwise operators work on the bits of integers represented in binary form.  Using them on a different variable 
type will cause PHP to cast the variable to integer before operating on it. 
 
There are three standard logical bitwise operators: 
 

Operator Description 
& Bitwise AND – The result will have a bit set if both of the 

operands bits were set 
| Bitwise OR – If one or both of the operands have a bit set 

then the result will have that bit set 
^ Bitwise XOR – If one and only one of the operands (not 

both) has the bit set then the result will have the bit set. 
 
The result of a bitwise operator will be the value that has its bits set according to the rules above. 
 
PHP also has operators to shift bits left and right.  The effect of these operators is to shift the bit pattern of the 
value either left or right while inserting 0 bits in the newly created empty spaces. 
 
It’s important to be cautious when using bitwise operations to perform calculations as the integer overflow size 
may vary between the different environments that PHP is deployed on. 
 
For example on a 32 bit integer system the following statements will not echo out the same result: 

$x = 1; 

echo $x << 32; 

echo $x * pow (2, 32); 

The first line will echo 0 as shifting left 32 bits will fill the 32 bit integer with 0 bits.  The second line will use 
the maths library and output the correct value of 2 raised to the power of 32. 

Assignment operators 
PHP uses the = symbol as an assignment operator.  The following line sets the value of $a to 123. 



 16 

$a = 123; 

The assignment operator can be combined with just about all of the binary and arithmetic operators.  This 
syntax serves as a shortcut that is best shown by providing an example of equivalent statements:  

$a += 345;    // equivalent to $a = $a + 345; 

$a .= ‘foo’;  // equivalent to $a = $a . ‘foo’; 

Reference operator 
By default PHP assigns all variables other than objects by value and not by reference.  Objects are always 
assigned by reference.   
 
PHP has optimizations to make assignment by value faster than assigning by reference (see the section on 
“Memory management”), but if you want to assign by reference you can use the & operator as follows: 

$a = 1; 

$b = &$a;  // assign by reference 

$b += 5; 

echo $a;  // 6 

Creating an object by reference is deprecated, so this code will generate a warning:   
$a = &new myClass; 

Comparison operators 
PHP uses the following comparison operators: 

Operator Description 
> Greater than 
>= Greater than or equal to 
< Less than 
<= Less than or equal to 
<> Not equal 
== Equivalence – values are equivalent if cast to the same variable type.   
=== Identity – values must be of the same data type and have the same 

value. 
!= Not equivalent  
!== Not identical 

 
It is important to understand the difference between an equivalent comparison and an identity comparison: 

• Operands are equivalent if they can be cast to a common data type and have the same value.   
• Operands are identical if they share the same data type and have the same value. 

 
Be careful when using comparison operators on strings, or when using them on mismatching variable types.  
See the section on “Casting variables” for more detail. 

Two more operators 
PHP provides an operator to suppress error messages.  This will only work if the library that the function is 
based on uses PHP standard error reporting.   



 17 

$dbConnection = @mysqli_connect(…); 

It’s good practice to suppress errors using PHP settings in production rather than using the @ error 
suppression operator. 
 
The last operator we will discuss is the backtick operator.  It is not commonly used and is equivalent to calling 
the shell_exec() command.  In the following example the variable $a will contain the name of the user 
running the PHP interpreter.  
 
 In a web environment this will probably be www-data.  This is the default for Nginx and Apache, but from 
the command line will be the name of the user logged in. 
 

$a = `whoami`; 

Operator Precedence 
The PHP manual is the best place to read about operator precedence 
(https://secure.php.net/manual/en/language.operators.precedence.php ).  
 
Precedence can be forced by using parenthesis. 
 
Note that the logical operators in the form of words and symbols have different precedence.  In other words the 
“or” operator has a different precedence from the “||” operator.  This means that you should use either word 
form or symbol form in a comparison statement, but not both. 

Control Structures 

Conditional Structures 
PHP supports if, else, elseif, switch, and ternary conditional structures. 
 
“If” structures look like this: 

if (condition) { 

    // statements to execute 

} elseif (second condition) { 

    // statements to execute 

} else { 

    // statements to execute 

} 

Note that the space between else and if in “elseif” is optional. 
 
The ternary operator has been discussed in the operators section of this reference. 
 
“If” statements may be nested. 
 
The switch statement looks like this: 
 



 18 

switch ($value) { 

    case ‘10’ :  // statements to execute 

        break; 

    case ‘20’  : // statements to execute 

        break; 

    case ‘30’  : // statements to execute 

        break; 

    default: // statements to execute 

        break; 

} 

Once a case matches the value the statements in the code block will be executed until it reaches a break 
command.   
 
If you omit the break command then all of the following statements in the switch will be executed until a 
break is hit even if the case does not match the value.  This can be useful in some circumstances but can also 
produce unintended outcomes if you forget to use the break statement. 
 
To illustrate, consider this example: 

$value = 10; 

switch ($value) { 

    case ‘10’ :  echo "Value is 10"; 

                 // no break statement 

    case ‘20’  : echo "Value is 20"; 

                 break; 

    case ‘30’  : echo "Value is 30"; 

                 break; 

    default: echo "Value is not 10,20, or 30"; 

             break; 

} 

// Value is 10Value is 20 

 

Loops 
PHP’s most basic loop is the “while” loop.  It has two forms, as shown: 
 



 19 

while (expression) { 

    // statements to execute 

} 

 

do { 

    // statements to execute 

} while (expression) 

The difference between them is that in the first form the expression is evaluated at the beginning of the loop 
and in the second form it’s evaluated at the end. 
 
This means that if the expression is false the while loop will not run at all in the first case but it will run at least 
once in the second case. 
 
The for loop syntax shows the C roots of PHP and looks like this: 

for ($i = 0; $i < 10; $i++) { 

  // do something 

} 

As with C the first statement is executed to initialize the loop, the second condition is evaluated at the 
beginning of each loop, and the last statement is executed at the end of each loop.  The loop will continue to 
run until the condition evaluates as false. 
 
To iterate over an array you can use foreach, as follows: 

$arr = [ ‘a’ => ‘one’, 

    ‘b’ => ‘two’, 

    ‘c’ => ‘three’]; 

 

foreach ($arr as $value) { 

    echo $value;   // one, two, three 

} 

 

foreach ($arr as $key => $value) { 

    echo $key;    // a, b, c 

    echo $value;  // one, two, three 

} 

Breaking out of loops 
There are two ways to stop an iteration of a loop in PHP – break and continue. 
 
Using “continue” has the effect of stopping the current iteration and allowing the loop to process the next 
evaluation condition.  This allows you to let any further iterations which would run to occur. 
 
Using “break” has the effect of stopping the entire loop and no further iterations will occur.   



 20 

 
The break statement takes an optional integer value that can be used to break out of multiple levels of a nested 
loop.  If no value is specified it defaults to 1. 

Namespaces 

Namespaces help to avoid naming collisions between libraries or other shared code.  A namespace will 
encapsulate the items inside it so that they don’t conflict with items declared elsewhere. 
 
They can be used to avoid having to use overly descriptive names for classes, sub-divide a library into sections, 
or limit the applicability of constants to one section of code. 
 
The namespace declaration must occur straight after the opening <?php tag and no other statements may 
precede it. 
 
Namespaces affect constants, but you must declare them with the const keyword and not with define. 
 
It is possible to have two namespaces in a file but most coding standards will strongly discourage this.  In order 
to accomplish this you would wrap the code for the namespace in braces, as in this example: 

<?php  

namespace A { 

   // this is in namespace A  

} 

namespace B { 

   // this is in namespace B 

} 

namespace { 

   // this is in the global namespace 

} 

This usage is far from standard and in most cases a namespace declaration does not include the braces and all 
the statements in a file exist in only one namespace. 

Fully qualif ied namespace names 

If you are working in a namespace then the interpreter will assume that names are relative to the current 
namespace.   
 
Consider this class as a basis for our following examples: 



 21 

<?php namespace MyApp\Helpers; 

 

class Formatters { 

    public static function asCurrency($val) { 

      // statement 

    } 

} 

If we want to use this class from another class we need to provide a fully qualified namespace, as in this 
example: 

<?php namespace MyApp\Lib; 

echo MyApp\Helpers\Formatters::asCurrency(10); 

Alternatively you may use the “use” statement to import a namespace so that you don’t have to use the long 
format all the time: 

<?php namespace MyApp\Lib; 

use MyApp\Helpers\Formatters; 

echo Formatters::asCurrency(10); 

You may precede a name with a backslash to indicate that you intend to use the global namespace, as in this 
example: 

<?php namespace MyApp; 

throw new \Exception('Global namespace'); 

In this example if we had not indicated the global scope with the backslash the interpreter would look for a 
class called Exception within the MyApp namespace. 

Errors 

PHP has a number of magic constants that are used in relation to errors.  These constants are used when 
configuring PHP to hide or display errors of certain classes.   
 
Here are some of the more commonly seen error codes: 
 



 22 

Code Description 
E_DEPRECATED The interpreter will generate warnings of this type if you use a 

language feature that is deprecated.  Your script continues to run. 
E_STRICT Similar to E_DEPRECATED, this indicates that you are using a 

language feature that is not currently standard and might not work in 
the future.  Your script continues to run. 

E_PARSE Your syntax could not be parsed and so your script won’t start 
E_NOTICE An informational message.  The script will continue to run. 
E_WARNING These are non-fatal warnings.  Your script will continue to run. 
E_ERROR The script cannot continue to run and is being terminated 

Displaying or Suppressing error messages 
Generally you want to hide all error messages while in production and your code should run without 
generating warnings or messages. 
 
This means that in your development environment you want all errors to be displayed so that you can fix all 
the issues that they relate to, but while in production you want to suppress any messages being sent to the user. 
 
To accomplish this you need to configure PHP using the following settings in your php.ini file: 

• display_errors can be set to false to suppress messages 
• log_errors can be used to store error messages in log files 
• error_reporting can be set to configure what errors trigger a report 

Gracefully responding to errors 
Instead of your script falling over with the white screen of death you want to be able to manage error situations 
and provide some form of meaningful feedback to your user. 
 
PHP makes this easy with the set_error_handler() function.   It takes as a string argument the name of 
the function that you want to use to catch errors.   

Exceptions 

Exceptions are a core part of object orientated programming and were introduced in PHP 5.0. 
 
Exceptions differ from errors in that: 

• They are objects, created from a base Exception class or one of its children 
• They bubble up through the call stack if they are not caught 
• Uncaught exceptions are always fatal 

Extending the base Exception class 
The Exception class is like any other and can be extended.  This allows you to create flexible error hierarchies 
and to tailor your exception handling.   
 
As an example lets create an exception class that we can use to signal that there has been a form validation 
problem: 



 23 

<?php 

class ValidationException extends Exception { } 

 

function myValidation() { 

    if (empty($_POST)) { 

        throw new ValidationException('No form fields entered'); 

    } 

} 

Catching Exceptions 
Lets continue from the previous example and imagine that we are calling the myValidation function and want 
to catch exceptions.  The syntax for this is as follows: 

<?php 

try { 

    myValidation(); 

} catch (ValidationException $e) { 

    echo "Validation exception caught "; 

    echo $e->getMessage(); 

} catch (Exception $e) { 

    echo "General exception type caught"; 

} 

Note that there are two catch clauses.  Exceptions will be matched against the clauses from top to bottom until 
the type of the exception matches the catch clause.  Since myValidation throws a ValidationException we 
would expect it to be caught in the first block, but if any other type of exception is thrown in the function then 
it will be caught in the second catch block. 
 
Note also the method getMessage() is being called on the exception object.  Other methods in the basic 
Exception class will give error codes, stack traces, and other information.  The PHP manual is the best reference 
for the prototype for the exception object - https://secure.php.net/manual/en/class.exception.php.   

The finally block 
PHP 5.5 introduced the finally clause to exceptions.  This block of code will always be executed, whether an 
exception is thrown or not.   It is executed either after the try block completes or after the exception block has 
completed. 
 
One common use for the finally block is to close a file handle, but finally can be used wherever you want code 
to always be executed. 



 24 

try { 

   // perform some functions 

} catch (Exception $e) { 

   // handle the error 

} finally { 

   // always run these statements 

} 

Configuration 

I can highly recommend that you do some practical work to configure PHP.  You can setup a virtual machine7 
on your computer and install Linux8 on it, which will give you hands on experience.   
 
There are several Windows and Mac packages that offer an all-in-one configuration for PHP but you should 
make sure that you find the config files and go through them. 

Where settings may be set or changed 
PHP offers a flexible configuration strategy whereby base configuration settings may be overridden by user 
configuration files and even at runtime by PHP itself. 
It’s best to refer to the manual for this and duplicating it here will only result in stale information. 
 
Refer to the following links: 

• https://secure.php.net/manual/en/configuration.changes.modes.php 
• https://secure.php.net/manual/en/ini.list.php  

Php.ini 
The PHP ini file defines the configuration for each php environment.  An environment here refers to how PHP 
is run – for example by command shell, as an FPM process, or within Apache2 as a module. 
 
Each environment will have a directory off the main configuration directory which is /etc/php5 by default 
on Ubuntu. 
 
The config file is read whenever the server (apache) or process (fpm/cli) starts.  This means that if you make a 
change to the PHP configuration you will need to reload your apache2 server or restart the fpm service.  In 
contrast, changes to the CLI configuration will take effect the next time you run PHP from the shell. 

User ini fi les 
These files are checked by PHP when it is operating 
in fastcgi mode (PHP 5.3+).  This is the case when 
you’re using the fpm module, but not in CLI or 
apache2. 
 
PHP will first check for these files in the directory 
that the script is running in and work backwards up 
to the document root.  The document root is 
configured in your host file and is reflected in the 
$_SERVER[‘DOCUMENT_ROOT’] variable. 
                                                        
7 http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html 
8 http://www.ubuntu.com/download/server 

 

Nginx is a very popular server choice for running PHP 
on.  It uses a non-blocking threading model that is 
optimized for concurrent visitors.  You can read more 
details on their blog at https://goo.gl/xazbZX  



 25 

 
These ini files will override the settings in php.ini, but will only affect settings that are flagged as 
PHP_INI_PERDIR or PHP_INI_USER.  Refer to the link above for a list of settings and where they may be 
changed. 
 
The main configuration file has two directives which pertain to user ini files.  The first, 
user_ini_filename, governs the name of the file that PHP looks for.   
 
The second, user_cache_ttl, governs how often the user file is read from disk. 

Apache version of ini fi les 
If you are using Apache then you can use .htaccess to manage user ini settings.  They are searched for in 
exactly the same method as the fastcgi files are. 
 
You must set the AllowOverride setting in your vhost config to true in any directories that you want the 
.htaccess file to be read. 

Performance 

A great deal of PHP performance issues relate to the deployment environment which is beyond the scope of 
this reference. We can’t possibly discuss the multitude of strategies that exist to improve website performance.   
 
One potential deployment issue with performance worth mentioning in the context of the Zend examination is 
using the xdebug extension in production.  As the name suggests this extension is for debugging and should not 
be installed in production9.  
 
Another deployment concern is in keeping your PHP version up to date.  PHP is constantly improving its 
performance and it’s a good idea to migrate your code to keep up with new PHP versions. 
 
When considering performance for the Zend examination we focus on memory management, and the opcode 
cache. 

Memory management 

Optimizing memory performance in PHP requires some understanding of how the language works. 
 
PHP uses a container called a “zval” to store variables.  The zval container contains four pieces of information: 
 

Piece Description 
Value The value the variable is set to 
Type The data type that this variable is 
Is_ref A Boolean value indicating whether this variable is part of a reference 

set.  Remember that variables can be assigned by reference.  This 
Boolean value helps PHP decide if a particular variable is a normal 
variable or if it is a reference to another variable. 

Refcount This is a counter that tracks how many variable names point to this 
particular zval container.  This refcount is incremented when we 
declare a new variable to reference this one.   

 

                                                        
9 http://goo.gl/tEuBNy  



 26 

Variable names are referred to as symbols and are stored in a symbol table that is unique to the scope that the 
variables occur in. 
 
Symbols are pointed to zval containers. 

$a += 345;    // equivalent to $a = $a + 345; 

$a .= ‘foo’;  // equivalent to $a = $a . ‘foo’; 

Reference operator” I mentioned that PHP has optimizations for assigning by value.   
 
This is accomplished by PHP by only copying the value to a new zval when it changes, and initially pointing 
the new symbol to the same zval container. 
 
Here is an example to illustrate: 

<?php 

$a = "new string"; 

$b = $a; 

// the variable b points to the variable a 

xdebug_debug_zval( 'a' ); 

xdebug_debug_zval( 'b' ); 

// change the string and see that the refcount is reset 

$b = 'changed string'; 

xdebug_debug_zval( 'a' ); 

xdebug_debug_zval( 'b' ); 

The output of this script is: 
a: (refcount=2, is_ref=0)='new string' 

b: (refcount=2, is_ref=0)='new string' 

a: (refcount=1, is_ref=0)='new string' 

b: (refcount=1, is_ref=0)='changed string' 

We can see that until we change the value of $b it is referring to the same zval container as $a. 

Arrays and Objects 
Arrays and objects use their own symbol table, separate from the scalar variables.  They also use zval 
containers, but creating an array or object will result in several containers being created. 
 
Consider this example: 

<?php 

$arr = ['name' => 'Bob', 'age' => 23 ]; 

xdebug_debug_zval( 'arr' ); 

The output from this script looks like this: 



 27 

arr: (refcount=1, is_ref=0)=array ( 

    'name' => (refcount=1, is_ref=0)='Bob',  

    'age' => (refcount=1, is_ref=0)=23) 

We can see that three zval containers are created, one for the array variable itself and one for each of its two 
values. 
 
Just as for scalar variables if we had a third member of the array with the same value as another member then 
instead of creating a new zval container PHP will increase the refcount and point the duplicate symbol to the 
same zval. 

Memory leaks in arrays and objects 
Memory leaks can occur when a composite object includes a reference to itself as a member.  This is more likely 
to occur in use cases with objects because they are always assigned by reference, possibly for example in 
parent-child relationships such as might be found in an ORM model. 
 
The PHP manual has a series of diagrams explaining this10.  The problem occurs when you unset a composite 
object that has a reference to itself.   
 
In this event the symbol table is cleared of a reference to the zval structure that was used to contain the 
variable.  PHP does not iterate through the composite object because this would result in recursion as it follows 
links to itself.   This means that the member in the variable that is a reference to itself is not unset, and the zval 
container is not marked as free.  There is no symbol pointing to this zval container and so the user cannot free 
the memory herself. 
 
PHP will clear up these references at the end of the request.  Remember that PHP is not intended to be a long-
running language and is designed to be a text processor built for serving specific requests within the context of 
a web application. 

Garbage collection 
The garbage collector clears circular references which are those where a complex object contains a member that 
refers to itself.  
 
PHP will initiate garbage collection when the root buffer is full or when the function 
gc_collect_cycles() is called. 
 
The garbage collector will only cause a slowdown when it actually needs to do something.  In smaller scripts 
where there is no leakage it won’t cause a performance drop. 
 
Garbage collection is likely to be of benefit in long-running scripts or those where a memory leak is repeatedly 
created, such as processing a very large amount of database records using ORM models that leak. 

The opcode cache 

PHP is an interpreted language11 that is converted into a sequence of instructions that are executed in order.  
These instructions are called opcodes or bytecode and this process occurs every time the script is run. 
 
An opcode cache stores the converted instructions for a script.  Subsequent calls to the script do not require the 
script to be interpreted prior to being run. 
                                                        
10 https://secure.php.net/manual/en/features.gc.refcounting-basics.php 
11 https://en.wikipedia.org/wiki/Interpreted_language 



 28 

 
In 2013 Zend contributed their optimization engine to PHP.  Known as Opcache it is baked into distributions of 
PHP as of version 5.5 and is probably either the most commonly used cache or will become so. 
 
In addition to the cache built into PHP there are a number of third party opcode caches available12. 
 
Using the opcode cache results in significant performance increases. 

Extensions 

PHP extensions extend upon the functionality offered by the core language.  A number of them are enabled by 
default into standard repository distributions of PHP.   

Instal l ing an Extension 

Extensions are enabled through the php.ini file using the “extension” setting to specify the filename of the 
extension, like this example for mcrypt: 

extension=mcrypt.so; 

You can set the extension directory with a setting in your php.ini file like this: 
extension_dir = “/usr/lib/php5/20121212/mcrypt.so”  

Different systems may provide convenient ways of installing and enabling extensions. 

Checking for Instal led Extensions 

The extensions installed will display if you call phpinfo() or if you use the more specific command 
get_loaded_extensions()13. 
 
Running “php –m” from the shell will show a list of extensions installed. 
 
You can check if an extension is loaded by calling extension_loaded().  This is recommended if 
you’re using a function in an extension that is not loaded by default.  Here is an example from the PHP manual: 

<?php 

if (!extension_loaded('gd')) { 

    if (!dl('gd.so')) { 

        exit; 

    } 

} 

 

                                                        
12 https://en.wikipedia.org/wiki/List_of_PHP_accelerators 
13 https://secure.php.net/manual/en/function.get-loaded-extensions.php 



 29 

Functions 
Functions are packages of code that can be used to execute a sequence of instructions.  Any valid code can be 
used inside a function, including calls to other functions and classes. 
 
In PHP function names are case insensitive and can be referenced before they are defined, unless they are 
defined in a conditional code block.  
 
Functions can be built-in, provided by an extension, or user-defined. 
 
Functions are distinct from language constructs. 

Arguments 

Arguments to a function, also known as parameters, allow you to pass values into the function scope.  
Arguments are passed as a comma separated list and are evaluated left to right. 

Type Declarations 

As of PHP 5.0.0 it has been possible to specify that an argument must be an instance of a particular class type.  
For methods in a class you could also specify that a parameter must be an instance of the same class the method 
is defined on. 
 
PHP 5.1.0 introduced the ability to specify that an argument must be an array. 
 
PHP 5.4.0 introduced the concept of a callable (more on this later). 
 
PHP 7.0.0 introduced the ability to specify arguments must be of the scalar types, bool, float, int, and string.  

Optional Parameters 

PHP will create a recoverable fatal error if you do not supply enough parameters to a function.  You can specify 
a default value for a parameter which has the effect of making it optional.   
 
In the following example if the user does not supply a message the function assumes it will be “world”. 

<?php 

function sayHi($message = 'world') { 

    echo "Hello $message"; 

} 

sayHi(); 

Overloading functions 

In other programming languages overloading usually refers to declaring multiple functions with the same name 
but with differing quantities and types of arguments.  PHP views overloading as providing the means to 
dynamically "create" properties and methods14. 
 

                                                        
14 https://secure.php.net/manual/en/language.oop5.overloading.php  



 30 

PHP will not let you redeclare the same function name.  However PHP does let you call a function with 
different arguments and offers you some functions to be able to access the arguments that a function was called 
with.   
 
Here are three of these functions: 
 

Function Returns 
func_num_args() How many arguments were passed to the function 
func_get_arg($num) Parameter number $num (zero based) 
func_get_args() All parameters passed to the function as an array 

 
Here is an example showing how a function can accept any number of parameters of any sort, and how you can 
access them: 

<?php 

function myFunc() { 

    foreach(func_get_args() as $arg => $value) { 

        echo "$arg is $value" . PHP_EOL; 

    } 

} 

myFunc('variable', 3, 'parameters'); 

This outputs: 
0 is variable 

1 is 3 

2 is parameters 

Variadics 

PHP 5.6 introduced variadics which explicitly accept a variable number of parameters.  By using the … token 
you specify that the function will accept a variable number of parameters.   
 
The variadic parameters are made available in your function as an array. 
 
Note that if you are mixing normal fixed parameters with a variadic syntax then the variadic parameter must be 
the last parameter in the list of parameters. 
 
The PHP manual has a very clear example15 which shows the interaction between compulsory, optional, and 
variadic parameters: 

                                                        
15 https://secure.php.net/manual/en/migration56.new-features.php  



 31 

<?php 

function f($req, $opt = null, ...$params) { 

    printf('$req: %d; $opt: %d; number of params: %d'."\n", 

        $req, $opt, count($params)); 

} 

 

f(1); 

f(1, 2); 

f(1, 2, 3); 

f(1, 2, 3, 4); 

f(1, 2, 3, 4, 5); 

This outputs: 
$req: 1; $opt: 0; number of params: 0 

$req: 1; $opt: 2; number of params: 0 

$req: 1; $opt: 2; number of params: 1 

$req: 1; $opt: 2; number of params: 2 

$req: 1; $opt: 2; number of params: 3 

Note that the variadic parameter is made available as an ordinary array $params. 
 

References 

By default PHP passes arguments to functions by value, but it is possible to pass them by reference.  You can do 
this by declaring the argument as pass by reference, as in this example: 

<?php 

function addOne(&$arg) { 

    $arg++; 

} 

$a = 0; 

addOne($a); 

echo $a; // 1  

The & operator marks the parameter as being passed by reference.  Changes to this parameter in the function 
will change the variable passed to it. 
 
The ability to pass a variable by reference at call time was removed in PHP 5.4.0.  This code will generate a fatal 
error: 



 32 

<?php 

function addOne($arg) { 

    $arg++; 

} 

$a = 0; 

addOne(&$a); // fatal error 

echo $a; 

Variable Functions 

Variable functions16 are similar in concept to variable variable names.  They’re easiest to explain with a syntax 
example: 

<?php 

function foo() { 

    echo 'Foo'; 

} 

$var = 'foo'; 

$var(); // calls foo() 

As of PHP 5.4.0 you can call any callable as a variable function.  We’ll discuss callables a little later in the 
“Callables, Lambdas, and closures” section 

Returns 

PHP will return NULL if you do not specify a return value for your function using the return keyword.  
Using the return statement will prevent further code from executing in your function. 

Return by reference 

It is possible to declare a function so that it returns a reference to a variable, rather than a copy of the variable.  
The PHP manual17 notes that you should not do this as a performance optimization, but rather only when you 
have a valid technical reason to do so. 
 
To declare a function as return by reference you place an & operator in front of its name: 

function &getValue() {...} 

Then, when calling the function you also place the & operator in front of the call: 
$myValue = &getValue(); 

After this call the $myValue variable will contain a reference to the variable that the getValue() function 
returns. 
 
The function itself must return a variable.  If you try to return, for example, a numeric literal like 1 a run-time 
error will be generated. 
 

                                                        
16 https://secure.php.net/manual/en/functions.variable-functions.php  
17 https://secure.php.net/manual/en/language.references.return.php  



 33 

Two use cases for this are the Factory pattern and for obtaining a resource like a file handle or database 
connection. 

Variable Scope 

As in other languages the scope of a PHP variable is the context in which it was defined.  PHP has three levels 
of scope – global, function, and class.  Every time a function is called a new function scope is created. 
 
You can include global scope variables into your function in one of two ways: 

<?php 

$glob = "Global variable"; 

function myFunction() { 

    global $glob; // first method 

    $glob = $GLOBALS['glob']; // second method 

     

    $glob = "Changed"; 

} 

myFunction(); 

echo $glob;  // Changed 

Note that the two methods have an identical effect of allowing you to use the $glob variable in 
myFunction() and have it refer to the $glob variable declared in the global scope. 
 
The use of global variables is usually quite strongly discouraged by coding standards as they introduce 
problems when writing tests and make debugging more difficult. 

Callables,  Lambdas, and closures 

Lambda and Closure 

A lambda in PHP is an anonymous function that can be stored as a variable. 
<?php 

$lambda = function($a, $b) { 

    echo $a + $b; 

}; 

This variable can be used in functions that accept a callable 
 
A closure in PHP is an anonymous function that encapsulates variables so they can be used once their original 
references are out of scope.  Another way of putting this is to say that the anonymous function “closes over” 
variables that are in the scope it was defined in. 
 
In practical syntax in PHP we define a closure like this: 



 34 

<?php 

$string = "Hello World!"; 

$closure = function() use ($string) {  

    echo $string;  

}; 

 

$closure(); 

That looks nearly identical to a lambda but notice the use ($string) syntax that occurs just before the 
code block begins.   
 
The effect of this is to take the $string variable which exists in the same scope of the closure and make it 
available within the closure. 
 
Notice that we can call lambdas and closures using the syntax we use for variable functions. 
 
In our lambda example above the function only had access to the parameters it was passed, and nothing from 
the containing scope would be passed in.  Calling echo $string would result in a warning because the 
variable doesn’t exist. 

Callables 

Callables were introduced as a type hint for functions in PHP 5.4.0. 
 
They are callbacks that some functions, for example usort(), accept.  
 
A callable for a function such as usort() can be one of the following: 
 

• An inline anonymous function 
• A lambda or closure variable 
• A string denoting a PHP function (but not language constructs) 
• A string denoting a user defined function 
• An array containing an instance of an object in the first element, and the string name of the function to 

call in the second element 
• A string containing the name of a static method in a class (PHP 5.2.3+) 

 
There are examples of all of these in the PHP manual18. 

                                                        
18 https://secure.php.net/manual/en/language.types.callable.php  



 35 

Strings and Patterns 

Declaring Strings 

In PHP strings may be declared either as simple type or complex type.  The difference is that complex strings 
will be evaluated with respect to control characters and variables. 
 
Simple strings are declared in ‘single quote marks’ while complex strings are declared in “double quote marks”. 
 
Example: 

$name = ‘Bob’; 

$a = ‘Hello $name\n”; 

$b = “Hello $name\n”; 

echo $a;       // Hello $name\n 

echo $b;       // Hello Bob 

In this example the new line character is output after Hello Bob, but in the simple string the literal characters 
are output. 
 
Notice also that the variable $name is evaluated as the string “Bob” and is inserted into the complex variable $b 
when it is output. 
 
In order to help the parser interpolate a complex string you may use braces to indicate a variable name.  This is 
necessary, for example, when outputting an element from an array where it might not be immediately clear that 
the square brackets are intended as punctuation in the string or as syntax to reference an element in the array: 

$arr = [‘one’, ‘two’, ‘three’]; 

echo "Array position 1 is {$arr[1]}"; 

As with other languages the backslash character can be used to escape control characters and quote marks: 
echo "Hello \’World\’";  // Hello ‘World’ 

echo 'Hello \”World\”';  // Hello “World” 

echo "Escaped \\ backslash";  // Escaped \ backslash 

Control characters 
The PHP manual19 has a list of control characters that may be used, but here they are in table form: 

                                                        
19 https://secure.php.net/manual/en/language.types.string.php  



 36 

Sequence Meaning 
\n Linefeed  
\r Carriage return 
\t Tab 
\v Vertical tab 
\e Escape 
\f Form feed 
\\ Backslash 
\$ Dollar 
\[0-7]{1,3} Sequences matching this regular expression are in octal notation 
\x[0-9A-Fa-f]{1,2} Similarly, matching sequences are in hexadecimal notation 
\u{{0-9a-f}{1,6}} Matching sequences are a Unicode codepoint which will be output 

to the string as as that codepoints UTF-8 representation 

Heredoc and Nowdoc 
A heredoc in PHP is a convenient way to declare a string that spans multiple lines.  Instead of having to add in 
multiple new line characters you can declare the string in one easy format. 
 
Heredoc strings are evaluated for control characters and variables, just like double quoted strings are. 
 
Common uses for heredoc include creating SQL queries, or for creating formatted snippets of HTML for emails 
or web pages. You can also use them to initialize variables, or anywhere else that you want to use a string that 
spans multiple lines. 
 
Nowdoc was introduced in PHP 5.3.0 and is to heredoc what single quoted strings are to double quoted strings.  
In other words Nowdocs are not evaluated for special characters and variables. 
 
Heredocs use the syntax like this: 

<?php 

echo <<<HEREDOC 

This is a heredoc string, note: 

  1) the capitalization of the tag 

  2) the tag name follows variable naming rules 

  3) where the closing tag is 

HEREDOC; 

The closing tag must start on the first character of a new line. 
 
You specify that a string is a Nowdoc and not a Heredoc by wrapping the label in single quotes. 



 37 

<?php 

echo <<<'NOWDOC' 

This is a nowdoc string, note: 

    1) Single quotes around the label 

    2) Variables will not be evaluated 

    3) Control characters will not be evaluated 

NOWDOC; 

PHP and multibyte strings 

A variable-width encoding scheme uses codes of differing lengths to encode a character set.  Multibyte 
encodings use varying number of bytes to encode characters. 
 
Multibyte encoding allows a larger number of characters to be encoded and so represented on a computer.  One 
of the encoding schemes that you will commonly encounter in PHP is UTF-8. 
 
PHP implements strings as an array of bytes with an integer indicating the length of the buffer (not null 
terminated).  It does not dictate a specific encoding for strings and just stores the bytes. 
 
Consequently we can see that PHP does not natively support multibyte encoding.  Instead it uses the mbstring 
extension to handle multi-byte strings.   
 
The native string functions in PHP assume strings are an array of single bytes, so functions like substr(), 
strpos(), strlen(), and strcmp() will not work on multibyte strings.   You should use the multibyte 
equivalents of those functions, such as mb_substr() for example. 

Unicode 
Unicode was an attempt to unify all the code sets that represented characters.  Unicode defines code points that 
are abstract concepts of a character.  A Unicode code point represents a character and is written like this: 
U+004120.  That number is assigned to capital “A”.   
 
There is no limit on the characters that Unicode can store.  There was some confusion originally about Unicode 
being two bytes, but that related to the encoding scheme and not to Unicode itself. 
 
Unicode is not an encoding system.  Encoding is the way in which a Unicode character is represented. 
 
UTF-8 stores all the code points from 0-127 in a single byte.  This covers the entire range of the English 
alphabet, numbers, and some symbols.  Code points above 127 are stored in multiple bytes (up to 6 bytes). 
 
Because the Unicode code points from 0-127 match the ASCII table from 0-127 English text encoded in UTF-8 
looks exactly the same as if it were encoded in ASCII.  Only people who wrote characters with accents would 
ever end up with a file that was encoded differently from ASCII. 
There are hundreds of encoding schemes that are able to store some of the Unicode code points, but not all.  If 
you use one of these encodings and encounter a Unicode character that cannot be represented you’ll be 
presented with a question mark or empty box.   
 

                                                        
20 http://unicode-table.com/  



 38 

For example, if your encoding scheme is geared towards storing Hebrew characters and you try to store Russian 
characters in it then you’ll get a bunch of question marks instead of your Russian characters because the 
encoding scheme doesn’t support them. 

Telling clients how a string is encoded 
You can’t always detect how a string is encoded.  Unless you know how a string is encoded you won’t be able 
to display it with confidence.  It’s your job as a PHP programmer to tell the clients reading your HTML output 
how it is encoded. 
 
You should specify the character encoding scheme being used in the Content-Type HTTP header.  This lets 
the client know how your output is encoded and therefore how to display it correctly. 
 
Putting the content type in the HTML as a meta tag is slightly less satisfactory because unless the client knows 
the encoding type it won’t be able to read the HTML to determine the encoding. You can get away with doing it 
this way, but it’s better not to. 

Changing between encoding schemes 
The mbstring extension provides a number of functions that can be used to help detect and convert between 
encoding schemes. 
 
The mb_detect_encoding() function will go through a list of possible encodings and attempt to 
determine how the string is encoded.  You can change the order of the detection with the 
mb_detect_order() function. 
 
You can use mb_convert_encoding() to convert a string between encoding formats. 

Matching Strings 

Comparing strings in PHP should be done with an appropriate level of care when you’re trying to match 
different variable types.  In the section Casting variables we read through the manual pages relating to casting, 
make sure that you’re familiar with how PHP casts various variable types to string. 
 
Using comparison operators like > and <  might not always work as expected.  It’s common to refer to PHP 
using alphabetical comparison to evaluate strings against these operators.   
 
However, it uses the ASCII value of the character to make the comparison.  Lower case letters have a higher 
ASCII value than capitals so you can have the situation where lower case letters are placed after capitals, like 
this: 



 39 

<?php 

$a = "PHP"; 

$b = "developer"; 

if ($a > $b) { 

    echo "$a > $b"; 

} else { 

    echo "$a < $b"; 

} 

// developer comes before PHP in the alphabet 

// but this script outputs 

// PHP < developer 

Recall the rules for converting strings to integers that we discussed in the section on “Casting variables”.  In the 
below example the string is cast to an integer value of 12, which equals the float value of 12.00 and so the 
message is echoed. 

<?php 

$a = "12 o'clock"; 

$b = 12.00; 

if ($a == $b) { 

    echo "The mouse ran up the clock"; 

} 

Unless you are confident about the strings you’re comparing you should consider using the identity operator 
=== to make this sort of comparison. 
 
In addition to using operators PHP also provides a number of string comparison functions. 
 
strcmp() is a function to perform binary safe string comparisons.  It takes two strings as arguments and 
returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are equal. 
 
It has a case insensitive version named strcasecmp() that first converts strings to lowercase and then 
compares them. 
 
This example shows the difference: 

<?php 

$a = "PHP"; 

$b = "developer"; 

$comparison = strcmp($a, $b); 

echo $comparison . PHP_EOL; // -20 

$caseInsensitive = strcasecmp($a, $b); 

echo $caseInsensitive . PHP_EOL; // 12 

The functions strncmp() and strcasencmp() can be used to only compare the first “n” characters of two 
strings. 



 40 

 
PHP has a very powerful function called similar_text() that will calculate the similarity between two 
strings.  This can be a very computationally expensive procedure for long sections of text.  The order that you 
pass the arguments in is significant, so similar_text($a, $b) != similar_text($b, $a).  
 
Another function, levenshtein(), can be used to calculate the Levenshtein distance between two strings.  
The Levenshtein distance is defined as the minimal number of characters you have to replace, insert or delete to 
transform str1 into str2. 
 
To compare substrings you can use the binary safe substr_compare() function. 
 
PHP 5.6.0 introduced the hash_equals() function which is a timing attack safe way of comparing strings.  
We discuss this in the Security section. 

Extracting strings 

An individual position in a string can be referenced with the same syntax as an array element.  All positions in 
the string are always zero based – the first character in the string is position 0. 

<?php 

$string = 'abcdef'; 

echo $string[0];    // a 

 
You can use the substr() function to return a portion, or slice, of a string.  The PHP Manual21 shows the 
syntax for the command like this: 
 
string	
  substr	
  (	
  string	
  $string	
  ,	
  int	
  $start	
  [,	
  int	
  $length	
  ]	
  ) 
 
We can see that it takes two compulsory parameters and one optional parameter. 
 
Both the start and the length parameters can be positive or negative.   
 
If the start value is greater than the length of the string substr() will return false. 
 
If the start value is positive (or 0) the slice of the string returned starts at the start’th position of the string 
counting from the beginning. 
 
Otherwise, if it is negative the slice starts at the start’th position from the ending of the string. 

<?php 

echo substr("abcdef", 2) . PHP_EOL;    // cdef 

echo substr("abcdef", -2) . PHP_EOL;    // ef 

If length is omitted, as in the above example, then the slice will continue from the slice starting point to the end 
of the string. 
 
If length is given as a positive number then at most length characters will be returned. 
 
If length is given as a negative number then that many characters will be omitted from the end of the string: 
                                                        
21 https://secure.php.net/manual/en/function.substr.php  



 41 

<?php 

echo substr("abcdef", 0, 2) . PHP_EOL;    // ab 

echo substr("abcdef", 0, -2) . PHP_EOL;    // abcd 

If length is given and is 0, FALSE, or NULL then an empty string is returned 
 
The PHP Manual gives some more examples: 

<?php 

echo substr('abcdef', 1);     // bcdef 

echo substr('abcdef', 1, 3);  // bcd 

echo substr('abcdef', 0, 4);  // abcd 

echo substr('abcdef', 0, 8);  // abcdef 

echo substr('abcdef', -1, 1); // f 

Searching Strings 

Useful t ips 

A common complaint about PHP is that it is difficult to tell the order of parameters for searching strings and 
arrays.   
 
PHP search parameters have a $haystack that we are searching for a $needle. 
 
Compare the order of parameters used for strpos() and array_search(): 

<?php 

$arr = ['a', 'b', 'c', 'd', 'e', 'f' ]; 

$str = 'abcdef'; 

echo strpos($str, 'c') . PHP_EOL; 

echo array_search('c', $arr) . PHP_EOL; 

It seems at first that sometimes the $needle parameter comes first and sometimes the $haystack parameter 
comes first.  
 
However, it’s a lot more simple when you remember that PHP is using underlying C libraries and the consistent 
rule is: 

• For strings it is always $haystack then $needle 
• For arrays it is always $needle then $haystack 

 
The next useful tip is to remember the difference between 0 and false.  Although Boolean false evaluates to 0 if 
you cast it to integer, the number 0 is not identical to Boolean false.  Here’s an example: 



 42 

<?php 

$string = 'abcdef'; 

if (strpos($string, 'a') == false) { 

    echo "False negative!" . PHP_EOL; 

} 

Remember that strings are zero based, so the first position is position 0.  strpos() is returning the integer 0 
because it found “a” in the first position. 
 
We are using the equality operator == to check the result of strpos() and so we are falsely reporting that 
the letter “a” does not appear in the string above.    
 
To handle the case where the substring is genuinely not found you should use the identity === operator. 

Quick overview of search functions 

PHP has a number of functions used to search strings. 
 
substr_count() will return the number of substring occurances in a string. 
 
strstr() searches for a substring in a string and returns the portion of the haystack that occurs after the first 
found occurrence.  It returns false if no occurrence is found.  Note that using strpos() is preferable because 
it is faster. 
 
stristr() is a case-insensitive version of strstr().  As a general rule the case insensitive functions have 
an “i” after the prefix. 
 
strchr() returns the portion of the string before the first occurrence of the needle. 
 
strpos() returns the position of the first occurrence  of the needle. 
 
stripos() is a case-insensitive version of strpos(). 
 
strspn() finds the length of the initial segment of a string consisting entirely of characters contained within 
a given mask. 
 
strcspn() returns the length of the initial segment of subject which does not contain any of the characters 
in mask.  In other words it searches for the first occurrence of any of the mask letters in the string and returns 
the number of characters that exist before it is found. 

Replacing strings 

PHP has three simple functions for replacing strings.  str_replace() and it’s case-insensitive version 
str_ireplace() can be used for basic replacements. 

<?php 

echo str_replace('foo', 'bar', 'Delicious food');  

They both take three parameters, the search string, replacement string, and the string to operate on. 
  
If you pass a fourth variable by reference it will be set to the number of replacements that PHP performed. 
 



 43 

Both the search and replacement parameters can be arrays.  This lets you replace multiple values in one call, as 
in this example: 

<?php 

$string = "I like black hot coffee"; 

$search = ['black', 'coffee']; 

$replace = ['green', 'tea']; 

echo str_replace($search, $replace, $string); 

The example above will replace black with green and coffee with tea. 
 
You can use the substr_replace() function to replace substrings.  substr_replace() replaces a copy 
of the string delimited by the start and (optionally) length parameters with the string given in replacement. 
 
strtr() is another function to replace substrings and characters.  If only two parameters are supplied the 
second parameter should be an array of replacement pairs.  It otherwise takes three parameters, as in this 
example from the PHP manual it is being used to convert characters with accent marks to English format 
characters: 

<?php 

$addr = strtr($addr, "äåö", "aao"); 

The most flexible and powerful way to replace strings is by using the preg_match() function which allows 
you to use regular expressions to find slices of the string to replace.  We’ll learn more about regular expressions 
in the “String Patterns – Regular Expressions” section. 

Formatting Strings 

The printf() function is used to output a formatted string.  You should read carefully though the PHP 
manual22 and make sure that you’ve practiced using it.  The general usage is to specify a formatting string and 
the values that need to be placed into it. 

<?php 

$minutes = 60; 

$timeUnit = "an hour"; 

printf("There are %u minutes in %s.", $minutes, $timeUnit); 

In the example you’ll notice that the first parameter to printf() has two placeholders marked by percentage 
symbols in it.  The following parameters are values that must be typecast and inserted into those placeholders. 
 
There are a number of symbols that can be used to format parameters: 
 

                                                        
22 https://secure.php.net/manual/en/function.printf.php  



 44 

Symbol Format 
%% a literal percent character. No argument is required. 
%b the argument is treated as an integer, and presented as a binary number. 
%c the argument is treated as an integer, and presented as the character with 

that ASCII value. 
%d the argument is treated as an integer, and presented as a (signed) decimal 

number. 
%e the argument is treated as scientific notation (e.g. 1.2e+2). The precision 

specifier stands for the number of digits after the decimal point since PHP 
5.2.1. In earlier versions, it was taken as number of significant digits (one 
less). 

%E like %e but uses uppercase letter (e.g. 1.2E+2). 
%f the argument is treated as a float, and presented as a floating-point number 

(locale aware). 
%F the argument is treated as a float, and presented as a floating-point number 

(non-locale aware). Available since PHP 4.3.10 and PHP 5.0.3. 
%g shorter of %e and %f. 
%G shorter of %E and %f. 
%o the argument is treated as an integer, and presented as an octal number. 
%s the argument is treated as and presented as a string. 
%u the argument is treated as an integer, and presented as an unsigned decimal 

number. 
%x the argument is treated as an integer and presented as a hexadecimal 

number (with lowercase letters). 
%X the argument is treated as an integer and presented as a hexadecimal 

number (with uppercase letters). 
  

PHP formats are locale aware23 which affects how they represent numbers and dates.  For example if you set 
the locale to Dutch then the date would be output in Dutch.  This is shown in an example on the PHP manual: 

<?php 

/* Set locale to Dutch */ 

setlocale(LC_ALL, 'nl_NL'); 

/* Output: vrijdag 22 december 1978 */ 

echo strftime("%A %e %B %Y", mktime(0, 0, 0, 12, 22, 1978)); 

The PHP Manual warns that the locale information is maintained per process, not per thread.  
 
If you are running PHP on a multithreaded server API like IIS, HHVM or Apache on Windows, you may 
experience sudden changes in locale settings while a script is running, though the script itself never called 
setlocale().  
 
This happens due to other scripts running in different threads of the same process at the same time, changing 
the process-wide locale using setlocale(). 
 

                                                        
23 https://secure.php.net/manual/en/function.setlocale.php  



 45 

On a POSIX system you can use the shell command “locale –a” to list all of the locales it supports.  On 
Windows machines there are pages on the MSDN24 listing the regions and you can see them in your control 
panel. 

Formatting Numbers 

The number_format() function is a basic way to format numbers.   
 
number_format() is not locale aware and so won’t automatically choose the separator characters for you.  
By default thousands separator is a comma and no decimal places are displayed. 
 
The function takes parameters for the number to be formatted, how many decimal places to display, the 
character for the decimal point, and the thousands separator character.   
 
You can pass either 1, 2, or 4 parameters to the function.  Here is an example: 

<?php 

$number = 1234.5678; 

echo number_format($number) . PHP_EOL; 

echo number_format($number, 3) . PHP_EOL; 

echo number_format($number, 2, ',', '.') . PHP_EOL; 

 
This outputs: 

1,235 

1,234.568 

1.234,57 

To format currency you can use the money_format() function.  It is locale aware and uses the information 
set by the host system.   
 
In the following example you can see an example of this: 

<?php 

// Locale is British English 

setlocale(LC_MONETARY, 'en_GB'); 

echo money_format('%.2n', "5000000.123");  

// Locale is Denmark 

setlocale(LC_MONETARY, 'da_DK'); 

echo money_format('%.2n', "5000000.123");  

The output looks like this: 

                                                        
24 https://msdn.microsoft.com/en-us/library/cdax410z%28v=vs.90%29.aspx  



 46 

£5,000,000.12 

kr 5.000.000,12 

String Patterns – Regular Expressions 

PHP uses Perl Compatible Regular Expressions (PCRE).  Up until PHP 5.3 it also supported POSIX regular 
expressions, but these are now deprecated. 
 
Regular expressions are a set of rules for matching strings against.  The rules are written as a string using a 
format that describes the pattern you are searching for. 
 
When learning regular expressions you should find an online regex tester that you like.  There are several to 
choose25 from and they make it a lot quicker to play with expressions and see how they match strings. 

Delimiters 

Regular expressions are delimited by characters that appear at the beginning and end of each pattern in your 
expression.   
 
Usually the forward slash is used, but  # and ! are also common. 
 
Any character can be used, but the delimiter will need to be escaped inside your expressions so it is standard to 
choose a delimiter that is not likely to occur in your search expression.   
 
For example if you’re going to be searching directories to find those which match a pattern then the forward 
slash character might not be the best choice of delimiter.   

Meta-Characters 

Meta-characters are interpreted to have a meaning in the search pattern.  They need to be escaped if you intend 
to have them as a literal part of the expression. 
 

Character Meaning 
\ General escape character 
^ Start of subject, or line 
$ End of subject, or line 
. Match any character except new line 
[ Start defining a character class 
] End defining a character class 
| Start of an alternate branch (like an “or”) 
( Start of a sub-pattern 
) End of a sub-pattern 
? 0 or 1 quantifier 
* 0 or more quantifier 
+ 1 or more quantifier 
{ Start min/max quantifier 
} End min/max quantifier 

 

                                                        
25 Here’s an example : https://regex101.com/  



 47 

We’ll be building on this as we work through this section, but for now just be aware that these symbols convey 
a certain meaning in a regular expression or pattern.  You will need to be familiar with them before sitting your 
exam. 

Generic Character Types 

Regex offers a way for you to specify that a character in your search string may be any of a particular type. 
 
You specify them using the backslash (escape) metacharacter and then providing the letter for the type.   
 
The following table lists the character types that are available in PCRE: 
 

Symbol Character type 
\d Any decimal digit 
\h Any horizontal whitespace character 
\s Any white space character 
\v Any vertical white space character 
\w Any “word” character 
  
\D Any character that is not a decimal digit 
\H Any character that is not horizontal whitespace 
\S Any character that is not whitespace 
\V Any character that is not a vertical white space character 
\W Any “non-word” character 

 
You should immediately spot that the capital symbol is the inverse of the lower case symbol. 
 
A “word” character is any letter, digit, or the underscore character.  The actual characters that are included in 
this are locale aware. 

Boundaries 

A word boundary is a position in the string where the current character and previous character do not both 
match \w or \W.   
 
In other words it is a position in the string where a word starts or finishes, or a position where one of the 
characters matches \w and the other matches \W. 
 

Symbol Boundary 
\b Word boundary 
\B Not a word boundary 
\A Start of a subject 
\Z End of subject or newline at end 
\z End of subject 
\G First matching position in subject 

Character Classes 

Character classes are very flexible ways to define what set of characters in your search string can be matched.  
 
By specifying a small sequence of characters in your pattern you are able to match a much larger set of 
characters in your search string. 



 48 

 
We saw in the meta-characters table that we create a character class by putting it inside square brackets.  An 
example of a character class is [A-Z] which stands for all of the letters in the upper case alphabet. 
 
We can also use all of the generic types in character classes, so [A-Z\d] would match all of the uppercase letters 
as well as digits. 

Matching more than once 

The expression /[A-Z\d]/ applied against the string “abc123ABCabc” will match the “1” character.  In other 
words it matches the first occurrence in the search string of a character that matches the expression.  
 
By using the “+” quantifier we can specify that we want one, or more, of the pattern.  So the expression /[A-
Z\d]+/ applied against the string “abc123ABCabc” will match the “123ABC” characters. 
 
We can use braces to limit the amount of matches.  The syntax is best displayed in a table, where we match the 
expression against the string “abc123ABCabc” 
 

Expression Limit Output 
/[A-Z\d]+/ One or unlimited 123ABC 
[A-Z\d]{3} Exactly 3 123 
[A-Z\d]{3,} 3 or more 123ABC 
[A-Z\d]{3,5} Between 3 and 5 123AB 
[A-Z\d]{50} Exactly 50 No match 

Capturing groups 

Capturing groups are delineated by brackets and allow you to apply a quantifier to the group.   
 
They also produce numbered groups that store the value that was matched, and can be referenced elsewhere in 
your expression. 
 
In this example we create a capturing group around the word “cheeseburger” and use the group to specify that 
zero or one of them will be matched. 

<?php 

$subject = "I can haz Cheeseburgers"; 

$pattern = "/I can haz (Cheeseburger)?/"; 

$matches = []; 

preg_match($pattern, $subject, $matches); 

var_dump($matches[0]); 

This outputs string(22) "I can haz Cheeseburger".  Note that the “s” at the end of the string is 
not matched.  As an exercise play with the regex in your favourite editor and see what happens if you use a 
subject “I can haz” (without a space at the end of the string). 
 
To optimize your query you can use non-capturing groups.  You should use these when you don’t need to 
capture the match.   
 



 49 

They’re marked by placing a ?: mark at the start of your group.  The example above would be written as /I 
can haz (?:Cheeseburger)?/.  Note that this expression will still return the string to PHP as above, but 
it just won’t store the string Cheeseburger as a group for the expression to reference. 
 
It may seem confusing that the ? is a quantifier and also denotes a non-capturing group.  Just remember that a 
quantifier cannot occur at the start of a group because there is nothing to quantify. 

Greed and Laziness 

By default matching is “greedy” and will match as much as possible of the string. 
 
Lets consider an example that we’ll work with.  Lets imagine that we want to match HTML tags, so we try the 
following: 

<?php 

$subject = "Some <strong>html</strong> text"; 

$pattern = "/<.*>/"; 

$matches = []; 

preg_match($pattern, $subject, $matches); 

var_dump($matches[0]);  

This outputs string(21) "<strong>html</strong>" which is clearly more than the html tag we 
were wanting. 
 
It is greed that is to blame for this, the * quantifier is greedy and attempts to find the longest possible match.  It 
returns the characters between the opening < of the strong tag and the last > of the closing tag, which is the 
longest possible match. 
 
 By contrast, a lazy search returns the shortest possible match.  We can modify a quantifier to make it lazy by 
adding a ? to it.   
 
Changing the pattern in our example like this: 

$pattern = "/<.*>/"; 

Will result in output like this: string(8) "<strong>" 
 
There are a lot more options to modify quantifiers but they are outside of the scope of this manual. 

Getting al l  matches 

So far our expressions are returning just the first occurrence of the matching portion of a search string.  Lets 
say that we want to find all of the matches in the string.   
 
PCRE has a global modifier (more on those later), but PHP uses a separate function preg_match_all() to 
return all matches. 



 50 

<?php  

$subject = "Some <strong>html</strong> text"; 

$pattern = "/<.*?>/"; 

$matches = []; 

preg_match_all($pattern, $subject, $matches); 

var_dump($matches);  

This outputs: 
array(1) { 

  [0] => 

  array(2) { 

    [0] => 

    string(8) "<strong>" 

    [1] => 

    string(9) "</strong>" 

  } 

} 

Naming groups 

You can name capturing groups by adding ?<name> to the beginning of the brackets that opens the group.  
For example: 

<?php  

$subject = "test@example.com"; 

$pattern = "/^(?<username>\w+)@(?<domain>\w+).(?<tld>\w+)/"; 

$matches = []; 

if (preg_match($pattern, $subject, $matches)) { 

    var_dump($matches); 

} 

In this example we’re naming the first part of the matching pattern as username, the next as domain, and the 
next as tld.  This is a somewhat naïve example because it won’t work for email addresses like 
test@example.co.uk but it does serve to show the syntax.  The above example outputs: 



 51 

array(7) { 

  [0] => 

  string(16) "test@example.com" 

  'username' => 

  string(4) "test" 

  [1] => 

  string(4) "test" 

  'domain' => 

  string(7) "example" 

  [2] => 

  string(7) "example" 

  'tld' => 

  string(3) "com" 

  [3] => 

  string(3) "com" 

} 

So you are able to reference $matches[‘username’] and receive “test” in response, which is convenient. 

Pattern modifiers 

You can add a modifier after the closing delimiter of an expression. 
 

Modifier Function 
i The expression is case-insensitive 
m Multi-line mode.  Strings can span multiple lines and newline characters are 

ignored.  Instead of matching the beginning and end of the string the ^ and $ 
symbols will match the beginning and end of the line 

s The . metacharacter will also match newlines 
x Ignore whitespace unless you escape it. 
e This causes PHP code to be evaluated and is highly discouraged.  It is 

deprecated as of PHP 5.5 
U This makes the quantifiers lazy by default and using the ? after them instead 

marks them as greedy 
u This tells PHP to treat the pattern and string as being UTF-8 encoded.  This 

means that characters instead of bytes are matched. 
 



 52 

Arrays 
PHP has a large number of array functions.  The manual26 lists them on a single page, and you should make 
sure that you study this page and each functions manual page. Rather than duplicating this information I’ll 
focus on grouping and explaining some of these functions. 

Declaring and referencing arrays 

We will not dwell on what arrays are and will rather move straight onto the syntax used to declare arrays in 
PHP. 
 
Indexes are created as a set of value-pairs that are separated by commas. 

<?php 

// numeric index, auto assigned key 

$arr = array(10, 'abc', 30);  

// numeric index, key explicitly set 

$arr = array(0 => 10, 1 => 'abc', 2 => 30 ); 

// associative 

$arr = array('name' => 'foo', 'age' => 20);  

// short syntax 

$arr = ['name' => 'foo', 'age' => 20];  

If you do not specify a key then PHP will assign an auto-incrementing numeric key.  In the example the first 
two assignments are identical because PHP automatically assigns the key. 
 
A key may be numeric or a string.  An array may contain a mixture of numeric and string keys. 
 
Arrays keyed on numbers are called enumerative.  The first two examples above are enumerative.  String keyed 
arrays are called associative arrays.  The last two examples above are associative arrays.   

 
Arrays may be nested.  In other words an array value can itself be an array.  These are called multi-dimensional 
arrays. 
 
An individual array element may be referenced using the [] operator like this: 

<?php 

$arr = ['name' => 'foo', 'age' => 20]; 

echo $arr['age']; // 20 

If you do not specify a key in the brackets PHP assumes that you are trying to reference a new element.  You 
can use this to add an element to the end of an array: 

                                                        
26 https://secure.php.net/manual/en/ref.array.php  

PHP 5.4 introduced a new short syntax to declare arrays.  Instead of using the array() language 
construct you can use the [] operator 



 53 

<?php 

$arr = [0 => 'id', 'name' => 'foo', 'age' => 20]; 

$arr[] = 'example'; 

print_r($arr); 

This will output the following:  
Array 

( 

    [0] => id 

    [name] => foo 

    [age] => 20 

    [1] => example 

) 

Note that PHP chose the key by incrementing the highest numeric key in the array. 

Quirks of PHP array keys 

PHP arrays are zero based. 
 
PHP array keys are case sensitive.  $arr[‘A’] and $arr[‘a’] are different elements.    
 
Keys may only be a string or an integer and other variable types are cast into one of these types before being 
stored. 
 
Strings containing valid integers will be cast to the integer type. E.g. the key "8" will actually be stored under 8. 
On the other hand "08" will not be cast, as it isn't a valid decimal integer. 
 
Floats are also cast to integers, which means that the fractional part will be truncated. E.g. the key 8.7 will 
actually be stored under 8. 
 
Bools are cast to integers, too, i.e. the key true will actually be stored under 1 and the key false under 0. 
 
Null will be cast to the empty string, i.e. the key null will actually be stored under "". 
 
Arrays and objects cannot be used as keys. Doing so will result in a warning: Illegal offset type. 

 

Fill ing up arrays 

You can use the range() function to add values to an array based on a range of values you specify.  You 
specify the beginning, end, and step size for the range.   
 

If multiple elements in the array declaration use the same key, only the last one will be used as all 
others are overwritten. 



 54 

The PHP manual27 has many useful examples, but here is one based on one of the comments: 
<?php 

print_r(array_combine(range(11, 20, 2),range(1,5))); 

This will output: 
Array 

( 

    [11] => 1 

    [13] => 2 

    [15] => 3 

    [17] => 4 

    [19] => 5 

) 

Another command array_fill() will let you fill up an array with a single value.  It takes parameters for the 
starting index, how many values to fill, and the value to insert. 

<?php 

print_r(array_fill(10, 5, 'five')); 

This outputs: 
Array 

( 

    [10] => five 

    [11] => five 

    [12] => five 

    [13] => five 

    [14] => five 

) 

Related to this is the function array_fill_keys() which lets you specify which keys you want to fill with 
the value. 

Push, pop, shift ,  and unshift (oh my!) 

These four commands are used to add or remove elements from arrays.   
 

Function Effect 
array_shift() Shift an element off the beginning of array 
array_unshift() Prepend one or more elements to the beginning of an array 
array_pop() Pop the element off the end of array 
array_push() Push one or more elements onto the end of array 

 
You’ll probably notice that you can easily implement queues and stacks with these functions. 

                                                        
27 https://secure.php.net/manual/en/function.range.php  



 55 

 
The commands that remove an element from the array return it to you and shift all of the elements down.  
Numeric keys are reduced until they start counting from 0 and literal keys are left untouched. 
 
The PHP Manual pages have examples, but this one from the array_shift28 page shows exactly how the 
elements are shifted down: 

<?php 

$stack = array("orange", "banana", "apple", "raspberry"); 

$fruit = array_shift($stack); 

print_r($stack); 

In the output you will notice that “banana” now has the key of 0 where before it was 1: 
Array 

( 

    [0] => banana 

    [1] => apple 

    [2] => raspberry 

) 

Comparing Arrays 

It is possible to use the == and === operators to compare arrays.  When applied to arrays the equality operator 
returns true if the arrays have the same keys and values, regardless of their type.  The identity operator will 
only return true if the arrays have the same keys, values, in the same order, and of the same variable types. 

<?php 

$arr = ['1', '2', '3']; 

$brr = [1, 2, 3]; 

var_dump($arr === $brr); // false 

var_dump($arr == $brr);  // true 

However, there are PHP functions devoted to array comparisons that make more sophisticated comparisons 
possible. 

array_diff()  

The first you’ll need to know is array_diff() which takes a list of arrays as arguments.  It will return an 
array containing the values from the first array that were not present in any of the other arrays. 
 
This example examines a $net array against two other arrays. 

                                                        
28 https://secure.php.net/manual/en/function.array-shift.php  



 56 

<?php 

$animals = ['dog', 'cat', 'cow']; 

$birds = ['duck', 'chicken', 'goose']; 

$net = ['dog', 'chicken', 'goose', 'hamster']; 

print_r(array_diff($net, $animals, $birds)); 

This outputs an array with “hamster” in position 3.  Note that you can use as many arrays in the list of 
parameters you want, and the index of the value in the return array is the same as it was in the original array. 
 
array_diff_assoc() is an associative version of array_diff() and takes into account the array keys 
as well as their values.  To see the difference we can use a very simple example: 

<?php 

$a = ['a' => 'apple', 'b' => 'banana']; 

$b = ['a' => 'apple', 'd' => 'banana']; 

print_r(array_diff($a, $b)); 

print_r(array_diff_assoc($a, $b)); 

The result of array_diff() is an empty array, but array_diff_assoc() returns an array consisting of 
[b] => banana because the key for the value “banana” is ‘b’ in the first array and ‘d’ in the second. 

array_intersect()  

The function array_intersect() also takes a list of arrays as parameters.  It calculates which values from 
the first array are also present in all of the other arrays. 

<?php 

$birds = ['duck', 'chicken', 'goose']; 

$net = ['dog', 'cat', 'chicken', 'goose', 'hamster']; 

print_r(array_intersect($net, $birds)); 

This will output the elements that are in $net as well as in $birds: 
Array 

( 

    [2] => chicken 

    [3] => goose 

) 

Note that the keys are preserved. 
 
array_intersect_assoc() includes an index check when matching elements.  If we applied it to the 
arrays in the example above it would return an empty array.  The return value is empty because although the 
values in the arrays match their index does not.  

User defined matching functions 

PHP provides functions that allow you to specify your own comparison function.  
 



 57 

Consider array_udiff() as an example.  It takes a list of array parameters followed by a callable as the last 
parameter. 
 
Lets consider a trivial example, where we want to compare the lowercase value of the arrays to each other.  
More realistic use cases could involve more complicated operations, such as on objects for example. 

<?php 

$birds = ['duck', 'chicken', 'goose']; 

$net = ['Dog', 'Cat', 'Chicken', 'Goose', 'Hamster']; 

$diff = array_udiff($net, $birds, function($a, $b){ 

    $a = strtolower($a); 

    $b = strtolower($b); 

   echo $a . " - " . $b . PHP_EOL; 

    if ($a < $b) { 

        return -1; 

    } elseif ($a > $b) { 

        return 1; 

    } else { 

        return 0; 

    } 

}); 

print_r($diff); 

 
Note the following:  

• Since PHP 5.4 you can use closures as callables for any function that takes a callable as a parameter 
• Since PHP 5.3 you can use lambdas as callables, also for any function that takes a callable as a 

parameter.  In the example above we’re using a lambda. 
• The comparison function takes two arguments which will be the values to compare. 
• From the manual29: The comparison function must return an integer less than, equal to, or greater than 

zero if the first argument is considered to be respectively less than, equal to, or greater than the second. 
 
There are PHP functions to allow you to specify your own callable to compare keys, values, or both.   

Quick l ist  of comparison functions 

This table shows the arrays for performing the difference between functions.   
 
There are similar functions to perform the intersection.  They have the same naming convention and 
parameters so I’m not listing them here. 
 

                                                        
29 https://secure.php.net/manual/en/function.array-udiff.php  



 58 

Function Used for 
array_diff Computes the difference of arrays 
array_diff_assoc Computes the difference of arrays with additional index check 
array_udiff Computes the difference of arrays by using a callback function for 

data comparison 
array_udiff_assoc Computes the difference of arrays with additional index check, 

compares data by a callback function 
array_udiff_uassoc Computes the difference of arrays with additional index check, 

compares data and indexes by a callback function 
 
Note that array_udiff_uassoc() takes two callable functions as parameters, one for the values and the 
last parameter for the indexes.  Have a look at the manual page30 and make sure you have studied all of its 
related functions. 

Iterating through arrays 

There are two ways to iterate through an array – by using a cursor and by looping through them. 

Looping through arrays 

An enumerative PHP array can be looped through by incrementing an index counter, but this won’t work for 
associative arrays.  A better and more robust approach is to use the foreach() construct.   
 
Lets quickly look at two possible syntaxes that foreach() uses and then move on.   You should already be 
familiar with its usage if you’re considering sitting your exam so this is for the benefit of programmers from 
other languages. 

<?php 

$arr = [ 

    'a' => 'apple', 

    'b' => 'banana', 

    'c' => 'cherry' 

]; 

foreach($arr as $value) { 

    echo $value . PHP_EOL; 

} 

foreach($arr as $key => $value) { 

    echo $key . ' = ' . $value . PHP_EOL; 

} 

The first foreach() loop will traverse the array and pass the array values into the code block.  The second 
foreach() loop traverses it and passes the key and value. 
 
Since PHP 5.5 the list() construct can be used in foreach() loops to unpack nested arrays.  This is 
particularly useful when dealing with database results.   
 
Here is an example from the manual31: 

                                                        
30 https://secure.php.net/manual/en/function.array-udiff-uassoc.php  



 59 

<?php 

$array = [ 

    [1, 2], 

    [3, 4], 

]; 

foreach ($array as list($a, $b)) { 

    echo "A: $a; B: $b" . PHP_EOL; 

} 

Using array cursors 

Every array has a cursor, or pointer, that points at the current element.  A number of PHP functions use the 
cursor to determine which element to operate on. 
 
Here are the basic cursor commands: 
 

Function Performs 
reset Moves the cursor to the beginning of the array 
end Moves the cursor to the end of the array 
next Advance the cursor 
prev Rewind the cursor 
current Returns the value of the element the cursor points at 
key Returns the key of the element the cursor points at 

 
Objects can be iterated over using the same syntax, but it’s important to know that they implement an interface 
iterator32. 
 
A less commonly seen use of a cursor is one such as this: 

<?php 

$arr = [ 

    'a' => 'apple', 

    'b' => 'banana', 

    'c' => 'cherry' 

]; 

while (list($var, $val) = each($arr)) { 

    echo "$var is $val" . PHP_EOL; 

} 

list() is a language construct that assigns variables from a supplied array.  The each() function returns 
the current key and value pair from an array and advance the array cursor. 

                                                                                                                                                                                                
31 https://secure.php.net/manual/en/migration55.new-features.php  
32 https://secure.php.net/manual/en/class.iterator.php  



 60 

Walking through arrays 

The array_walk() function applies a user callable to every element in an array.  It takes two parameters – a 
reference to the array and the callable.   
 
The callable function will be passed two parameters, the first is the value of the element from the array and the 
second its index.   
 
Some internal functions, such as strtolower() for example, will throw a warning if they receive too many 
parameters and so are not suitable as a callback for array_walk(). 
 
If you need your callback function to alter the value of the array you should make sure that the first parameter 
is passed by reference. 
 
Here is an example that will convert all the elements of an array to uppercase: 

<?php 

$arr = [ 

    'a' => 'apple', 

    'b' => 'banana', 

    'c' => 'cherry' 

]; 

array_walk($arr, function(&$value, $key) { 

    $value = strtoupper($value); 

}); 

print_r($arr); 

Note that I pass the value by reference into my lambda function, so changing it in the lambda will affect the 
$arr variable. 
  
If we had used strtoupper() as a callback PHP would generate warnings. 

Sorting Arrays 

PHP offers several sort functions.  
 
They follow a naming convention whereby the base “sort” function is prefixed with “r” for reverse and “a” for 
associative. 
 
All of the sort functions take a reference to the array as their parameter and return a Boolean value indicating 
success or failure. 
 



 61 

Function Used for 
sort Sorting arrays alphabetically 
rsort Reverse alphabetical sort 
asort Associative sort 
arsort Reversed associative sort 
ksort Key sort 
krsort Reverse key sort 
usort User defined comparison function for sorting 
shuffle Pseudo-random sort 

 
The associative sorts will sort by value and maintain the index association.  Have a look at one of their manual 
pages for an example. 
 
All of the functions (except usort) accept an optional parameter to indicate the sort flag.  These flags are 
predefined constants: 
 

Flag Meaning 
SORT_REGULAR Compare items normally – don’t change types 
SORT_NUMERIC Cast items to numeric values and then compare 
SORT_STRING Cast items to strings and then compare 
SORT_LOCALE_STRING Use locale settings to cast items to strings  
SORT NATURAL Use natural order sorting, like the function natsort() 
SORT_FLAG_CASE Can be combined with SORT_STRING and SORT_NATURAL 

to sort strings case-insensitively 

Natural order sorting 
Natural ordering is a sort order that makes sense to human beings.  It is an alphabetic sort order, but multiple 
digits are treated as a single character. 
 
The function natsort() does not take flags and is the same as called sort() with the SORT_NATURAL 
flag set. 
 
As an example lets start with a string that looks sorted to our human eyes, shuffle it up, and then use both 
forms of sorting to see how it comes out: 

<?php 

$a = $b = explode(' ', 'a1 a2 a10 a11 a12 a20 a21'); 

shuffle($a); 

shuffle($b); 

natsort($a); 

sort($b); 

print_r($a); 

print_r($b); 

Note that I’ve used the explode function to break up a string into an array.  This outputs: 



 62 

Array 

( 

    [5] => a1 

    [2] => a2 

    [0] => a10 

    [4] => a11 

    [6] => a12 

    [3] => a20 

    [1] => a21 

) 

Array 

( 

    [0] => a1 

    [1] => a10 

    [2] => a11 

    [3] => a12 

    [4] => a2 

    [5] => a20 

    [6] => a21 

) 

Standard PHP Library (SPL) – ArrayObject class 

The SPL33 library includes the ArrayObject class that allows you to create objects from arrays.  These objects 
can use the methods of the ArrayObject class, which are listed on the manual page34. 
 
This lets you work with arrays as objects, as in this example from the PHP manual: 

<?php 

$fruits = array("d" => "lemon", "a" => "orange", "b" => "banana", "c" => 

"apple"); 

$fruitArrayObject = new ArrayObject($fruits); 

$fruitArrayObject->ksort(); 

foreach ($fruitArrayObject as $key => $val) { 

    echo "$key = $val\n"; 

} 

 
When constructing an ArrayObject you pass in an input that can be either an array or an object.   
 
You can also optionally specify flags: 
                                                        
33 https://secure.php.net/manual/en/book.spl.php  
34 https://secure.php.net/manual/en/class.arrayobject.php  



 63 

 
Flag Effect 
ArrayObject::STD_PROP_LIST Properties of the object have their normal 

functionality when accessed as list 
(var_dump, foreach, etc.). 

ArrayObject::ARRAY_AS_PROPS Entries can be accessed as properties (read 
and write). 

 
These flags can be set with the setFlags() method, as in this example from the manual35:  

<?php 

// Array of available fruits 

$fruits = array("lemons" => 1, "oranges" => 4, "bananas" => 5, "apples" => 10); 

 

$fruitsArrayObject = new ArrayObject($fruits); 

 

// Try to use array key as property 

var_dump($fruitsArrayObject->lemons); 

// Set the flag so that the array keys can be used as properties of the 

ArrayObject 

$fruitsArrayObject->setFlags(ArrayObject::ARRAY_AS_PROPS); 

// Try it again 

var_dump($fruitsArrayObject->lemons);  

This example will output: 
NULL 

int(1) 

 

                                                        
35 https://secure.php.net/manual/en/arrayobject.setflags.php  



 64 

Object Orientated PHP 
Object Orientated code runs slower than procedural code but makes it easier to model and manipulate complex 
data structures.   PHP has supported object orientated programming since version 3.0 and since then it’s object 
model has been extended and reformed extensively. 
 
This reference is not going to try to teach Object Orientated programming but will rather focus on the PHP 
implementation. 

Declaring Classes and Instantiating Objects 

Classes are declared using the class keyword. 
<?php  

class ExampleClass 

{ 

    // class code 

} 

Classes can be named using the same rules as variables.  Your coding standards will determine the case 
convention you use. 
 
To instantiate an object from a class you use the new keyword. 

<?php  

$exampleObject = new ExampleClass(); 

Autoloading Classes 

Classes should be defined before they are used, but you can make use of autoloading36 to load classes when they 
are required.  Together with coding standards like PSR437 that govern where PHP will look for a class this can 
be an indispensable feature.   
 
You won’t be asked questions about PSR4 in the Zend examination, but the standards put forward by the FIG 
group are very important in the PHP world and if you’re new to PHP you should be aware of them. 
 
Autoloading in PHP is accomplished the the spl_autoload_register() function38.  A PSR4 compliant 
implementation is given on the PHP FIG group webpage, but lets have a look at a more simple demonstration 
from the PHP manual for an example: 

                                                        
36 https://secure.php.net/manual/en/language.oop5.autoload.php  
37 http://www.php-fig.org/psr/psr-4/  
38 https://secure.php.net/manual/en/function.spl-autoload-register.php  



 65 

<?php  

function my_autoloader($class) { 

    include 'classes/' . $class . '.class.php'; 

} 

 

spl_autoload_register('my_autoloader'); 

 

// Or, using an anonymous function as of PHP 5.3.0 

spl_autoload_register(function ($class) { 

    include 'classes/' . $class . '.class.php'; 

}); 

Using spl_autoload_register() lets you specify what function PHP will call if it is unable to load a class.  You can 
include files in this function and so declare the class.  If PHP is unable to find the class after this function has 
run then it will throw a fatal error. 

Visibil ity or Access Modifiers 

The visibility of a method or property can be set by prefixing the declaration with public, protected, or 
private.  
 
Public class members can be accessed from anywhere.   
 
Protected class members can be accessed from within the class and by its children.   
 
Private class members can only be accessed from within the class itself. 
 
If you don’t explicitly specify a visibility then it will default to public. 

Instance Properties and Methods 

Properties 

Class properties are declared by using one of the visibility modifiers followed by the name of the property.  
Property names follow the same naming rules as variables. 

<?php 

class Properties 

{ 

    public $email; 

    protected $name = 'Alice'; 

    private $balance = 60 * 5; 

} 

Properties can be initialized to default values.  They can be initialized with expressions, but not functions. 



 66 

<?php 

class BrokenPropertyInit 

{ 

    private $lastLogin = time(); 

} 

This example won’t run because you cannot initialize the class property using a function. 

Methods 

Methods are functions within a scope construct.  They are declared in a function by using a visibility modifier 
followed by the function declaration.  If you omit a visibility modifier the method will have public visibility. 

<?php 

class MethodExample 

{ 

    private $name; 

     

    public function setName($name) { 

        $this->name = $name; 

    } 

} 

Methods can access non-static object properties using the $this pseudo-variable.  

  
 

Static Methods and Properties 

Declaring a method or property as static makes it available without needing a concrete implementation of the 
class. 
 
Because a static method can be called without an instantiated object the pseudo-variable $this is not 
accessible in these methods. 
 
You should not call a non-static method statically.  This is deprecated in PHP7 and discouraged in PHP5. 
 
Referencing a static property or method is done using the scope resolution operator, which is a double-colon.   

The $this pseudo-variable is defined in objects and refers to the object itself.  In static methods there 
is no object and so $this is not available. 



 67 

<?php 

class MyClass 

{ 

    public static function sayHello() { 

        echo "Hello World" . PHP_EOL; 

    } 

     

    public function someFunction() { 

        self::sayHello(); 

    } 

} 

MyClass::sayHello(); // Hello World 

$object = new MyClass(); 

$object->someFunction(); // Hello World 

When we reference a static property from within the class we can use self, parent, or static to refer to 
it.  We’ll deal with the static keyword in the section on “Late Static Binding” in this chapter.   
 
When referencing the static class member from outside the class you prefix the scope resolution operator with 
the name of the class.  In the example above we referenced the static function with MyClass::sayHello(). 

Working with Objects 

Copying Objects 

Objects are always passed by reference.  If you want to create a copy of the object you must use the clone() 
keyword. 

<?php  

$objectCopy = clone $originalObject; 

PHP will create a shallow copy of the object.   
 
In a shallow copy, if the source contains references to variables or other objects then those references are 
copied into the new object.  This means that the original and cloned object share a reference to the same target 
object. 
 
By contrast a deep copy creates new versions of referenced objects and inserts references to these into the 
cloned object.  This is slower and more expensive because it involves creating a lot more objects.  The cloned 
object will contain references to new copies of objects that the original references. 
 
When cloning an object PHP will try to execute the __clone() method in the object.   You can override this 
method to include your own behaviour for cloning an object.  This method cannot be called directly. 

Serial izing Objects 

Object serialization is accomplished with the serialize() and unserialize() functions.  These 
functions support any type of PHP variable, except for resources. 
 



 68 

When an object is serialized PHP will try to call the __sleep() method on it, and when it is unserialized the 
__wakeup() function is called. 
 
Serializing an object gives a byte-stream representation of any value that can be stored in PHP.  Resources 
cannot be serialized.  Strings in PHP can contain byte-streams so you can place serialized objects into them. 
 
The string will refer to the class of the object serialized and will contain all of the variables associated with it.  
References to anything outside of the object cannot be stored and will be lost, but circular references to 
anything inside the object will be retained. 
 
When you unserialize the object PHP must have the class declared.  If it does not have the class defined it will 
be unable to make an object of the correct type and will instead create one of type 
__PHP_Incomplete_Class_Name which has no methods. 

<?php  

$objectOriginal = new A; 

$string = serialize($objectOriginal); 

file_put_contents('serialize.txt', $string); 

// in another PHP file 

$string = file_get_contents('serialize.txt'); 

$objectCopy = unserialize($string); 

Casting Objects to String 

You can define how your object will be cast to string by declaring the __toString() method.  PHP will call 
this method and return its result when it tries to cast your object to string. 

<?php  

class User 

{ 

    private $firstName = 'Example'; 

    private $lastName = 'User'; 

    function __toString() { 

        return $this->firstName; 

    } 

} 

$user = new User; 

echo $user; // Example 

This lets you build and format a string that is meaningful for your object.   
 
If you do not declare this method on your object then PHP will generate a catchable fatal error telling you that 
it cannot convert an object to a string. 

Constructors and Destructors 

A constructor is a method that is run when an object is instantiated from a class.  Similarly, a destructor is made 
when the object is being unloaded.   



 69 

 
They are declared as in this example: 

<?php 

class constructorExample 

{ 

    public function __construct() { 

        // called when instantiated 

    } 

     

    public function __destruct() { 

        // called when unloaded 

    } 

     

    public function constructorExample() { 

        // PHP4 style constructor 

    } 

 
In PHP4 constructor methods were identified by having the same name as the class they were defined in.  In the 
example above the function constructorExample() would be a constructor in PHP4. 
 
For backwards compatibility PHP5 will search for a function with the same name as the class if it cannot find a 
__construct() function.  This functionality is deprecated in PHP7 and will be removed in future PHP 
versions.   

Constructor parameters 

If a class constructor takes a parameter you need to pass it in when instantiating an instance of the class. 
<?php 

class User { 

    public function __construct($name) { 

        $this->name = $name; 

    } 

} 

 

$user = new User('Alice'); 

In this example we would pass the string “Alice” to the constructor function. 

Inheritance 

PHP supports inheritance in its object model.  If you extend a class then the child class will inherit all of the 
public properties and methods of the parent class.  You can override them in the child class, but they will 
otherwise have the same functionality. 
 



 70 

PHP does not support inheriting from more than one class at a time.   
 
The syntax to cause a class to inherit is very simple.  When declaring the class we simply indicate the name of 
the class it is extending, as in this example: 

<?php  

 

class ParentClass 

{ 

    public function sayHello() { 

        echo __CLASS__; 

    } 

} 

 

class ChildClass extends ParentClass 

{ 

    // nothing in this class 

} 

 

$kid = new ChildClass; 

$kid->sayHello(); // ParentClass 

In this example the ChildClass is declared as extending the ParentClass.  It inherits the sayHello() method.   
 
The magic constant __CLASS__ gives the name of the class that is currently being executed.  Note that we’re 
calling the inherited method in the child class, but it is executing the function in the parent class and so 
reporting that the class name is ParentClass. 

The “Final” Keyword 

PHP5 introduced the “final” keyword.  You can apply it either to a class as a whole, or to specific methods 
within a class.  The effect of the final keyword is to prevent classes from being extended or methods from 
being overridden. 
The visibility of all final properties and methods is public. 
 
PHP will issue a fatal error if you try to override a final method in a child class or if you try to declare a class 
that extends a class that is marked final. 

 

Overriding 

A child class may declare a method with the same name as the parent class, providing that the method is not 
marked final in the parent. 
 
If a function is overridden like this and called on the child then the parent’s class will not be called.   

This is somewhat different from the use of final in Java, the PHP equivalent of the Java final keyword is 
“const”. 



 71 

 
This applies to constructors and destructors, but in these cases this is quite often worked around like this: 

<?php 

class ChildClass extends ParentClass 

{ 

    public function __construct() { 

        parent::__construct(); 

        // more constructor functions here 

    } 

} 

The call to parent::__construct() will call the constructor method of the parent class.  When control 
flow returns to the child the remaining functions in its constructor will be called. 
 
If a child overrides a method from a parent class then the child’s class cannot have a lower visibility than the 
parent class.  In other words if the parents method is public then the child cannot override the method as being 
protected or private. 

Interfaces 

Interfaces allow you to specify what methods a class must implement without specifying the details of the 
implementation.   
 
They are commonly used to define a contract in the service-orientated architecture paradigm, but can also be 
used whenever you want to stipulate how future classes are expected to interact with your code.    
 
All methods in an interface must be declared as public and may not have any implementation themselves. 
 
Interfaces are declared as in this example: 

<?php  

interface PaymentProvider 

{ 

    public function showPaymentPage(); 

    public function contactGateway(); 

    public function notify(); 

} 

A class would be declared as implementing it like this: 



 72 

<?php  

class CreditCard implements PaymentProvider 

{ 

    public function showPaymentPage() { 

        // implementation 

    } 

     

    public function contactGateway() { 

        // implementation 

    } 

     

    public function notify() { 

        // implementation 

    } 

} 

Classes may implement more than one interface at a time by listing the names of the interfaces separated by 
commas.   

 

Exceptions 

Exceptions offer a unified approach to handling errors.  Exceptions in PHP are similar to those in other 
languages.   
 
PHP includes a number of standard exception types39, and the standard PHP library (SPL) includes several 
more40.  Although you don’t have to use these exceptions doing so allows you the chance to use more fine-
grained error detection and reporting. 
 
Let’s have a look at the syntax and then discuss Exceptions in more detail: 

                                                        
39 https://secure.php.net/manual/en/reserved.exceptions.php  
40 https://secure.php.net/manual/en/spl.exceptions.php  

Classes may inherit from only one class but may implement many interfaces. 



 73 

<?php 

class ParentException extends Exception {} 

class ChildException extends ParentException {} 

 

try { 

    // some code 

    throw new ChildException('My Message');     

} catch (ParentException $e) { 

    // matches this class because of inheritance 

    echo "Parent Exception :" . $e->getMessage(); 

} catch (ChildException $e) { 

    // matches this class exactly 

    echo "Child Exception :" . $e->getMessage(); 

} catch (Exception $e) { 

    // matches this class because of inheritance 

    echo "Exception :" . $e->getMessage(); 

} 

The output of this example is “Parent Exception :My Message” 

Extending Exception classes 

The base PHP Exception class can be extended to create custom exceptions.  Only a class that inherits from (or 
is) the base Exception class can be used with the throw keyword.   
 
We are throwing a ChildException which inherits from ParentException which in turn extends the base 
Exception class. 
 
A try block must have at least one catch block but can have multiple blocks.  The blocks are evaluated in 
order from top to bottom.   
 
The class of the exception being thrown is matched against the name of the class given as a parameter to the 
catch clause.  If the classes match then the code in the block is executed, otherwise the next catch statement is 
evaluated. 
 
The matching criteria are that the classes are either exactly the same or the thrown exception inherits from the 
exception in the catch statement. 
 
In our example we threw an exception of the ChildException which inherits from the ParentException.  The 
exception is therefore matched against the first catch block and the code is executed. 

 

I put the base Exception at the bottom of the list of catch blocks because all custom exceptions inherit 
from it, which makes it a catchall. 



 74 

Finally 

PHP 5.5 introduced the finally keyword which is used to denote a code block that will always be executed, 
regardless of whether an exception is caught or not. 

<?php 

try { 

    // some code 

} catch (Exception $e) { 

    // error reporting 

} finally { 

    // always do this 

} 

 

Reflection 

The PHP reflection API allows you the ability to inspect PHP elements at runtime and retrieve information 
about them.   
 
The Reflection API was introduced with PHP5.0 and since PHP 5.3 has been enabled by default. 
 
One of the common places that reflection is used is in unit testing.  One example of where Reflection is useful is 
in testing the value of a private property in a class.  You can use reflection to make the private property 
accessible and then make assertions. 
 
There are several reflection classes that allow you to inspect different types of variables.  Each of these classes 
is named for the type of variable you can use it to inspect. 
 

Class Used to inspect 
ReflectionClass Classes 
ReflectionObject Objects 
ReflectionMethod Methods of objects 
ReflectionFunction Functions like PHP or user functions 
ReflectionProperty Properties 

 
The PHP manual41 has exhaustive documentation on these classes and their methods. 
 
Let’s briefly look at an example of using ReflectionClass. 

<?php 

$reflectionObject = new ReflectionClass('Exception'); 

print_r($reflectionObject->getMethods()); 

The parameter passed to the contructor of the reflection class is either the string name of the class, or a 
concrete instantiation (object) of the class. 
 

                                                        
41 https://secure.php.net/manual/en/book.reflection.php  



 75 

The ReflectionClass object has a number of methods that allow you to retrieve information about the inspected 
class.  In the example above we are outputting an array of all of the methods that the Exception class has. 
 

Type Hinting 

Type hinting allows you to specify the variable type that a parameter to a function is expected to be. 
 
In the following example we specify that the parameter $arr being passed to the printArray() function 
must be an array. 

<?php 

function printArray(array $arr) { 

    echo "<pre>" . print_r($arr,true) . "</pre>"; 

} 

In PHP5 if you pass a parameter of the wrong type then a recoverable fatal error will be generated.  In PHP7 a 
TypeError exception is thrown. 

 
In PHP5 you can only specify composite types and callables (PHP5.4+) as type hints.  PHP7 includes the ability 
to specify scalar variable types. 
 
Additionally, the NULL type hint is allowed to be used if NULL is used as the default parameter for a function. 

<?php 

function nullExample(null $msg = null) { 

    echo $msg; 

} 

If you specify a class as a type hint then all of its children and implementations will be valid parameters. 

Class Constants 

A constant is a value that is immutable.  Class constants allow you to define such values on a per-class basis.   
 
Class constants follow the same naming rules as variables but do not have a $ symbol prefixing them.  By 
convention constant names are declared in uppercase. 
 
Let’s consider an example: 

As of PHP7 type hinting is being referred to as “type declarations”.  I’m going to use this new 
nomenclature but the terms are interchangeable within the context of PHP at the moment. 



 76 

<?php 

class MathsHelper 

{ 

    const PI = 4; 

     

    public function squareTheCircle($radius) { 

        return $radius * (self::PI ** 2); 

    } 

} 

 

echo MathsHelper::PI; // 4 

Class constants are public and so are accessible from all scopes.   We use the scope resolution operator and the 
name of the class it is declared in when we access it from outside the class. 
 
Class constants, like traditional constants, may only contain scalar values. 

Late Static Binding 

Late static binding was introduced in PHP 5.3.0 and is a method to reference the called class (as opposed to the 
calling class) in the context of static inheritance. 
 
The idea was to introduce a keyword that would reference the class that was initially called at runtime, rather 
than the class that the method was defined in. 
 
Rather than introduce a new reserved word the decision was made to use the static keyword. 

Forwarding calls  

A “forwarding” call is a static call that is introduced by parent::, static::, or one called by the function 
forward_static_call().   
 
A call to self:: can also be a forwarding call if the class falls back to an inherited class because it does not 
have the method defined. 
 
Late static binding works by storing the class in the last “non-forwarding call”.  In other words late static 
bindings’ resolution will stop at a fully resolved static call. 
 
I am going to take a detailed walk through a modified example of the PHP manual example42.   

                                                        
42 https://secure.php.net/manual/en/language.oop5.late-static-bindings.php  



 77 

<?php 

class A { 

    public static function foo() { 

        echo static::who(); 

    } 

     

    public static function who() { 

        return 'A'; 

    } 

} 

 

class B extends A { 

    public static function test() { 

        A::foo(); 

        parent::foo(); 

        self::foo();         

    }     

} 

 

class C extends B { 

    public static function who() { 

        echo 'C'; 

    } 

} 

 

C::test(); // ACC 

The output of ACC might be counter-intuitive at first but lets step through it slowly. 
 
The call to C::test() is fully resolved and so class C is initially stored as the last non-forwarding call.  
 
There is no test() method in the function C so the call is forwarded implicitly to its parent.  So the test() 
method in class B is being called. 
 
The call to A::foo() 
The first call in test() specifically names class A as the scope. This means that the call is fully resolved.    
 
So the class being stored as the last non-fowarding call is changed to be A. 
 
The foo() method in A is called and the static keyword is resolved to find which class to call the who() 
method on.  
 
The last non-fowarding call was to a class in A and consequently the who() method in class A is called.  



 78 

 
The call to parent::foo() 
The next call in test() refers to the parent of B so the call is being explicitly forwarded to the parent of B, 
which is A.   
 
This is a forwarded call so the stored value stored as the last fully resolved static call (which is C) is left 
unaltered. 
 
The foo() method in A is called and the static keyword is resolved to find which class to call the who() 
method on.  
 
The last non-fowarding call was to a class in C and consequently the who() method in class C is called.  
 
The call to self::foo() 
Class B does not have the foo() method defined and so the call is implicitly passed to the parent, class A. 
 
This is a forwarded call so the stored value stored as the last fully resolved static call (which is C) is left 
unaltered. 
 
This results in the who() method of class C being called when the static keyword is resolved in class A. 

Magic (_*) Methods 

PHP treats any method with a name prefixed by two underscores as magical.  There are fifteen predefined 
magical functions and it is recommended to avoid naming other functions with the double underscore prefix. 

__get and __set 
These magic methods are called when PHP tries to read (get) or write (set) inaccessible properties. 

<?php 

class BankBalance { 

    private $balance; 

     

    public function __get($propertyName) { 

        echo "No property " . $propertyName;     

    } 

     

    public function __set($propertyName, $value) { 

        echo "Cannot set $propertyName to $value"; 

    } 

} 

$myAccount = new BankBalance(); 

$myAccount->balance = 100; 

echo $myAccount->nonExistingProperty; 

The __get() method is passed the name of the property that was being looked for.   
 
An additional parameter, the $value, is passed to __set(). 



 79 

__isset and __unset 
The __isset() method is triggered by calling the isset() function or empty() on an inaccessible 
property. 
 
The __unset() method is triggered by calling the unset() function on an inaccessible property. 
 
Both methods accept a string parameter that contains the name of the property that was being passed as a 
parameter to the function. 
 
You can use these magic methods to allow the isset(), empty(), and unset() functions to work on 
private and protected properties. 

__call  and __callStatic 

These magic methods are called if you try to call a non-existing method on an object.  The only difference is 
that __callStatic() responds to static calls while __call() responds to non-static calls. 
 

<?php 

class Politician { 

    public function __call($method, $arguments) { 

        echo __CLASS__ . ' has no ' . $method . ' method';  

    } 

} 

 

$jacob = new Politician(); 

$jacob->honesty();  // Politician has no honesty method 

In both cases the magic method is passed a string containing the name of the method that the call is trying to 
find, and an array of the arguments that were passed. 

__invoke 
The magic method __invoke() is called when you try to execute an object as a function. 

<?php 

class Square 

{ 

    public function __invoke($var) { 

        return $var ** 2; 

    } 

} 

$callableObject = new Square; 

echo $callableObject(10); // 100 

 

This syntax may be confused with variable function names so watch out for that. 



 80 

__debugInfo 
This magic method is called by var_dump() when dumping the object to determine what properties should 
be output. 
 
By default var_dump() will output all public, protected, and private properties of the object. 

<?php 

class Dictatorship { 

    private $wmd = 'Nuke'; 

    public $oil = 'Lots'; 

     

    public function __debugInfo() { 

        return [ 

            'oil' => $this->oil 

        ]; 

    } 

} 

 

$country = new Dictatorship(); 

var_dump($country); 

This example will prevent the $wmd variable from being included in the var_dump. 

More magic functions 
We have dealt with __construct() and __destruct() functions in the section on “Constructors and 
Destructors”. 
 
We have dealt with __sleep() and __wake() in the section on “Serializing Objects”. 
 
We looked at __clone() when discussing “Copying Objects” and __toString() in the section named 
“Casting Objects to String”. 

Standard PHP Library (SPL) 

The standard PHP library is a collection of classes and interfaces that are recipes for solving common 
programming problems.  It is available and compiled in PHP from version 5.0.0. 
 
The classes fall into categories.  For a complete list of the classes refer to the PHP Manual43. 
 

                                                        
43 https://secure.php.net/manual/en/book.spl.php  



 81 

Category Used for 
Datastructures Standard data structures, like linked lists, 

doubly linked lists, queues, stacks, heaps, etc 
Iterators  
Exceptions  
File Handling  
ArrayObject Accessing object with array functions 
SplObserver and SplSubject Implementing the observer pattern 

 
There are a number of functions that spl provides.  They mostly fall into broad reflection and autoloading 
categories. 

Generators 

Generators provide you with an easy way to create iterator objects.   
 
The advantage to using an iterator with a generator is that you can build an object that you can traverse over 
without needing to calculate the entire data set.  This saves processing time and memory. 
 
The use case could be to replace a function that normally returns an array.  The function would calculate all of 
the values, allocating an array variable to store them, and return the array.   
 
A generator only calculates and stores one value, and yield it to the iterator.  When the iterator requires the 
next value it calls the generator.  When the generator runs out of values it simply exits without yielding a 
value. 
 
A generator cannot return a value.  An empty return statement can be used and this will terminate the 
generator. 

Yield keyword 

The yield keyword is similar to a function return, except that it is used to yield a value back to the iterator 
while pausing execution of the generator. 
 
The scope of the generator is maintained between calls.  Variables will not lose their value after the generator 
yields. 
 
If you use the yield keyword as part of an expression in PHP5 you must surround the yield statement with 
parentheses. 

<?php 

function exampleGenerator() { 

    // some functions 

    $data = (yield $value); // this is valid 

    $data = yield $value; // this is not valid 

} 

This requirement is removed in PHP7. 

Yielding with keys 

It is possible to yield key-value pairs that perform as associative arrays for functions using the generator. 



 82 

 
If you don’t explicitly yield with keys then PHP will pair yielded values with increasing sequential keys, just as 
for a enumerative array. 
 
The syntax to yield a key-value pair is very similar to declaring associative arrays: 

<?php 

function myGenerator() { 

    // some functions 

    yield $key => $value; 

} 

Yielding NULL 

Calling yield without an argument causes it to yield a NULL value with an automatic increasing sequential 
key. 

Yielding by Reference 

Generator functions can yield variables by reference and the syntax to do so is to prepend an ampersand to the 
function name. 

<?php 

function &referenceGenerator() { 

    // some functions 

    yield $value; 

} 

Traits 

Traits were introduced in PHP 5.4.0 and are designed to help alleviate some of the limitations of a single 
inheritance language. 
 
A trait contains a set of methods and properties just like a class, but cannot be instantiated by itself.  Instead the 
trait is included into a class and the class can then use its methods and properties as if they were declared in the 
class itself. 
 
In other words traits are flattened into a class and it doesn’t matter if a method is defined in the trait or in the 
class that uses the trait.  You could copy and paste the code from the trait into the class and it would be used in 
the same manner. 
 
The code that is included into a trait is intended to encapsulate reusable properties and methods that can be 
applied to multiple classes. 

Declaring and Using Traits 

We use the trait keyword to declare a trait and to include it in a class we employ the use keyword.  A class 
may use multiple traits. 



 83 

<?php 

trait Singleton 

{ 

    private static $instance; 

     

    public static function getInstance() { 

        if (!(self::$instance instanceof self)) { 

            self::$instance = new self; 

        } 

        return self::$instance; 

    } 

} 

 

class UsingTraitExample 

{ 

    use Singleton; 

} 

 

$object = UsingTraitExample::getInstance(); 

var_dump($object instanceof UsingTraitExample); // true 

 

exit; 

In the example above we declare a trait that includes the methods and properties needed to implement the 
Singleton pattern.   
 
When we want to make a new class follow the Singleton pattern we can do so just by using the trait.  We don’t 
have to implement the pattern within the class, and don’t have to include the pattern in the inheritance 
hierarchy. 

Namespacing Traits 

PHP will generate a fatal error if traits have conflicting names, but traits 
may be defined in namespaces.   
 
If you are trying to use the trait in a class that is not in the same namespace hierarchy then you will need to 
specify the fully-qualified name when you include it. 

Inheritance and Precedence 

Traits may not extend other traits or classes, but you can simply use a trait inside another. 
 
Methods declared in a class using a trait take precedence over methods declared in the trait.  However, methods 
in a trait will override methods inherited by a class.   
 
Expressed more simply, precedence in traits and classes is as follows: 



 84 

CLASS MEMBERS > TRAIT METHODS > INHERITED METHODS 

Conflict  Resolution 

PHP will generate a fatal error if two traits attempt to insert a method with the same name unless you explicitly 
resolve the conflict. 
 
PHP allows you to use the insteadof operator to specify which of the conflicting methods you want it to 
use.   
 
This lets you exclude one of the trait methods, but if you want to keep both methods you need to use the as 
operator.  The as operator allows you to include one of the conflicting methods, but use a different name to 
reference it. 
 
Here is a rather long example that shows this usage: 



 85 

<?php 

trait Dog { 

    public function makeNoise() { 

        echo "Woof"; 

    } 

     

    public function wantWalkies() { 

        echo "Yes please!"; 

    } 

} 

 

trait Cat { 

    public function makeNoise() { 

        echo "Purr"; 

    } 

     

    public function wantWalkies() { 

        echo "No thanks!"; 

    } 

} 

 

class DomesticPet 

{ 

    use Dog, Cat { 

        Cat::makeNoise insteadof Dog; 

        Cat::wantWalkies as kittyWalk; 

        Dog::wantWalkies insteadof Cat; 

    } 

} 

 

$obj = new DomesticPet(); 

$obj->makeNoise();  // Purr 

$obj->wantWalkies(); // Yes please! 

$obj->kittyWalk(); // No thanks! 

 
It is not enough to use as by itself.  You still need to use insteadof to exclude the method you don’t want to 
use, and can only then use as to make a new way to reference the old method. 

Visibi l ity 

You can apply a visibility modifier to functions by extending the use keyword, as in this example: 



 86 

<?php 

trait Example { 

    public function myFunction() { 

        // do stuff 

    } 

} 

 

class VisbilityExample { 

    use Example { 

        myFunction as protected; 

    } 

} 

 

$obj = new VisbilityExample(); 

$obj->myFunction(); // PHP Fatal error:  Call to protected method 

We specify that the method should be made protected in the class, even though it is declared as public in the 
trait.  You can include multiple functions in the block, each of which may have it’s own visibility. 



 87 

Security 
Security is a major concern for web applications.  Even major organizations such as the United Nations have 
been hacked using very simple security flaws. 
 
I’m of the opinion that there is no such thing as a completely secure system.  My aim when securing an 
application is twofold.  Firstly, I aim to make it take as long as possible for an attacker to gain access.   My next 
aim is to minimize the value of any information they can retrieve. 
 
This reduces the feasibility of hacking my application for a hacker – it will take a long time to get in, and when 
they do they will need to expend considerable effort to get any valuable information.   
 
When you are being chased by a tiger you don’t need to run faster than the tiger.  You just need to run faster 
than the chap next to you. 
 
One of the major flaws in security is social engineering.  A discussion on social engineering is not in scope for a 
PHP manual, but you must always remember that it is not just your code and servers that are entry points to 
your data. 

Configuration 

Some of the best advice in configuring PHP is to make sure that you keep up to date with the releases and make 
use of the improvements they bring.   
 
There are valid use cases where you need to remain on a particular version of PHP, for example compliance 
with a software auditing process in the context of a financial institution. 
 
You should have a very strong reason if you are not using the most current stable release of PHP in favour of an 
older version. 

Errors and warnings 

You should configure PHP to hide warnings and errors while in production.  Errors and warnings can give a 
person a clue about the internal workings of your code such as directory names and what libraries you are 
using.   
 

Setting Value 
display_errors Off 
log_errors On 
error_reporting E_ALL & ~E_DEPRECATED & ~E_STRICT 

 
In development your error_reporting setting should be E_ALL and your code must run without warnings - 
don’t use deprecated functions. 

Disabling functions and classes 

You can use the disable_functions and disable_classes directives to prevent functions and classes 
from being used. 
 
Common functions to disable include those which allow PHP to execute system commands: exec, passthru, 
shell_exec, system 
 



 88 

The DirectoryIterator and Directory classes are also commonly disabled as these can also be used by 
an attacker. 

PHP as an Apache module 

If PHP is running as an Apache module it will be run using the same user as the Apache server.  This means 
that it will have the same permissions and access as the Apache user.   
 
It is best practice to set up a user for Apache rather than run it as “nobody”.  The Apache user should have 
limited access to the file system, and should definitely not be on the sudoers list. 
 
You should use the PHP open_basedir44 setting to limit what directories PHP is able to be run in. 

PHP as a CGI binary 

If you’re running PHP as a CGI binary, then you need to be aware of a number of issues.  PHP does attempt to 
mitigate some of these attacks45 using default configuration settings, and you should know what these are. 
 
Usually the query information in a URL after the question mark is passed as command line arguments to the 
interpreter by the CGI interface.  So this url http://my.host/cgi-bin/php?/etc/passwd would attempt to pass 
/etc/passwd to the PHP binary.  Usually CGI interpreters open and execute the file specified as the first 
argument on the command line.  PHP refuses to interpret the command line arguments when invoked as a CGI 
binary. 
  
The directives cgi.force_redirect, doc_root and user_dir are used to prevent access to private 
documents by PHP.    
 
Setting cgi.force_redirect blocks PHP from being able to be called directly from a URL – it will only 
execute if it is being called on a redirect from a webserver like Apache. 
 
When working with PHP as a CGI binary you should consider moving the php binary outside of the document 
tree and separating your executable PHP scripts from your static scripts. 

Session Security 

The two areas of focus that you need to be aware of are “session hijacking” and “session fixation”.  You should 
study the PHP manual46 page on session security in addition to this document. 

Session Hijacking 

HTTP is a stateless protocol and a web server can be expected to be serving multiple different visitors at the 
same time.   
 
The server needs to be able to tell clients apart and does so by assigning each client a session identifier.  The 
session identifier can be retrieved by calling session_id().  It is created after the session_start() 
function is called. 
 
When the client makes subsequent requests to the server they provide the session identifier that then lets the 
server associate the request with a session. 
 
                                                        
44 https://secure.php.net/manual/en/ini.core.php#ini.open-basedir  
45 https://secure.php.net/manual/en/security.cgi-bin.attacks.php  
46 https://secure.php.net/manual/en/session.security.php  



 89 

It should be apparent to you that if you are able to present somebody else’s session identifier to the server then 
you will be able to masquerade as that user. 
 
Obtaining the session identifier of another user can be accomplished in a number of ways. 
 
Firstly, if the session identifier follows a predictable pattern then the attacker could try and determine what it 
will be for a user.  PHP uses a very random way to generate session identifiers so you don’t need to worry 
about this. 
 
Next, by inspecting network traffic between the client and the server the attacker could read the session 
identifier.  You can set session.cookie_secure=On to make session cookies only available over HTTPS 
to mitigate this. 
 
Attacks made against the client, such as an XSS attack or Trojan program running on their computer could also 
reveal the session identifier.  This can be partially mitigated by setting the session.cookie_httponly 
directive on. 

Session f ixation 

Session fixation exploits a weakness in the web application.  Some applications do not generate a new session id 
for a user when authenticating them.  Instead they allow an existing session id to be used. 
 
The attack occurs when an opponent creates a session on the webserver.  They know the session id for this 
session.  They then trick a user into using this session and authenticating themselves.  The attacker is then able 
to use the known session id and has the privileges of the authenticated user. 
 
There are several ways to set the session id and the actual method used will depend on how the application 
accepts the identifier. 
 
The most simple way to do it would be to pass the session identifier in the URL, like this 
http://example.org/index.php?PHPSESSID=1234. 
 
The best way to mitigate the risk of session fixation is to call the function session_regenerate_id() 
every time the privilege level changes, for example after logging in. 
 
You can set session.use_strict_mode=On in your config file.  This setting will force PHP to only use 
session identifiers that it creates itself.  It will reject a user supplied session identifier.  This will mitigate 
attempts to manipulate the cookie. 
 
The settings session.use_cookies=On and session.use_only_cookies=On will prevent PHP 
from accepting the session identifier from the URL. 

Improving Session Security 

In addition to the mitigation strategies that I have already mentioned you should also do the following: 
• Check that the IP address remains the same between calls.  This is not always feasible for mobile 

phones which move between towers and so change connections. 
• Use short session timeout values to reduce the window for fixation 
• Provide a means for users to logout that calls session_destroy() 



 90 

Cross-Site Scripting 

Cross site scripting (XSS) attacks are an attack where malicious code is injected onto an otherwise benign site.  
Usually malicious browser-side code like Javascript is placed onto the website to be downloaded and run by 
clients. 
 
The attack is effective because the client thinks that the code originated from the website that it trusts.  The 
code is able to access session identifiers, cookies, html storage data, and other information related to the site. 
 
There are a few broad types of XSS attacks: stored, reflected, and DOM 
 
In a stored XSS attack the opponent is able to place input into a stored location on the server.  Examples could 
be in user comments displayed on the site and stored in the database.  When the site outputs the list of user 
comments to another visitor they would receive the malicious code. 
 
In a reflected XSS attack the opponent is able to get the website to output something directly.  The most 
common form of this attack is a form fill error that prefills the input fields with the previously submitted fields, 
or outputs the erroneous field value.  By sending the visitor to a crafted URL that includes malicious code as an 
error message (for example) the attacker is able to trick the client into executing it within the context of the 
trusted site. 
 
A DOM attack is one that rests entirely within the page.  The malicious code is read from an element in the 
page and the call to the code is made within the page itself. 
 
Furthermore, XSS attacks can be classed either as server side or client side attacks.  A server side attack is one 
where the server delivers the malicious code.  Client XSS occurs when untrusted user supplied data is used to 
update the DOM with an unsafe JavaScript call. 

Mitigating XSS attacks 

The most important rule to follow is never to allow unescaped data to be output to the client.  Always filter 
data and strip out harmful tags before allowing it to be sent to the client.   
 
Three useful functions for this are htmlspecialchars(), htmlentities(), and strip_tags().   
 
The most safe method to escape output before displaying it is to use filter_var($string, 
FILTER_SANITIZE_STRING). 
 
Because of the wide variety of formats that can be used in URL’s and HTML to output data it is not safe to 
blacklist codes.  You should rather whitelist the specific tags that you want to allow.  Take a look at the OWASP 
filter evasion cheat sheet47 to see just how many ways there are to evade a blacklist. 
 
You also need to mitigate XSS in your Javascript, but this manual is about PHP. 

Cross-Site Request Forgeries 

CSRF attacks exploit the trust that a website has in a client.  In these attacks the opponent tricks the client into 
executing a command on a website that trusts that client. 
 
The most common form would be to send a POST request to a form input.   
 
                                                        
47 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet  



 91 

Imagine that Alice is logged onto her bank website that has a form that allows her to transfer money to another 
account.  Chuck knows the endpoint of that form and what input fields it has.  He somehow manages to trick 
Alice’s web-browser into sending a POST request to that form instructing the bank to transfer money into his 
account.  The bank trusts Alice’s web browser because it has a valid session and performs the request. 
 
There are many ways for Chuck to trick Alice’s web browser, including using iframes and Javascript. 
 
To mitigate these requests you should generate a unique and very random token which you store in Alice’s 
session.  When you output the form you include this token so that when Alice submits the form she also 
submits the token.  Before you process the form you check that the submitted token matches the token stored 
in her session. 
 
Chuck has no way of knowing what token is in Alice’s session and so won’t be able to include it in his POST.  
Your code will reject the request that he tricked Alice into making because it doesn’t have a valid token. 
 
Actual banks often require a person to re-authenticate when performing a sensitive operation, and will often 
require two-factor authentication as part of this process. 

SQL Injection 

SQL injection is the most common form of attack on the web, and also one of the easiest to defend against.  SQL 
injection occurs when the attacker is able to insert malicious commands into a SQL statement for execution by 
the database. 
 
Many database setups allow the database to write files to disk.  This feature allows hackers to create a backdoor 
by using the database to write PHP scripts to a directory where the web server will serve it. 
 
This means that the effect of SQL injection is not limited to having your database compromised, but could lead 
to the attacker being able to execute arbitrary code on your database. 
 
At it’s heart the problem with SQL injection comes from the fact that a SQL statement has a mix of data and 
syntax.  By allowing user supplied data to be incorporated with function syntax we create the possibility that 
malicious data can interfere with the syntax. 
 
The most effective way to start to mitigate SQL injection in the PHP language is to exclusively use prepared 
statements48 to interact with your database.  This will help exclude the majority of SQL injection attacks, but is 
not sufficient by itself to be fool proof. 
 
Additional improvements to your PDO security will be to make sure that you’re using an up-to-date version of 
MySQL and enforcing the use of a character set in the client DSN.  There is a very subtle way to use 
mismatching character sets in certain vulnerable encoding schemes to deploy a SQL injection, see the second 
answer (not the accepted one) on this StackOverflow article for an exposition49. 
 
A less effective way to mitigate SQL injection is to escape special characters before sending them to the 
database.  This is more prone to error than using prepared statements. 
 
If you are going to try escaping special characters you must use the database specific function (e.g.: 
mysqli_real_escape_string()) or PDO::quote() and not a generic function like addslashes(). 
 
                                                        
48 https://secure.php.net/manual/en/pdo.prepared-statements.php  
49 https://stackoverflow.com/questions/134099/are-pdo-prepared-statements-sufficient-to-prevent-sql-injection  



 92 

You should also always connect to the database with a user that has the least amount of privileges that are 
required for the application to function.  Never allow your web application to connect to the database as its root 
user. 

Remote Code Injection 

Remote code injection is an attack where an opponent is able to get the server to include and execute their 
code.  

Malicious system calls  

Certain functions like eval(), exec(), and system() are susceptible to remote code injection exploits.  If 
you are executing a variable that includes user input they will be able to inject commands using escape 
characters. 
 
You can mitigate this by using escapeshellargs() to escape the arguments passed to the shell command.  
The function escapeshellcmd() will escape the shell command itself. 
 
If you’re not explicitly using these functions you should disable them in your php.ini 

preg_replace and /e 

PHP supports the use of the “e” modifier on preg_replace().  Using it will cause PHP to execute the result 
of the operation as PHP code. 
 
If an attacker is able to engineer situation where they can have their input placed into a preg_replace() 
function they will be able to have code executed by the server.  
 
The solution is to use the function preg_quote() which will escape harmful characters.  This also has the 
side-effect of eliminating regex, so you might need to escape your code manually. 

Gaming include and require 

Both include() and require() allow the possibility of including files specified by url if the PHP 
configuration setting allow_url_fopen is on.   
 
The most common occurrence of this is when people use a GET variable in the url to determine some dynamic 
content to include.  This is very much a rookie mistake. 
 
For example a site could have a URL like: http://example.com/index.php?sidebar=welcome and then 
dynamically include the welcome.php file into the sidebar. 
 
An opponent could provide a url instead of the “welcome” string and have their own code executed on the 
server with the same privilege level as the webserver user.  
 
To counter this sort of problem you can turn allow_url_fopen to Off, use basename() against the 
variable you are including so that paths are removed, and only include against a whitelist. 



 93 

<?php 

$page = $_GET['page']; 

$allowedPages = array('adverts','contacts','information'); 

if ( in_array($page, $allowedPages) ) { 

    include basename($page . '.html'); 

} 

Email Injection 

When setting up your mail server you must make sure it is not configured as an open relay that allows anybody 
on the Internet to use it to send mail.  You should also consider closing port 25 (SMTP) on your firewall so that 
outside hosts are unable to reach your server. 
 
It is possible for a user to supply hexadecimal control characters that allow them to change the message body or 
recipient list.   
 
For example, if your form allows the person to enter their email address as a “from” field for the email then the 
following string will cause additional recipients to be included as cc and blind carbon copy recipients of the 
message: 

sender@example.com%0ACc:target@email.com%0ABcc:anotherperson@emailexample.com,s

tranger@shouldhavefiltered.com 

It is also possible for the attacker to provide their own body, and even to change the MIME type of the message 
being sent.  This means that your form could be used by spammers to send mail from. 
 
You can protect against this in a couple of ways. 
 
Make sure that you properly filter input that you use when sending mails. 

<?php 

$from = $_POST["sender"]; 

$from = urldecode($from); 

if (preg_match("(\r|\n)", $from)) { 

    die("Invalid email field"); 

} 

 
You could also install and use the Suhosin PHP extension.  It provides the suhosin.mail.protect 
directive that will guard against this. 
 
You could implement a tarpit to slow bots down or trap them indefinitely.  Take a look at msigley/PHP-HTTP-
Tarpit  on Github50 as an example of a tarpit. 

Filter Input 

When approaching security it is best to plan for the worst-case scenario and assume that all input is tainted, 
and that all user behaviour is malicious.  You should only use input that you’ve manually confirmed to be safe. 
                                                        
50 https://github.com/msigley/PHP-HTTP-Tarpit  



 94 

 
It is possible for input to be in a format that will be ignored by a filter and then parsed by the browser.  The XSS 
evasion cheat sheet that I referred to earlier has a great many examples of where special characters are used to 
evade detection. 
 
It is possible for input to use a non-standard character set which might not be properly understood by filtering 
functions.  You should use the database native filter functions when working with filtering SQL. 
 
PHP has a very robust filtering function, filter_var(), which can be used to perform a number of different 
filter and sanitizing operations.  You can find a list of the filters in the PHP manual51. 
 
There are also a number of functions that can be used to check for individual types of strings.  They are locale 
aware and so will take language characters into account.  The functions will return true if the string contains 
only characters in the filter, and false otherwise. 
 

Function Filters 
ctype_alnum() Alphanumeric characters only 
ctype_alpha() Alphabetic characters only 
ctype_cntrl() String is control characters only 
ctype_digit() String is digits only 
ctype_graph() Only printable characters and space 
ctype_lower() Only lower case letters 
ctype_print() Printable characters 
ctype_punct() Any printable which is not whitespace or alphanumeric 
ctype_space() Check for whitespace characters 
ctype_upper() Only upper case letters 
ctype_xdigit() Hexadecimal digits 

	
  
It is common to perform filtering on the client side, for example using Javascript in the browser.  This is not 
sufficient and you must filter and validate on the server side as well.  

Escape Output 

One of the cardinal rules for writing secure PHP code is to filter input and escape output.  
 
Before you emit data you must make sure that it is safe for the client.  Recall how XSS attacks work as an 
example of why you need to make sure that what you send to the client is properly sanitized.  
 
If the data you send to a client includes instructions for it to execute code then it will do so blindly.  You must 
make sure that you send only code you intend for the client to execute, and not code injected by an attacker. 
 
As with filtering input you must not rely on the client to filter output sent to it.  Not all clients will have 
Javascript enabled, and its possible that a hacker bypasses client filtering. 
 
The most secure way to filter output is using filter_var() with the FILTER_SANITIZE_STRING flag.  
There might be use cases where this is too restrictive for you, in which case you will need to look at functions 
like htmlspecialchars(), strip_tags(), and htmlentities(). 

                                                        
51 https://secure.php.net/manual/en/filter.filters.php  



 95 

Log f i les as output 

If you’re logging error messages, information messages and the like you need to take some precautions with 
what you log. 
 
Obviously you must never log sensitive information like user passwords or credit cards.  If you’re passing this 
to a logging function then make sure you obfuscate it.  So a credit card number would be a sequence of 
asterisks in your log file, rather than the actual number.  
 
Make sure that you filter out executable code and personal information before logging it. 

Encryption, Hashing algorithms 

Encryption and hashing are different concepts and you should make sure you understand the difference.  
Encryption is a two-way operation; you can encrypt and decrypt.  Hashing is a one-way operation and by 
design it is difficult or time-consuming to take a hash and reverse it to the original string. 
 
We store passwords in the database as hashes.  This way if an attacker is able to get a copy of your database 
they are unable to obtain user passwords unless they can reverse the hash.  Typically reversing the hash will 
take a significant amount of time, and hopefully you will have enough time to notice the breach of security and 
alert your users that they need to change their passwords. 
 
The amount of time that it takes to calculate a hash will determine how long a hacker will take to guess 
passwords by brute force.   

Hash functions 

Older hashes like MD5 and SHA1 are very quick to calculate and so you must not use them in any place where 
security is involved.  They are still very useful in other areas of programming, but not in any place where 
you’re relying on them being a one-way operation. 
 
PHP 5.5.0 introduce a new function password_hash() which provides a convenient way to generate secure 
hashes.  You should read the manual page52 for this function.   
 
For older versions of PHP you should use the crypt() function. 
 
By default the password_hash() function uses the bcrypt algorithm to hash the password.  The bcrypt 
algorithm has a parameter that includes how many times it should run on the password before returning the 
hashed result.  This is referred to as the “cost” of the algorithm. 
 
By increasing the number of times the algorithm must run you can increase the length of time that it takes to 
calculate a hash.  This means that as computers get faster you can increase the number of iterations in your 
bcrypt algorithm to keep your passwords secure from brute force attacks. 
 
You can use the password_info() function to retrieve information about how a hash was calculated.  This 
function will tell you the name of algorithm, the cost, and the salt. 
 
The password_needs_rehash() function will compare a hash against the options you specify to see if it 
needs to be rehashed.  This will let you change the algorithm used to hash your passwords, for example 
increasing the cost over time. 

                                                        
52 https://secure.php.net/manual/en/function.password-hash.php  



 96 

Salting passwords 

A salt string is an additional string that is added to the password.  It should be randomly generated for every 
password.  It is used to prevent dictionary attacks and pre-computed rainbow attacks. 
 
You can specify a salt for the password_hash() function, but if you omit it then PHP will create one for 
you.  The PHP manual53 notes that the intended mode of operation is for you to let it create the random salt for 
the password. 
 
The crypt() function accepts a salt string as a second parameter but will not automatically generate a salt if 
you don’t provide your own.  PHP 5.6.0+ will issue a notice if you fail to provide a salt. 

Checking a password 

If it is possible for an attacker to accurately measure the time it takes to run your password checking routine 
then they will be able to glean information that can help them in breaking the password.  These attacks are 
referred to as timing attacks 
 
The PHP 5.5.0 function password_verify() is a timing attack safe way to compare hashes created by 
password_hash(). 
 
If you’re unable to use this function then you will need to calculate the hash for the password supplied by the 
user and then compare the hash against the one stored.  Comparing the hashes is vulnerable to timing attacks. 
 
PHP 5.6.0 introduced the hash_equals() function which is a timing attack safe way of comparing strings.  
You should use this function when comparing crypt() generated hashes. 

A quick note on error messages 

You should never confirm to a person that they have entered an incorrect username.  Your error message 
should be that they have entered either an incorrect username or password.  The less information you give to 
an attacker the longer it will take for them to gain access to your system. 

File uploads 

File uploads are a major risk for a web application and need to be secured in several ways. 
 
Recall that the $_FILES[] superglobal contains information about the files that were uploaded by the client.  
You should treat everything in this array as suspicious and make sure that you manually confirm every piece of 
information yourself. 
 
The way PHP handles file uploads is to save them to a temporary directory.  You can operate on them there and 
then move them to the location where you want them. 
 
You should check that the file you’re working with is a valid uploaded file and that the client has tried to forge 
its filename and location in the temporary folder. 
 
Use the function is_uploaded_file() to make sure that the file you’re referencing was actually uploaded.  
Use the move_uploaded_file() instead of other methods to move it from the temporary directory to your 
final location.   
 

                                                        
53 https://secure.php.net/manual/en/password.constants.php  



 97 

When referring to a file use the basename() function to strip out paths to prevent a person from spoofing the 
filename. 
 
Don’t trust the MIME type specified by the user.  Ignore the MIME type supplied by the user and use 
finfo_file() to determine the MIME type if you need it. 
 
If you’re allowing a user to upload an image you should use a GD image function like getimagesize() on it 
to confirm that it is a valid image.  If this function fails then the file is not a valid image. 
 
Generate your own file name to store the file as and do not use the one supplied by the user.  Using a random 
hash for the filename and setting the extension manually by inspecting the MIME type is strongly suggested. 
 
Make sure that the folder where you are storing the files only allows access to the webserver user. 
 
If you don’t need to serve the files that are uploaded then keep the uploads folder outside of the document root.  

Database storage 

In addition to avoiding SQL injection you should apply some security principles to how you interact with the 
database. 
 
You should separate your database servers for your different code environments.  Your QA, test, development, 
and production servers should all use different database servers and should not be able to access each other’s 
databases. 
 
You must prevent the Internet from having access to your database server.   
 
This can be accomplished by using a firewall to close the port from outside traffic, using a private subnet that 
has no route to the Internet, or configuring your database server to listen only to specific hosts. 
 
It’s not sufficient to change the port that your database listens on.  I’d go so far as to say it’s not worth 
bothering because it’s not even a speed bump to an attacker and just makes your server environment harder for 
your colleagues to use. 
 
If you run several applications on a single database server then make sure that each application has its own 
username and password on the server.  Each application user should have only the least amount of privileges it 
needs and should never be able to read another applications database. 
 
Avoid using predictable usernames and make sure that you use secure passwords.  For example I usually use a 
randomly generated version 4 UUID as a password. 
 
Encrypt sensitive data with mcrypt() and mhash() before placing it into the database.  
 
You should examine your database logs from time to time.  You’ll be able to spot attempted injection attacks 
and other patterns that will let you identify breaches or tighten areas of code. 

Avoid publishing your password online 

A good piece of advice is to avoid publishing your database or API credentials online where people can read it.  
Okay, I’m being facetious, but seriously when would you be likely to publish all of your access credentials for 
the world and his dog to read? 
 



 98 

One time you could do this is when committing to a Git repository and pushing it to a service like Github or 
Bitbucket. 
 
Make sure that any configuration files are ignored by your version control system and are never committed or 
pushed to upstream repositories.  There are bots that scrape Github54 for credentials that will punish you for 
these mistakes. 
 
Just as an aside related to this link, you should not hard code Amazon credentials into an application.  Rather 
set an IAM role that allows access to the service you want to use and apply the role to your VM. 

                                                        
54 http://www.devfactor.net/2014/12/30/2375-amazon-mistake/  



 99 

Data Formats and Types 

XML 

The basics of XML 

XML stands for eXtensible Markup Language and is a way to store data in a structured manner.  An advantage 
of using XML is that it is a well recognized data standard and so is a convenient way to exchange data between 
systems. 
 
In the industry there has been a shift away from XML and towards JSON as a data exchange process, but XML 
is still relevant to everyday practice and is part of the Zend examination. 
 
You need to be completely familiar with the following terms: 
 

Term Description 
SGML Standardized General Markup Language.  XML is a 

subset of this. 
Document Type Declaration The DTD defines the legal building blocks of an XML 

document structure with a list of legal elements and 
attributes55.  

Entity An entity can declare names and values that are not 
permitted in the rest of the XML document.  For 
example HTML declares &gt; as an entity to represent 
>.  These declarations can also be used as shortcuts 
and to maintain consistency of spelling and value 
throughout a document. 

Element Elements are the building blocks of an XML document.  
Elements can be nested and contain elements, or they 
can contain a value.  Elements may have attributes. 

Well-formed A well-formed document in XML is a document that 
adheres to the syntax rules specified by the XML 1.0 
specification in that it must satisfy both physical and 
logical structures56.  

Valid An XML document validated against a DTD is both 
"Well Formed" and "Valid". 

 
If you’re at all shaky about the above definitions then please make sure that you read a comprehensive tutorial 
on XML57 and read the linked footnotes from this page. 
 

Well-formed and valid 
We should expand on what these terms mean.   
 
A document is well-formed if: 

• It has a single root element 

                                                        
55 https://en.wikipedia.org/wiki/Document_type_definition  
56 https://en.wikipedia.org/wiki/Well-formed_document  
57 For example the one at http://www.w3resource.com/xml/xml.php  



 100 

• Tags are opened and closed properly 
• Entities are well-formed 

o Contain only properly encoded Unicode characters 
o No syntax marks like < or & appear 
o Tag names must match exactly and may not contain symbols 

 
A document is valid if it is well-formed and conforms to the DTD. 
 
PHP does not require XML documents to be valid but it does require them to be well-formed in order to parse 
them. 

XML Processing Instructions 
Processing Instructions58 allow documents to contain instructions for applications.  They are enclosed in <? 
and ?> marks and look like this, for example: 

<?PITarget PIContent?> 

One use case could be to inform an application that an element is to be a particular data type, as in this 
example: 

<?var type=”string” ?> 

The most common usage is to include an XSLT or CSS stylesheet, like so: 
<?xml-stylesheet type="text/xsl" href="style.xsl"?> 

<?xml-stylesheet type="text/css" href="style.css"?> 

XML transformations with PHP XSL 
The PHP XSL extension allows PHP to apply XSLT transformations. 
 
Although this is commonly used to apply stylesheets it is important to know that 
many other forms of transformation are possible. 
 
XSL is a language for expressing stylesheets for XML documents.  It is like CSS in that it 
describes how to display an XML document. 
 
XSL defines XSLT59 that is a transformation language for XML documents that allows 
XML documents to be processed into other documents. 
 
An XSLT processor takes an input XML file, some XSLT code, and produces a new 
document. The diagram to the right, taken from Wikipedia Creative Commons60, 
illustrates this. 
 
A use case for this could be to create an XHTML document that can be rendered by a 
browser.   
 
Input XML would be received from a PHP program that includes processing instructions about where to 
retrieve an XSL stylesheet.  The browser would retrieve this stylesheet and apply the XSLT code in it to 
produce the XHTML. 
                                                        
58 http://www.w3.org/TR/REC-xml/#sec-pi  
59 https://en.wikipedia.org/wiki/XSLT  
60 https://en.wikipedia.org/wiki/XSLT#/media/File:XSLT_en.svg  



 101 

 
Acronym What is is 
XSL Language to express style sheets 
XSLT Transformation language to process XML into other XML 

  
The PHP manual61 has a simple example of how to use PHP5 to transform an XML file using an XSL: 

<?php 

 

$xslDoc = new DOMDocument(); 

$xslDoc->load("collection.xsl"); 

 

$xmlDoc = new DOMDocument(); 

$xmlDoc->load("collection.xml"); 

 

$proc = new XSLTProcessor(); 

$proc->importStylesheet($xslDoc); 

echo $proc->transformToXML($xmlDoc); 

Parsing XML in PHP 

There are two types of XML parser available in PHP.  All of the PHP XML extensions use the same underlying 
library so it is possible to pass data between them. 
 
All XML routines require both the LibXML extension and the Expat library to be enabled.  These are both 
enabled by default in PHP. 

Tree parsers 
Tree parsers attempt to parse the entire document at once and transform it into a tree structure.  It should be 
clear that this could present problems if you’re trying to parse a very big document.   
 
There are two tree parsers in PHP: 

• SimpleXML 
• DOM 

Event-Based parsers 
These parsers are quicker and consume less memory than tree parsers.  They work by reading through the XML 
document node by node and providing you the opportunity to hook into events associated with this reading 
process. 
 
Two examples of event-based parsers are: 

• XMLReader 
• XML Expat parser 

 
The XML Expat parser is a non-validating event based parser that is also built into PHP’s core.  It does not 
require a DTD because it does not validate XML and only requires that XML be well-formed. 

                                                        
61 https://secure.php.net/manual/en/xsl.examples.php  



 102 

Error codes 
The PHP manual lists a number of XML error codes62 which is a subset of the 733 error codes of the underlying 
libxml library63. 
 
Here is a partial list of XML constants64 that you should be familiar with: 

Prefix Code Description 
XML_ERROR_   
 SYNTAX  
 INVALID TOKEN  
 UNKNOWN_ENCODING  
XML_OPTION_   
 CASE_FOLDING Enabled by default and sets element 

names to uppercase. 
 SKIP_WHITE Skips excess whitespace in the source 

document 

Character encoding 

When PHP parses an XML document it performs a process called source encoding65 to read the document.   
 
There are three forms of encoding that are supported: 
 

1. UTF-8 
2. ISO-8859-1 (default) 
3. US-ASCII 

 
UTF-8 is a multibyte66 encoding scheme which means that a single character may be represented by more than 
one byte.  The other two schemes are both single byte. 
 
PHP stores the data internally and then performs target encoding when it passes the data to functions.   
 
The target encoding is set to the same as the source encoding by default, but this can be changed.  The source 
encoding, however, cannot be changed after the parsing object has been created. 
 
If the parser encounters a character that the source encoding cannot represent, it will return an error. 
 
If the target encoding scheme cannot contain a character then that character will be demoted to fit the encoding 
scheme.  In practice this means that they are replaced with a question mark. 

The XML extension 

The XML extension allows you to create XML parsers and define handlers.  You should be familiar with the 
following functions. 

xml_parser_create($encoding) 
Create an XML parser with the specified encoding. 
                                                        
62 https://secure.php.net/manual/en/xml.error-codes.php  
63 http://www.xmlsoft.org/html/libxml-xmlerror.html#xmlParserErrors  
64 https://secure.php.net/manual/en/xml.constants.php  
65 https://secure.php.net/manual/en/xml.encoding.php  
66 https://en.wikipedia.org/wiki/Variable-width_encoding  



 103 

xml_parser_create_ns($ecoding, $seperator=”:”) .  
Creates an XML parser with the specified encoding that supports XML namespaces. 

xml_parser_free($xmlparser)  
Frees up an xml parser. 

xml_set_element_handler($xmlparser, $start,  $end) 
This tells the parser which functions to call at the start and end of each element in the XML document.  You can 
pass FALSE to disable a particular handler. 
 
Both $start and $end must be callable and are usually the string names of a function that exists in scope. 
 
The function that handles the start of an element must accept three parameters: 

1. The xml parser resource 
2. A string that will contain the name of the element being parsed 
3. An array of attributes that the element has 

 
The end handler function must accept two parameters: 

1. The xml parser resource 
2. A string that will contain the name of the element being parsed 

xml_set_object($xmlparser, $object)  
This function allows the xml parser to be used within the object.  This means that you can set the methods of 
the object as functions for the setting element handler. 

xml_parse_into_struct($parser, $xml, $valueArr, $indexArr) 
This function parses an XML string into 2 parallel array structures, one (index) containing pointers to the 
location of the appropriate values in the values array. These last two parameters must be passed by reference. 

DOM 

DOM is an acronym of Document Object Model.  The DOMDocument class67 is useful for working with XML 
and HTML.   
 
It uses UTF-8 encoding and requires the libxml2 extension (Gnome xml library) and expat library.  It is a tree 
parser and reads the entire document into memory before creating an internal tree representation. 
 
Here is a basic example of some DOMDocument syntax: 

                                                        
67 https://secure.php.net/manual/en/class.domdocument.php  



 104 

<?php 

$domDoc = new DomDocument(); 

$domDoc->load("library.xml");  

// $domDoc->loadXML($xmlString); 

// $domDoc->loadHTMLFile("index.html");  

// $domDoc->loadHTML($htmlDocumentString); 

$domDoc->save(); // (to a file in XML format) 

$xmlString = $domDoc->saveXML();  

$htmlDocumentString = $domDoc->saveHTML();  

$domDoc->saveHTMLFile(); // (to a file in HTML format) 

$xpath = new DomXpath($dom);  

$elements = $xpath->query("//*[@id]"); // find all elements with an id 

echo "I found {$result->length} elements<br>"; 

if (!is_null($elements)) { 

    foreach ($elements as $element) { 

        echo "<br/>[". $element->nodeName. "]"; 

 

        $nodes = $element->childNodes; 

        foreach ($nodes as $node) { 

            echo $node->nodeValue. "\n"; 

        } 

    } 

} 

You should be familiar with the following methods of the DOM class: 
Method Description 
createElement Creates a node element that can be appended with the 

appendChild method of the node class 
createElementNS As with createElement but supports documents with 

namespaces 
saveXML Dumps the XML tree back into a string 
save Dumps the XML tree back into a file 
createTextNode creates a new instance of class DOMText 

DOM Nodes 
The DOMNode class68 is used to work with nodes in the DOM tree. 
 
You can retrieve nodes by calling one of these methods of the DOMDocument: 

• getElementsById 
• getElementsByTagName 
• getElementsByTagNameNS 

 
                                                        
68 https://secure.php.net/manual/en/class.domnode.php  



 105 

These methods return a DOMNodeList object which can be traversed over using foreach. 
 
You should be familiar with these methods of the DOMNode class.  

Method Description 
appendChild Adds a new child node at the end of the children 
insertBefore Adds a new child before a reference node 
parentNode The parent of the node, or null if there is no parent 
cloneNode Clones a node and optionally all of its descendent nodes 
setAttributeNS Adds a new attribute 

 

SimpleXML 

SimpleXML is an extension that sacrifices robust handling of complex requirements in favour of offering a 
simple interface.  It requires the simpleXML extension and only supports version 1.0 of the XML specifications. 
 
SimpleXML is a tree parser and loads the entire document into memory when parsing it.  This may make it 
unsuitable for very large documents. 
 
SimpleXML offers an object orientated approach to accessing XML data.  All of the objects that it makes are 
instances of the SimpleXMLElement class.  Elements become properties of these objects and attributes can 
be accessed as associative arrays. 

Creating SimpleXML objects 
You can create SimpleXML objects using procedural methods, or through an object orientated approach. 

$xml = simple_xml_load_string($string_of_xml); 

$xml = simple_xml_load_file(‘filename.xml’); 

$xml = new SimpleXMLElement($string_of_xml); 

Iterating over SimpleXML objects 
The children() method returns a traversable array of child objects.   
 
You can create an algorithm that inspects the children of a node and then iterates through them recursively.  
There is such an example on the PHP manual page69. 

Retrieving information 
 

                                                        
69 https://secure.php.net/manual/en/simplexmlelement.children.php  

Note that you need to pass a Node as an argument to these functions.  So if you’re trying to use 
appendChild() then you must first use a function like DOMDocument::createElement() to 
create the node. 



 106 

Function Action 
SimpleXMLElement::construct() Creates a new SimpleXMLElement object 
SimpleXMLElement::attributes() Identifies an elements attributes 
SimpleXMLElement::getName() Retrieves an elements name 
SimpleXMLElement::children() Returns the children of the given node 
SimpleXMLElement::count() Returns how many children a node has 
SimpleXMLElement::asXML() Returns the element as a well-formed XML string 
SimpleXMLElement::xpath() Runs an xpath query on the current node 

xpath 
 XPath is a language to define parts of an XML document.  It models an XML document as a series of nodes and 
uses path expressions for navigating through and selecting nodes from the document. 
 
SimpleXMLElement::xpath() runs an XPath query on XML data and returns an array of children that 
match the path specified. 
 
W3Cschools has a number of examples of XPath usage70.   
 
You should note that unlike PHP structures XPath results are not zero based.   The XPath 
/college/student[1]/name will return the first student, not the second as would be the case if it were 
zero based. 
 
PHP arrays containing xpath results are zero based.  In other words if you store your results in an array 
variable called $array then $array[0] will correspond to college/student[1]/name in the previous 
example. 
 
You can retrieve text values by using an XPath like this: /college/student/name[text()] 
 
You can specify ranges like this: /college/student[attendance<80]/name 

Exchanging data between DOM and SimpleXML 
The function simple_xml_import_dom() will convert a DOM node into a SimpleXML object. 
 
You can convert a SimpleXML object to a DOM with dom_import_simplexml() 

SOAP 

SOAP is an acronym of Simple Object Access Protocol.  Versions 1.0 and 1.1 were released by the industry.  As 
of version 1.2 the standard is controlled by the W3C and the acronym has fallen away, making SOAP just a 
plain name. 
 
The PHP SOAP extension is used to write SOAP servers and clients.  It requires that libxml is enabled, which is 
the case in default PHP installations. 
 
SOAP cache functions are configured in the php.ini file with the soap.wsdl_cache_* settings. 
 
If SOAP is available then it makes available a set of predefined constants.  These constants relate to soap 
versions, encoding, authentication, caching, and persistence. 
 

                                                        
70 http://www.w3schools.com/xsl/xpath_examples.asp  



 107 

There are two SOAP functions: 
 

• is_soap_fault returns whether a SOAP call has failed.  
 

• use_soap_error_handler is used for the SOAP server and sets whether PHP should use the 
SOAP error handler or not.  If it is set to false the PHP error handler is used instead of sending a SOAP 
error to the client. 

 
The rest of SOAP functionality is provided in a number of classes. 

What SOAP does 
SOAP allows complex data types to be defined and exchanged and provides a mechanism for various messaging 
patterns, the most common of which is the Remote Procedure Call (RPC).   
 
This in effect allows a developer to execute a function on a server, pass it complex data as parameters and 
receive complex data back. 
 
SOAP web services are defined by a WSDL (Web Service Description Language).  Most people pronounce this 
acronym as “whizz-dill”. 
 
The WSDL defines the data types using an XML structure.  It also describes the methods that may be called 
remotely, specifying their names, parameters and return types. 
 
SOAP messages between a server and client are sent in XML structures called SOAP envelopes. 

Using a SOAP service 
The SoapClient class is used to connect to and use a SOAP service.   
 
It is able to parse a WSDL file to discover what methods are available and then present these to you in an easy-
to-use manner. 

<?php 

$client = new SoapClient("http://example.com/login?wsdl"); 

$params = array('username'=>'name', 'password'=>'secret'); 

// call the login method directly 

$client->login($params); 

 

// If you want to call __soapCall, you must wrap the arguments in another array 

as follows: 

$client->__soapCall('login', array($params)); 

In the above example we connect to an example wsdl and call the login method using two different methods.  
Note that using the SoapClient::__soapCall() method requires you to wrap the parameters in an 
array. 
 
It is not compulsory for a SOAP service to provide a WSDL.  If you need to use such a service you may pass null 
as the WSDL file but then need to provide information about the service endpoint.  You must provide the 
location and uri options and may optionally provide other information about the version of the SOAP service, as 
in this example: 



 108 

<?php 

$client = new SoapClient(null, 

    ['location' => 'http://example.com/soap.php', 

        'uri' => 'http://test-uri/', 

        'style'    => SOAP_DOCUMENT, 

        'use'      => SOAP_LITERAL));         

    ]); 

When you construct the SoapClient class you can set the trace parameter to true to enable debugging the raw 
SOAP envelope headers and body. 
 
The following two debugging commands require that trace be true and allow you to inspect details of the 
request: 

• SoapClient::__getLastRequestHeaders() 
• SoapClient::__getLastRequest() 

 

Offering a SOAP service 
The SoapServer class provides a SOAP server.  It supports version 1.1 and 1.2 and can be used with or without a 
WSDL service description. 
 
Here is an example of setting up a SOAP server:  

<?php 

$options = ['uri'=>'http://localhost/test']; 

$server = new SoapServer(NULL, $options); 

$server->setClass('MySoapServer'); 

$server->handle(); 

 
We can see that we first create the server with an array of options.  In the example above we are not supplying 
a WSDL in the first parameter and so we have to supply the uri of the server namespace in the options array. 
 
Once we have an instance of the SoapServer class we pass in the name of the class that it will use to serve 
requests.  The methods in the class will be callable by a SOAP client connecting to the server. 
 
Instead of setting a class you may also use a concrete object to handle SOAP requests by passing it as a 
parameter with the SoapServer::setObject() function. 

REST web services 

REST is an acronym for Representational State Transfer and is an architectural style rather than a PHP 
extension or set of commands.  REST has a number of constraints that are intended to improve performance 
and maintainability of web services. 
 
REST has a number of verbs that are similar to HTTP request types.  This leads to some confusion, but it is 
important to note that REST does not have to use HTTP as a transport layer to communicate.  HTTP just 
happens to be very convenient for REST because it is stateless and the request types translate well into REST 
verbs.   



 109 

 
REST exposes Uniform Resource Identifiers (URI) that are linked to resources.  These links are called REST 
endpoints.  Depending on the HTTP type used to access them will perform an action on the resource (change its 
state).  The HTTP type is used to signal the REST verb to be performed. 
 
REST focuses on resources and providing access to those resources.  A resource could be something like a 
“user”.  Much like a database schema represents the user entity, REST will represent the user in a JSON or XML 
structure. 
 
A representation should be readable by both the server and the client.  REST can be used to transfer JSON, 
XML, or both.  We’ll look at this in a bit more detail later.   
 
In PHP one of the most common uses for REST API’s is to provide services for an AJAX enabled frontend, such 
as one written in Angular. 

Application and resource states 
A REST server should not remember the state of the application and the client should send all the information 
necessary for execution.   
 
This means that every request to a server is self-contained.  If a request to a server failed it will not affect the 
success or failure of other requests.  This improves the reliability of the application. 
 
The server is not responsible for remembering what state the application is in and relies on the client to send all 
the information it needs in order to process the request.  This means that application state is stored by the client. 
 
Application statelessness has important implications for scaling horizontally.  Because no individual server is 
maintaining state a request can reach any server in a group and be handled correctly. 
 
The resource that REST is providing access to has state that is expected to persist between requests.  Resource 
state is maintained on the server. 

REST verbs 
REST has a number of verbs that are used to alter the state of a resource on the server. 
 
Verbs operate either on a single resource, or a collection of resources. 
 

Resource GET PUT POST DELETE 
Collection Lists the URI’s 

where you can 
retrieve the 
members 

Replace the 
collection with 
another 
collection 

Create a new 
entry in the 
collection 

Deletes the 
entire collection 

Single Retrieve a 
representation 
of the single 
element 

Replace the 
element, or 
create it if it 
doesn’t exist 

Creates a new 
member 

Deletes the 
member 

 
PUT and POST look similar, but have an important distinction.  POST requires you to specify all of the required 
attributes for an element and will create a fresh element.   PUT will replace the attributes you specify for an 
existing record and you don’t need to supply all the attributes unless you’re creating a new record. 
 



 110 

To explain with an example, lets consider a user who has a name and a title. First we POST to create a new user 
with a name “Alice” and the title “Mrs”.  Then Alice graduates and becomes a doctor, so we PUT to her record 
and include just the title as “Dr”.  We don’t have to specify her name and because we don’t her name will not be 
changed. 

Request headers 
HTTP allows passing headers in its request.  REST clients will use these to indicate to the server what they are 
providing and what they are expecting back. 
 
A REST client should use the accept header to indicate to the server what sort of content (representation) it 
wants back.  For example, if a client sets the accept header to text/xml it is telling the server that it wants an 
xml formatted response. 
 
The client will also set a content-type header to inform the server of the MIME type of its payload.  See the 
section in the response header for more detail. 

Response headers and codes 
The content-type header is sent by the server and defines the MIME type of the body that is being sent.  For 
example a server may set the content-type to application/json to indicate that the body of the response 
contains JSON formatted text. 
 
The server will also set a status code that informs the client of the result of the request.  Some of the common 
codes are listed below, but there are many more71. 
 

Code Meaning 
200 The request processed successfully 
201 The resource was created 
202 The resource was accepted for processing, but has not yet been processed 
400 Bad request  (client error) 
401 Unauthorized, the client may not perform this action 
500 Server error 

 
It is very poor practice to send an error message in the response body but have a successful status code.  This is 
a fairly common problem in API’s that you will encounter in the wild.  
 
Within the Zend framework the term “context switching” refers to changing the output of your program 
depending on whether it is responding to a REST request or some other request. 
 
For example you may respond with an HTML page for normal requests or respond with JSON if the request 
originated via XMLHttpRequest (AJAX). 
 
You could also respond with XML or JSON depending on what content type the client indicates it wants as a 
response. 
 
Another example could be to respond with different layouts depending on what sort of browser is being used 
(mobile device versus desktop for example). 
 
You should be familiar with the concept of the server responding differently to a call to the same URL 
depending on how the client sets up its request. 
                                                        
71 https://en.wikipedia.org/wiki/List_of_HTTP_status_codes  



 111 

Sending requests 
The curl extension72 is a common way to send REST requests in PHP.  Curl lets you specify headers and request 
types. 
 
There are libraries that wrap the curl functions.  One of the popular ones is Guzzle73 which is easy to install and 
use. 

JSON 

JSON is an acronym of Javascript Object Notation.  In PHP it is used a lot with Ajax which is an acronym for 
Asynchronous Javascript and XML. 
 
JSON lets you serialize an object as a string so that it can be transported between services.  Ajax is a means to 
transport the string.   
 
Together these technologies allow you to communicate between Javascript applications in the browser and PHP 
applications on the server. 
 
The JSON extension is loaded in PHP by default and provides methods to handle converting to and from JSON. 
 
 It provides a number of constants including: 
 

Constant Meaning 
JSON_ERROR_NONE Confirms whether a JSON error occurred or not 
JSON_ERROR_SYNTAX Confirms if there was a syntax error parsing JSON and 

helps detect encoding errors. 
JSON_FORCE_OBJECT If an empty PHP array is encoded this option will force it 

to be encoded as an object 
 
There are three functions provided by the extension. 
 
json_decode() takes a string as its first argument and returns an object.  If the second parameter is set true 
it will return an associative array.   
 
From PHP 5.3 onwards two additional options are supplied - $depth and $options.  Depth refers to the 
recursion depth and currently the only option is JSON_BIGINT_AS_STRING which changes casting large 
integers as floats to be cast as strings. 
 
json_encode() takes a variable of any type (other than a resource) as a parameter and returns the JSON 
representation.  It has two optional parameters, $depth and $options which are the same as described 
above. 
 
json_last_error() returns the last error that occurred in either of the above functions.  

Date and Time 

PHP supplies a number of functions that retrieve the date and time from the server.  As of PHP 5.1 you should 
set a default time zone in your configuration, or set it at runtime in your script.  You should set the time zone to 

                                                        
72 https://secure.php.net/manual/en/book.curl.php  
73 https://github.com/guzzle/guzzle  



 112 

match the time zone that your server is in, so that PHP can correctly interpret the server time.  This also lets 
your script be aware of adjustments like daylight savings time. 
 
PHP 5.2 introduced the DateTime class which deals with a wide range of date and time calculations.  It is 
recommended to use this class instead of working with the functions like date() and time().  It’s worth 
mentioning that the class does not handle microseconds and if you need to work with timestamps that include 
them you will need to use the microtime() function. 
 
To create a new DateTime object you pass it a string that it can parse.  It understands a wide range of string 
formats, such as shown in this example: 

<?php 

$strings = [ 

    'Next monday', 

    'Yesterday', 

    '', // now 

    '2015-12-25', 

    '25 December 2015', 

    '-1 week', 

    '+1 days' 

]; 

foreach ($strings as $example) { 

    $dateTime = new DateTime($example); 

    echo $dateTime->format(DateTime::COOKIE) . PHP_EOL;     

} 

All of the strings in the array will be understood. 
 
If a date format is ambiguous then you can use the DateTime::createFromFormat() command to 
create the object.   
 
For example the date 3 June 2013 would be written as 06-03-2013 by an American while the rest of the world 
would write it as 03-06-2013.  If you gave either of these strings to PHP it would not know whether you mean 3 
June 2013 or 6 March 2013. 
 
To resolve the ambiguity you can specify which format you’re using in  your string, like this: 

<?php 

$dateTime = DateTime::createFromFormat('d-m-Y', '06-03-2013'); 

echo $dateTime->format(DateTime::COOKIE); 

This script will output something like Wednesday, 06-Mar-2013 12:56:42 CET.  Note that if you 
omit the time when creating a DateTime class the time  that the script is running at will be used. 

Formatting dates  
In the examples above we’ve used one of the class constants provided by DateTime to format our date. 
 



 113 

The manual74 has a list of these constants, which are common use cases for date display or storage.  They 
appear in this table: 
 

Constant Format 
ATOM Y-m-d\TH:i:sP 
COOKIE l, d-M-Y H:i:s T 
ISO8601 Y-m-d\TH:i:sO 
RFC822 D, d M y H:i:s O 
RFC850 l, d-M-y H:i:s T 
RFC1036 D, d M y H:i:s O 
RFC1123 D, d M Y H:i:s O 
RFC2822 D, d M Y H:i:s O 
RFC3339 Y-m-d\TH:i:sP 
RSS D, d M Y H:i:s O 
W3C Y-m-d\TH:i:sP 

 
These are string constants and contain date and time formatting codes.  The formatting codes are replaced with 
a value by the DateTime class.  For example the symbol “Y” is replaced with the 4 digit year of the date being 
stored. 
 
Obviously the point of declaring the constant is so that you don’t have to memorize the strings, so don’t worry 
about studying the formats.  I included the formatting strings because they are a good indication of the 
commonly used ones. 
 
Date and time formatting codes are case-sensitive.  For example “y” is a two digit year and “Y” is a four digit 
year. 
 
Characters in the formatting string that are not recognized formatting characters will be placed into the output 
unchanged.  So the string “Y-m-d” would include the hyphens between the year, month, and day when output – 
like this “2015-12-25”. 
 
 You can find a list of the PHP date and time formatting codes on the manual page75, but here are the ones that 
are in the table above: 

                                                        
74 https://secure.php.net/manual/en/class.datetime.php  
75 https://secure.php.net/manual/en/function.date.php  



 114 

Code Replaced with Example(s) 
Y A full 4 digit year 1999 
m Two digit month, with leading zeroes 06 
d Day of the month, 2 digits with leading zeros 14 
D A three letter textual day (e.g.: Mon, Tue, Wed 
H 24 hour format hour with leading zero 00, 09, 12, 23 
i Two digit minute, with leading zeroes 05,15,25,45 
s Two digit seconds, with leading zeroes 05,15,25,45 
P Difference to Greenwich time (GMT) with colon between 

hours and minutes (PHP 5.1.3+) 
+02:00 

O Difference to Greenwich time (GMT) in hours +0200 
T Timezone abbreviation EST, CET 

Date calculations 
The most simple calculations can be performed using the DateTime class method modify().  For example to 
find the date and time that is one month in the future you can do the following: 

<?php 

$dateTime = new DateTime(); 

$dateTime->modify('+1 month'); 

echo $dateTime->format(DateTime::COOKIE) . PHP_EOL; 

PHP offers a much more flexible way to work with date calculations, however. 
 
The DateInterval class76 is used to store either a fixed amount of time (in years, months, days, hours etc) or a 
relative time string in the format that DateTime's constructor supports. 
 
The DateTime class allows you to add() or sub() a DateInterval from a DateTime.  It will handle leap years 
and other time adjustments while doing so. 
 
To specify a fixed amount of time when creating a DateInterval object we pass its constructor a string.  The 
string always starts with P and then lists the number of each individual date unit in descending order.  
Optionally the letter T appears and then the time units are included. 
 
This makes a lot more sense with some examples: 
   

String Description 
P14D 14 days 
P2W 2 weeks 
P2W5D This is invalid – you may not specify weeks and days 
P2WT5H 2 weeks and five hours 
P1Y2M3DT4H5M 1 Year, 2 months, 3 days, 4 hours, 5 minutes 

 
Note that: 

1. Every string begins with P, 
2. The number of units precedes the letter indicating the unit, 
3. Time units are split from the date units by the letter T, 
4. Units are sorted in descending order 

                                                        
76 https://secure.php.net/manual/en/class.dateinterval.php  



 115 

 
Here is an example in code: 

<?php 

$dateTime = DateTime::createFromFormat('d-m-Y H:i:s', '06-03-2013 13:14:15'); 

$dateInterval = new DateInterval('P1M2DT3H4M5S'); 

$dateTime->add($dateInterval); 

echo $dateTime->format(DateTime::COOKIE) . PHP_EOL; 

This code outputs the date and time that is 1 month, 2 days, 3 hours, 4 minutes, and 5 seconds after 6 March 
2013 13:14:15. 

Comparing dates 
The DateTime diff method allows you to compare the difference between two DateTime objects.  It returns a 
DateInterval that contains the period of time between the two dates being represented. 
 
Note that the DateTime class handles timezone and daylight savings time conversions for you. 
 
Lets try and find out how long it is to Christmas. 

<?php 

$now = new DateTime();   

$christmas = new DateTime('25 december'); 

if ($now > $christmas) { 

    $christmas = new DateTime('25 december next year'); 

} 

$interval = $christmas->diff($now);  

echo  $interval->days . ' days until Christmas' . PHP_EOL; 

Notice the following in this snippet: 
1. Passing no parameter to the construct uses the current date and time 
2. We can use mathematical operators like >, <, and == to compare DateTime objects 
3. We can use fairly flexible language when creating a DateTime, such as “25 december next year” for the 

case where the current date is between Christmas and New Year 
4. The diff() method returns a DateInterval 
5. The DateInterval object has a number of public properties that can be accessed to measure years, 

months, and in this case days. 
 



 116 

Input-Output (I/O) 
PHP 4.3 introduced streams as a way of generalizing file, network, data compression, and other operations that 
share a set of common set of functions and uses. 

Files 

There are two main groups of functions to deal with files those that work with file resources, and those that 
work with a file name. 
 
Remember that a resource is a type of variable that can’t be stored directly in PHP.  A file resource is an 
operating system file handle.  All of the functions that deal with file resources begin with a single “f” letter and 
then have a verb describing their function.  For example fopen() opens a file resource. 
Functions that work with the string name of a file all start with the word “file” and are followed by a verb 
descriptive of what they do.  For example file_get_contents() takes a string file name and returns the 
contents of that file. 

Opening Files 

The function fopen() is used to open files.  It returns a resource variable which is a handle to the file. 
 
You must pass two parameters to fopen(): 

1. The file name 
2. The file mode 

File Modes 

Files can be opened in different modes.  File modes describe how we will be interacting with the file.   
 
File modes relate to operating system file privileges.  For example if the PHP user only has read access to a file 
then an attempt to open it in write mode will be denied by the operating system.  If we try with a lesser 
privilege (such as read only) then the operating system will create a file handle for us. 
 
We communicate two pieces of information about how we intend to use a file when we specify a mode: 

1. Whether we are reading, writing, or both 
2. Whether we want to place the file pointer at the beginning or ending of the file 

 
The file pointer is like an iterator cursor.  It stores the file position that will be returned on the next read.  I find 
it easier to remember the file modes by thinking about what their intention is.   
 

Mode Intention Read / Write Pointer Extra 
r Read Read Start  
r+ Read Read / Write Start  
w Overwrite Write Start Truncate 
w+ Overwrite Write / Read Start Truncate 
a Append Write End  
a+ Append Write / Read End  
x Create Write n/a Fails if file exists 
x+ Create Write / Read n/a Fails if file exists 
c Create Write Start Create if not exists 
c+ Create Write /Read Start Create if not exists 

 



 117 

You’ll notice that adding a + symbol to a file mode has the effect of indicating that you also want to perform the 
opposite of the default mode.  So when we’re overwriting a file if we add a + symbol then we indicate that we 
also want to read the file. 
 
When using the “w” modes to overwrite a file PHP will truncate the file to zero bytes. 
 
The “c” mode will create a file if it exists or open an existing file.  The pointer will be set to the start of the file 
for existing files.  This contrasts with the “x” mode where if the file exists the function will fail. 
 
There are two flags that you can specify by adding them to the end of the mode string.  The default flag is 
defined by your SAPI and version of PHP that you’re using, so for compatibility purposes you should specify 
them. 
 
You can specify a “b” flag to specify that you’re working with binary files.  This means that no characters will 
be translated.  This is necessary when you’re working with images or other binary files.   
 
On a Windows server you can specify a “t” flag to translate “\n” to “\r\n”. 
 
In order to keep your code portable you should use the “b” flag and make sure that your code uses the correct 
line endings. 

Reading 

You can read from a file resource using the fread() function. 
<?php 

$handle = fopen('info.txt', 'r'); 

while (!feof($handle)) { 

    echo fread($handle,1024); 

} 

In this example we’re using the file function feof() which is a function that returns TRUE when the file 
pointer is at the end of the file and FALSE otherwise.  Using it in a while loop as above has the effect of 
continuing the loop until we reach the end of the file. 
 
The fread() function takes two parameters.  The first is the variable holding the file resource, and the 
second is the number of bytes to read.  If it reaches the end of the file then fread() will stop reading. 
 
Here are three more PHP functions that make it easier to read files. 
 

Function Used to 
fgetcsv() Read a line from file pointer and parse for CSV fields 
file_get_contents() Take a string filename and read the results into a string 
readfile() Read a string filename and writes the contents to the output buffer 
file() Reads an entire file into an array 

 

Writing 

Writing to a file is done with the binary-safe fwrite() function.  fputs() is an alias to this function.  
 



 118 

The fwrite() function takes two parameters – the file resource to write to, and the string to write to the file. 
 
There is a writing counterpart for the freadcsv() function, namely fputcsv() which formats an array as 
CSV and writes the line to a file.  In addition to parameters for the file resource and array it takes optional 
parameters to define the CSV format. 
 
If you want to write formatted strings to a file then you should use fprintf() which works like the 
printf() command.  
 
If you want to dump the contents of a file to a connected client you can use fpassthru().  This function will 
start at the current file position and write the rest of the file to the output buffer. 
 
Finally there is a convenient function to quickly write a string to a file.  The function 
file_put_contents() doesn’t require you to provide a file resource and just requires the file name  and 
the string you want to write. 

File System Functions 

PHP has an extensive list of functions that connect you to the file system.  We’ll deal with a few of them in this 
chapter, but as I so often do I’m going to refer you to the PHP manual77 for the exhaustive list. 

Directories 

This group of functions let you traverse, create, and delete directories. 
 

Function Use 
chdir() Change PHP’s current directory 
chroot() Change root directory of the running process to the specified directory and 

sets PHP’s working directory to “/” 
rmdir() Deletes a directory 
readdir() Returns the name of the next entry in the directory handle passed as a 

parameter. The entries are returned in the order in which they are stored 
by the filesystem. 

scandir() Reads the directory specified by the string parameter and returns a list of 
the files and directories it contains 

 
The difference between scandir() and readdir() is the parameter that they take.  Where readdir() 
uses a directory handle, scandir() accepts the name of the directory as a string.  This is possibly confusing 
because it seems that the naming convention of file functions (f* versus file*) doesn’t apply to directories. 

File information 

We referred to these functions in the security chapter but there are other use cases where you need to obtain 
information about a file.   
 
PHP provides the finfo_open() function which returns a new instance of a fileinfo resource.  You provide it 
with two parameters – a predefined option constant, and the string location to a magic database file.   
 
The magic database file is a format used to describe file types and is also used by the Unix standard command 
“file”.  If you don’t supply a path to the magic database then PHP will use the one that it comes bundled with. 

                                                        
77 https://secure.php.net/manual/en/ref.filesystem.php  



 119 

 
Once PHP knows how to identify files you can use the finfo_file() function to obtain information about 
the file.  It takes at least two parameters – the fileinfo resource you just created and a string name of the file 
you want to check. 
 
Here is an example from the PHP manual: 

<?php 

$finfo = finfo_open(FILEINFO_MIME_TYPE);  

foreach (glob("*") as $filename) { 

    echo finfo_file($finfo, $filename) . "\n"; 

} 

finfo_close($finfo); 

Both of these functions have object orientated styles of use, as in this example from the PHP manual: 
<?php 

// finfo will return the mime type 

$finfo = new finfo(FILEINFO_MIME, "/usr/share/misc/magic"); 

 

/* get mime-type for a specific file */ 

$filename = "/usr/local/something.txt"; 

echo $finfo->file($filename); 

Managing Files 

You can use PHP to manage files.  Some of the common functions are listed in this table. 
 

Function Purpose 
copy Copies a file 
unlink Deletes a file 
rename Renames a file.  You can use this to move a file between 

directories. 
chmod Set file permissions 
chgrp Change the group of the file 
chown Change the owner of the file (superuser only) 
umask Change the current umask 

 

Determining the Type of a Fi lesystem Object 

It is good programming practice to verify that files and directories exist and that you have the proper 
permissions to use them in the way you intend.   
 
PHP provides a number of functions that return Boolean values if the object  
matching the string you pass as the parameter meets the test. 
 
All of these functions take a string parameter that is the name of a file or directory.  In the table below the 
check is against the object found that matches the name given in the parameter. 



 120 

 
Function Checks 
is_dir Is a directory 
is_file Is a file 
is_readable Is a file or directory, and can be read 
is_writeable Is a file or directory, and can be written to 
is_executable Is a file or directory, and can be executed 
is_link Is a symlink 
Is_uploaded_file Was uploaded by a POST request 

 
All of the functions will return FALSE if no filesystem object was found matching the name given in the 
parameter. 

Magic Fi le Constants 

PHP has a number of magic constants that you can use in relation to the file currently executing. 
 

Constant Refers To 
__LINE__ The line of the file currently executing 
__FILE__ The full path and filename of the file 
__FUNCTION__ The current function name 
__CLASS__ The name of the class in scope 
__METHOD__ The name of the method being executed 

 
These constants are very useful when writing debug logs.  For example I typically start all of my Log messages 
with the __METHOD__ tag so that it’s immediately clear which class and method the log message is generated 
in. 

Streams 

A stream is almost like a conveyer belt of things that come to you one by one.  In PHP you can also skip along 
the conveyer belt and seek to a particular position.   
 
Streams are referenced in a format that you might recognize:  

scheme://target 

For example http://www.php.net specifies the http scheme and the target as the URL of the PHP website. 

Stream Wrappers 

Wrappers are code objects which translate the stream into a particular encoding or protocol.    The PHP 
manual78 has a list of the wrappers that are implemented within the language, and the 
stream_wrapper_register() function lets you define your own. 
 

                                                        
78 https://secure.php.net/manual/en/wrappers.php  



 121 

Protocol Use 
file:// Accessing the local file system 
http:// Accessing HTTP(s) URLs 
ftp:// Accessing FTP(s) URLs 
php:// Accessing various I/O streams 
compress.zlib:// Compression streams 
data:// Data (RFC 2397) 
glob:// Find pathnames matching pattern 
phar:// PHP Archive 
ssh2:// Secure Shell 2 
rar:// RAR 
ogg:// Audio streams 
expect:// Process Interaction Streams 

 
The PHP streams that you can access are php://stdin, stdout, stderr, input, output, fd, memory, temp, filter. 
 
As an example of reading a stream, lets look at how to read the body of a PUT request.  At some time in your 
career you will be coding a REST API and will need to read and parse the body of PUT requests that clients are 
making to your server.  There is no superglobal for this request type as there is for GET and POST, so how is it 
done?  The answer is in the php://input stream! 

<?php 

// reads the PUT body 

$input = file_get_contents('php://input'); 

// parses the input into an array 

parse_str($input, $params); 

print_r($params); 

Filters 

Stream filters can be applied to streams and perform transformation operations on data leaving the stream. 
 

Filter Function 
string.rot13 Encodes the data with ROT13 
string.toupper Converts the string to uppercase 
string.tolower Converts the string to lowercase 
string.strip_tags Strips XML tags from the string 
convert.* Convert data according to an algorithm, for example 

convert.base64-encode will encode the data to base64 
mcrypt.* Provides symmetric encryption using libmcrypt 
mdecrypt.* The decryption filter using libmcrypt 
zlib.* Uses the zlib library to compress and uncompress data 

 
These filters are attached to a stream using the stream_filter_append() function.  You can apply the 
filter to the read and write directions of the stream independently. 



 122 

<?php 

$handle = fopen("files.php", 'a+'); 

stream_filter_append($handle, 'string.rot13'); 

while (!feof($handle)) { 

    echo fread($handle,1024); 

} 

You can provide a third parameter to stream_filter_append() to attach it to reading or writing the 
stream.  The parameter is one of the predefined constants STREAM_FILTER_READ, STREAM_FILTER_WRITE, 
or STREAM_FILTER_ALL. By default the filter is attached to reads and writes. 
 
The example above will output something like this: 

<?cuc 

$unaqyr = sbcra("svyrf.cuc", 'n+'); 

fgernz_svygre_nccraq($unaqyr, 'fgevat.ebg13'); 

juvyr (!srbs($unaqyr)) { 

    rpub sernq($unaqyr,1024); 

} 

Stream Contexts 

Stream contexts are a wrapper for a set of options that can modify a stream’s behaviour. 
 
You create a context with the stream_context_create() function.  You pass it two optional parameters, 
both of which are associative arrays.  The first parameter is the options, and the second is an array of context 
parameters. 
 
Each type of stream has its own set of context options.  The PHP manual79 has the exhaustive list of them. 
 
The only parameter available at the moment is a callable that will be called when an event occurs on a stream.  
The events are all predefined STREAM_NOTIFY_* constants.   
 
The prototype for the callback function is in the PHP Manual, along with an example of notify events for the 
HTTP stream. 
 
As an example if you are downloading a file you could set up your callback function to respond to the 
STREAM_NOTIFY_FILE_SIZE_IS event and abort the download if it is too big.  This example prevents us from 
downloading the homepage of www.example.com if it is larger than a kilobyte. 

                                                        
79 https://secure.php.net/manual/en/context.php  



 123 

<?php 

function callback($notification_code,  

    $severity,  

    $message,  

    $message_code,  

    $bytes_transferred,  

    $bytes_max)  

{     

    if ($notification_code == STREAM_NOTIFY_FILE_SIZE_IS) { 

        if ($bytes_max > 1024) { 

            die("Download too big!"); 

        } 

    } 

} 

 

$context = stream_context_create(); 

 

stream_context_set_params($context, 

    ["notification" => "callback"]); 

 

$handle = fopen('http://www.example.com', 'r', false, $context); 

 

fpassthru($handle); 

 
You can change the options and parameters with the stream_context_set_params() function while the 
stream_context_get_params() will return the current parameters for the stream. 
 



 124 

Web Features 

Sessions 

HTTP is a stateless protocol which means that the connection between the client and the server is lost once the 
transaction ends.  However in just about any application, the webserver needs to be able to distinguish between 
and keep track of visitors.   
 
In order to do so the server creates a session for the client.  The client will send the session identifier to the 
server with every request and this allows the server to associate the request with a particular session.  
 
Websites that don’t need to remember who a user is don’t need to use sessions.  An example of such a site 
would be one that just serves static content that is the same for all visitors. 
 
PHP supports sessions by default but they can be disabled through a configuration setting in php.ini 

Starting a Session 

A session in PHP is started when you call the function session_start() or automatically if your php.ini 
configuration specifies session.auto_start = 1. 
 
If you are using session_start() then you must make sure that you call this function before any output is 
sent to the client. 
 
When the session starts the user is assigned a random unique session identifier called the “session id”.  The 
session id is either stored in a cookie on the client or passed through the URL if you enable 
session.use_trans_sid configuration setting. 
 
Accepting sessions from the URL can be risky and it is better to configure PHP to only use cookies with the 
session.use_only_cookies setting.  The security section of this manual has more information about 
this. 
 

Session Identifier and Session Variables 

The session extension makes available the SID predefined constant that holds the session identifier.  You can 
also use the session_id() function to get it, or set it. 
 
You can use the function session_regenerate_id() to make a new session identifier for a client.  You 
should call this immediately after calling session_start() to help protect against session fixation. 
 
Once a session has started, the superglobal $_SESSION is available as an associative array containing the 
session variables.   

Logging a User Out 

In order to log a person out completely you should: 
1. set the $_SESSION array to an empty array,  
2. set the session cookie expiry time to the past,  
3. and then call the function session_destroy()80	
  

                                                        
80 https://secure.php.net/manual/en/function.session-destroy.php  



 125 

 
The effect of step 2 is to unset the session identifier on the client side. 

Session Handlers 

PHP supports creating your own session handler, but by default PHP sessions are stored on disk and use the 
serialize() and unserialize() commands to encode and decode the data. 
 
In addition to disk based sessions PHP also ships with a memcache session handler that can be configured in 
php.ini 
 
If you want to write your own session handler you should implement the SessionHandler interface81 (PHP 
5.4+).   
 
This will let you use alternative ways of storing your sessions, and also customize how you encode and decode 

the session data. 

GET and POST data 

HTTP has several different methods that requests can be made82.  GET and POST are two such methods. 
 
GET requests are used to request a representation of the specified resource.  In other words a GET request is 
trying to retrieve information. 
 
In contrast a POST request is used to send information to the server that you want it to store. 
 
From a technical perspective the main difference between the two lies in how data is transferred.  A GET 
request encodes it data as part of the URL while a POST request encodes the data payload in its body.  

Encoding data into URLs 

For an example of how variables are encoded into a URL, consider this example: 
http://example.com/index.php?name=foo&email=test@test.com 

The variables begin with a question mark and are delimited by ampersand symbols.  Each variable is a key 
value pair with the equals sign denoting the value.  
 
If we visit a page, then all of the variables in the URL are automatically placed into the $_GET associative array. 
 
You can encode arrays into the URL using syntax like this: 

http://example.com/users.php?sort[col]=name&sort[order]=desc 

You would be able to access these variables like this: 
• echo $_GET[‘sort’][‘col’]; 
• echo $_GET[‘sort’][‘order’]; 

                                                        
81 https://secure.php.net/manual/en/class.sessionhandlerinterface.php  
82 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods  

Prior to PHP 5.4 you would need to make multiple calls to the function 
session_set_save_handler() to set each of the methods in the interface class. 



 126 

File Uploads 

We’ll focus on how file uploads work and the PHP syntax associated with them in this section.  Make sure that 
you study the section on file uploads in the security chapter in conjunction with this section. 
 
Forms allow files to be uploaded by means of a “multi-part” HTTP POST transaction.   
 
You can specify that you want to encode your POST using multi-part form data in your HTML by declaring a 
form something like this: 

<form enctype="multipart/form-data" action="" method="post"> 

Note that I’ve left the “action” attribute blank.  By default an HTML form will submit to the URI that it is served 
from. 

Limiting the size of uploads 

You do not want people to be able to upload massive files that fill up your disk.  In order to manage the size of 
files that people can upload you can limit the size in the browser and on the server. 
 
To tell the client to limit the size of the upload you can add an input to your form like this: 

<input type="hidden" name="MAX_FILE_SIZE" value=" 1000000" />  

Limiting the size in the browser should be seen as being just to improve user experience.  It is very simple for a 
user to disable or change the limit in order to bypass the limit. 
 
You should rather configure PHP to limit the size of a POST operation.  The post_max_size limits the 
maximum of data any POST may contain.  The upload_max_filesize is applied to limit the size of files 
that can be uploaded. 

Temporary Fi les 

PHP stores the uploaded file in a temporary location and makes it available to the script that the form POST’ed 
to.   
 
You can process the file in the temporary location and then optionally move it to a permanent location.  PHP 
will automatically delete the temporary file when the script finishes running so if you want to keep it you have 
to move it. 
 
In addition to creating the temporary file PHP will populate the $_FILES superglobal array.  Each file that was 
uploaded in the form will have an entry in the array. 
 
You need to be aware that the information in the $_FILES array can quite easily be spoofed so you should 
manually validate every piece of information.   
 
Each file be represented by an array in the $_FILES superglobal and will keys for the name, type, size, 
temporary filename, and error code. 
 



 127 

Key Description 
name The original name of  the file stored on the client 
type The MIME type provided by the client 
size The size in bytes of the file 
tmp_name The name of the file in its temporary location 
error An error code, or UPLOAD_ERR_OK if the upload was successful 

  
The security section has more information on dealing with file uploads. 

Passing variables by POST 

When you use a POST request the variables you want to send are sent in the body of the request.   
 
There are different ways that the variables are encoded and you won’t need to be able to create the encoding 
yourself.  The browser will create the POST body for you when submit the form.   As a simple example a POST 
request could look something like this: 

POST / HTTP/1.1 

Host: example.com 

Accept: application/xml 

Cache-Control: no-cache 

Content-Type: application/x-www-form-urlencoded 

 

name=Alice&email=alice%40example.com 

There are three advantages to sending variables with POST: 
 
Firstly, POST data is able to be encoded in a particular character set, this isn’t the case with GET.   
 
Secondly, because your variables are being sent in the message body you’re not limited as to how much data 
you can send by the length of the URL.   
 
Lastly, POST allows you to upload files but GET does not. 
 
There is no difference in security between the two methods. 

 

Forms 

Forms allow users to submit data to your PHP script. 
 
When declaring a form in HTML you specify the method it uses to send information to the server.  Although 
you can choose either GET or POST you should make sure that you choose a request method that matches what 
you intend to do. 
 
PHP automatically makes form data available to your script in one of two superglobals $_GET, $_POST, 
depending on which method the form used to make the request.  

There is no limit in the HTTP protocol on the length of the URL but there are limits on browsers and 
other clients.  As a general rule don’t create a URL longer than 2000 characters. 



 128 

The Request Superglobal 

The $_REQUEST superglobal  is an associative array that by default contains the contents of $_GET, $_POST 
and $_COOKIE83.   

 
The php.ini setting variables_order determines which of the GET, POST, and COOKIE variables are 
present in the $_REQUEST array as well as the order.  If the same variable is in multiple request types it will 
take on the value of the last one in the sequence of this settings value.   
 
So, for example, lets imagine the configuration is set to “EGPCS” indicating that POST comes after GET.  Then 
if both $_GET[‘action’] and $_POST[‘action’] are set then $_REQUEST[‘action’] will contain the value of 
$_POST[‘action’]. 
 
Because you won’t be certain of exactly where the data in $_REQUEST is coming from you should use this 
array with caution.  Introducing uncertainty in your code complicates your testing. 

Form elements 

These superglobals can easily be edited by the client and so should always be filtered carefully and not trusted. 
 
Dots and space in form field names are converted to underscores, so the field 

<input name="email.address" type="text"> 

will be placed into either $_GET[‘email_address’] or $_POST[‘email_address’] depending on the forms method. 

Arrays in HTML forms 

Form data can be turned into an array using syntax like this in HTML: 
<form action="formhandler.php" method="POST"> 

    <input type="text" name="name[first]"> 

    <input type="text" name="name[last]"> 

    <input type="submit"> 

</form> 

This will result in $_POST or $_GET being an array that looks like this: 
array( 

 'name' => array( 

     'first' => '', 

     'last' => '' 

    ) 

) 

One of the most useful ways that arrays help is in grouping inputs together.   

                                                        
83 https://secure.php.net/manual/en/reserved.variables.request.php  

You should know that the argv and argc entries which contain the arguments when using the command 
line prompt are contained in the $_SERVER array. 



 129 

 
Consider a checkbox that can have multiple values: 

<h1>What pets do you want in your home?</h1> 

<form action="formhandler.php" method="POST"> 

    <input type="checkbox" name="pets[]" value="cats" id="lotsacats"> 

    <label for="lotsacats">Lots of Cats</label> 

 

    <input type="checkbox" name="pets[]" value="dog" id="adog"> 

    <label for="adog">Just a dog</label> 

 

    <input type="submit"> 

</form> 

Assuming that the person checked both boxes before submitting the form then the $_GET or $_POST array will 
contain: 

array( 

    'pets' => array('cats', 'dog') 

) 

This makes checkboxes a lot neater and easier to use.  You can read more about this in the PHP manual84. 

Selecting Multiple Items From a List  

Lastly, you will need to use an array if you want the user to be able to select multiple items from a select list: 
<select name="var[]" multiple="yes"> 

Note that the name of the select is an array, so each value that the user selects will be added to the “var” array 
in your superglobal array. 

Cookies 

Cookies let you store a small (4kb to 6kb) amount of data on the client device.  The client will read them and 
send them with each request. 
 
PHP can store its session identifier in the cookie.  The session information is stored on the server and matched 
to the client through the identifier in the cookie.  This is done by PHP for you.  By default PHP session cookies 
are valid until the person closes their browser. 
 
You cannot control cookies on the client device.  They can be edited or deleted at any time by the client.  This 
means that you should neither trust the information sent with them nor rely on them to exist.  You should also 
not store sensitive information in cookies. 
 
If you want to delete a cookie you can set an expiry date that is in the past.  This will let the client know that 
the cookie is no longer needed and can be deleted.  You have no guarantee that the client will respect this. 
 

                                                        
84 https://secure.php.net/manual/en/faq.html.php#faq.html.arrays  



 130 

A server will set a cookie using the Set-Cookie response header.  The client will include it with future 
requests using the Cookie request header. 

Setting Cookies 

The setcookie() function is used to set a cookie.  The parameters are explained in the PHP manual85  and 
are given in the order of this table: 
 

Parameter Used for 
value Storing a scalar value in the cookie. 
expire Unix epoch timestamp when the cookie expires.  You can’t rely on the 

cookie existing until it expires as it is common for people to delete their 
cookies. 

path The base path on the domain that the cookie will be available on.  If you 
set it to ‘/’ then it will be available on all paths, otherwise it will be 
available on the path and all sub-paths from it.  

domain The cookie will be available on this and all sub-domains under it.  You 
can only set a cookie that matches your the domain the cookie is being 
served from. 

secure Tells the client that it should only send the cookie if it is being sent over 
an HTTPS encrypted connection 

httpdonly Tells the client that it should only send the cookie using HTTP and not 
make it available to scripting languages like Javascript.  To a limited 
degree this can help reduce XSS and session fixation attacks on clients 
that support it. 

 
Cookies can only store scalar values.  You can, however, use syntax like the following example: 

<?php 

setcookie("user[name]", "Alice"); 

setcookie("user[email]", "alice@example.com"); 

The next time the person makes a request to the site the $_COOKIE variable will contain something like this: 
Array 

( 

    [PHPSESSID] => jlm5od9ngqi3krmu6fkjcebcb4 

    [user] => Array 

        ( 

            [name] => Alice 

            [email] => alice@example.com 

        ) 

 

) 

Note that “user” is an array and that the cookie value also contains the PHP session identifier. 

                                                        
85 https://secure.php.net/manual/en/function.setcookie.php  



 131 

Retrieving Cookies 

You can access the cookie information using the $_COOKIE superglobal.   
 
Remember that this array is populated with information from the cookie sent by the client.  This means that if 
you use setcookie() to create or change a cookie the $_COOKIE array will only contain the new 
information when the client makes a new request. 

HTTP Headers 

HTTP headers are sent with the request from the client and with the response from the server.   They are used 
to convey information about the HTTP message such as what sort of information is being provided and what 
will be accepted in return. 
 
HTTP headers take the form of a name-value pair in a clear text string.  A carriage return and line feed 
character follows each header.  There is no limit in the standard but most servers and clients impose limits on 
the length of a header and the total number of headers that may be sent in one request/response. 
 
PHP will automatically emit valid headers for you, but there are several cases where you may want to send 
your own header. 

Sending headers 

The PHP function header() lets you send a header to the client.  You may only send headers before any 
normal content has been sent to the client.  One of the reasons that it is common to omit the closing ?> tag in 
included PHP files is to avoid having a new line character occur after the tag.  This character would be sent as 
HTML content and would prevent you from being able to send headers. 
 
The parameters sent to header() are as follows: 
 

Parameter Description 
Header string String containing the header to set.  For example: “Cache-

Control: no-cache, must-revalidate” 
Replace Boolean to indicate whether this header must replace a 

previously sent header with the same name. 
Response code The HTTP response code to send with the header 

 
There are two special cases for headers. 
 
The first is for headers that begin with the string “HTTP/”.  These can be used to explicitly set the HTTP 
response code, as in this example from the PHP manual: 

<?php 

header("HTTP/1.0 404 Not Found"); 

The second special case is for using the “Location” header.  This header indicates to the client that the 
document they are looking for is in the location you specify.  PHP will automatically set a 302 HTTP status code 
if you use this header, unless you’ve already set a 2xx or 3xx header.  Here’s an example: 



 132 

<?php 

header("Location: http://www.example.com/"); 

exit; 

In this example the server will respond with status code 302 and the client will be redirected to the example 
domain. 
 
Note the usage of the exit language construct after sending the redirect header.  
Your code continues to run after sending the header unless you stop it. 
 
It is up to the client to respect your redirect header.  If they decide not respect it then your code will continue to 
output and they will see whatever output it generates. 

Tracking headers 

The headers_list() function will return an array of headers that are ready to be sent or have already been 
sent to the client.  You can determine if the headers have been sent by calling headers_sent(). 
 
If you want to prevent a particular header from being sent you can use the headers_remove() function to 
unset a header from the list to be sent. 

HTTP Authentication 

PHP can send a header to the client that causes it to pop up an “Authentication required” dialog box.  When the 
user fills in the dialog with a user and password the URL of the PHP script is called again.   
 
On the second call PHP will have three predefined variables available in the $_SERVER array. These are 
PHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE and are set to the user name, password and 
authentication type respectively. 
 
You should then authenticate the user using whatever method you see fit, such as checking the user and 
password against a database. 
 
Examples of HTTP authentication are given on the PHP manual page86: 

<?php 

if (!isset($_SERVER['PHP_AUTH_USER'])) { 

    header('WWW-Authenticate: Basic realm="My Realm"'); 

    header('HTTP/1.0 401 Unauthorized'); 

    echo 'Text to send if user hits Cancel button'; 

    exit; 

} else { 

    echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>"; 

    echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>"; 

} 

In this example we just output the contents of the variables in the $_SERVER array, but in real life we would 
perform some form of authentication. 
                                                        
86 https://secure.php.net/manual/en/features.http-auth.php  



 133 

 
The password sent by the client is base64encoded to standardize the character set but there is no hashing or 
encryption performed. 

HTTP Status Codes 

HTTP status codes are sent with responses and follow standards set by the Internet Engineering Task Force as 
well as de facto standards used within the industry. 
The most important ones are the common ones: 
 

Code Status 
200 OK, the request was successful 
201 CREATED, the request resulted in a new resource being created 
301 Moved permanently, the resource will always be found at the location specified 
400 Bad Request – there was something in the request that was malformed or 

otherwise prevented its execution 
401 Unauthorized – the client has not been authenticated as being allowed to make 

this request 
403 Forbidden – The (authenticated) client is not allowed to make this request 
418 I’m a teapot.  The client is attempting to send coffee making protocols to the 

server, which is in fact a teapot.87 
500 Internal Server error.  The server was not able to complete the request and can’t 

respond more appropriately.  Commonly associated with a crash or 
misconfiguration. 

 
When using API’s the HTTP status code is very important.  If you’re coding an API you should make sure that 
you send the correct status code for the error.   
 
For example, if the request failed and you send an error message in the body you should make sure that the 
HTTP status code is 400 and not 200. 
 
As you work with PHP you’ll become more familiar with the status codes but if in doubt you should look up a 
list and make sure that you’re sending an appropriate response88. 

                                                        
87 No, this is not a joke and is recognized as a de facto status code 
88 http://httpstatusdogs.com/  



 134 

Databases and SQL 
Databases are the fastest way to persist data that you intend to refer to regularly and need to keep in the long 
time.   
 
PHP uses extensions to interact with a range of databases.  For example to interact with the MySQL database 
you can use the functions provided by the mysqli extension.  Note the “i” at the end of mysqli.  This is the 
replacement for the now deprecated “mysql” extension.  Features like “Prepared Statements” are only available 
with the new extension. 
 
PHP also offers abstraction layers that provide an application layer between your code and the database.  We’ll 
be looking at PDO (PHP Data Objects) in this book. 
 
We’ll be focusing on relational databases in this book, but it is worth mentioning in passing an alternative to 
relational databases.  MongoDB is a very popular NoSQL database and they have contributed a driver for PHP 
that allows you to connect to their database.  We’ll be focusing on the native relational databases and the 
MongoDB driver is not likely to be included in your Zend examination. 
 
You will be expected to know basic SQL for your Zend examination.  The assumed environment will be MySQL 
if the question does not specify otherwise. 

Introduction to Databases 

Lets begin by making sure that some of the concepts of relational databases are clear. 

Keys 

Keys impose constraints, such as PRIMARY and UNIQUE. 
 
A primary key can be defined on either a single or multiple columns.  It guarantees that each row in the 
database will have a unique value combination for the columns in the key.  A row may not have a null value for 
its primary key. 
 
A table may have only one primary key. 
 
A foreign key can also be defined on either a single or multiple columns.  It references the primary key on 
another table.  This is a unique reference, so only one row in the referenced table will be linked to the table 
containing the foreign key. 

 
In the above diagram we refer to the category that a product belongs to with the foreign key “category_id”.  
Both tables have got primary keys named “id”. 

Indexes 

Indexes are data structures that are needed to implement the key constraint. 



 135 

Indexes make retrieving records faster.  The database engine will create a structure on disk or in memory that 
contains the data from the indexed columns.  This structure is optimized for lookups and helps the database 
find the row in the table faster. 
 
Whenever you insert a row into a table the indexes need to be updated.  This adds an overhead to writing. 
 
You cannot have a key without an index, but it is possible to index columns that are not keyed.  You would do 
this in cases where you don’t want to enforce uniqueness but do want to speed up SELECT statements that 
include these columns in their WHERE clauses. 
 
The binding between keys and indexes is very tight and in MySQL they are considered synonymous. 

Relationships 

Relationships are a core feature of relational databases.  By declaring how tables are related you are able to 
enforce referential integrity and minimize dirty data.   
 
There are several types of relationships.  
 

Relationship Description 
one-to-one One row in the parent table can reference exactly 

one row in the child table 
one-to-many One row in the parent table can be referenced by 

many rows in the child table 
many-to-many Any amount of rows in the parent table can be 

referenced by any amount of rows in the child table 
 
By having relationships between tables you are able to store data that is logically related together in a table 
distinct from other data.   
 
For example we can have a “products” table that stores information about what we sell.  Products belong to 
categories.  A single category can have lots of different products in it.  This means that one row in the category 
table can be referred to by multiple rows in the products table. 

SQL data types 

Columns in a SQL database table have a data type assigned to them.  Just as with PHP variable types SQL types 
can each store different formats of data. 
 
Each database manager will implement the SQL data types slightly differently and will have different 
optimizations between its types. 
 
We will discuss a few of the common data types and avoid focusing on any particular implementation of SQL. 

Numeric types 
The types of integers vary in the amount of bytes that they take to store their value.   
 

Integer Type Bytes Values 
BIGINT 8  -2^63 to +2^63 
INTEGER 4 -2^31 to +2^31 
SMALLINT 2 -2^15 to +2^15 

 



 136 

MySQL allows you to specify a parameter for integers, which is actually a display value and doesn’t affect the 
underlying storage.  It’s a fairly common misconception that the parameter is for precision. 
 
Non-integer types can be stored in either NUMERIC or DECIMAL values.  The SQL-92 standard specifies that a 
NUMERIC type must have the exact precision stipulated, while the DECIMAL type must be at least as precise.  
The implementation of these data types does differ between vendors. 
 
They both take the same parameters: 

NUMERIC(21,3) 

The first parameter specifies the total number of digits of precision, and the second parameter specifies how 
many digits of decimal precision must be stored. 
 
In the example we are going to store a number that has 21 digits in total, of which 3 appear after the decimal 
point. 

Character Types 
SQL allows for character to be stored either in fixed or variable length strings.    
 
A fixed length string is always allocated the same number of bytes on disk.  This can help speeding up read 
performance in some database implementations.  The trade-off is that if a string being stored in a fixed length 
data store is shorter than the number of characters allocated, then you are storing more characters than you 
have to.  
 
Variable length strings can swell up to the limiting size given to them.  The database engine allocates storage 
according to the length of the string.  Database implementations will store the length of the string being stored.  
This will be at least one character to indicate the end of the string, but in some engines each variable string will 
incur heavier storage overhead.   
 
In general when storing a string that you know is always going to be of a particular length, such as a hash for 
example, then you should store it in a fixed length character field.  This will improve performance and you 
won’t incur storage waste. 

Working with SQL 

We won’t focus on any specific implementation of SQL and will rather try to use generic statements.  The Zend 
examination will not be testing your knowledge of a particular database engine, but will be expecting you to 
know basic SQL syntax. 

Creating a Database and Table 

The CREATE statement can be used to create databases and tables.   Creating a database is simple, you just 
specify the name of the database: 

CREATE DATABASE mydatabase; 

When creating a table you can specify a list of the columns you want to store in it.  For each column you 
specify the name, data type, and attributes. 



 137 

CREATE TABLE IF NOT EXISTS users ( 

  id int unsigned NOT NULL AUTO_INCREMENT, 

  name varchar(255) NOT NULL, 

  email varchar(255) NOT NULL, 

  password varchar(60) NOT NULL, 

  PRIMARY KEY (id), 

  UNIQUE KEY users_email_unique (email) 

); 

Dropping Database and Tables 

The inverse of CREATE is the DROP statement.  
DROP TABLE category; 

DROP DATABASE mydatabase; 

If you have specified foreign keys the database will not let you drop a table if this will violate one of the 
constraints.   
 
As an example, refer back to our example with products and categories.  If we try to drop the category table and 
there are still products referencing it the database engine should not allow the operation. 

Retrieving Data 

The SELECT statement is used to retrieve data.  The syntax for SELECT can be very complicated and is one of 
the statements that differs the most between vendors.  For your Zend certification you will need to understand 
basic usage and joins. 
 
In this simple pseudo-code example of a query we retrieve the names of products from our table that cost more 
than 100 currency units.  We specify that we want the results to be returned in descending order of price.  

SELECT name 

    FROM products 

    WHERE price > 100 

    ORDER BY price DESC 

You can specify multiple column names separated by commas or use the wildcard * to receive all columns. 
 
The format of the data that PHP receives back is dependent on the driver and function that you use to call the 
query.  You’ll generally receive back an object or an array that has keys/properties corresponding to the 
columns. 

Inserting new data 

The INSERT statement is used to create new rows in the database.  You will need to provide a list of the 
columns and the values to insert to them.  Columns that are marked NOT NULL are mandatory and must have 
a value specified when you create the row. 



 138 

INSERT INTO products 

    (name, price, category_id) VALUES 

    (‘cheeseburger’, 100, 3) 

If you don’t specify the names of the columns SQL will assume that you’re providing values in the order that 
the columns appear in the table.  This can be a drawback if ever you change the structure of your table. 
 
Otherwise, as in the example above, you specify the names of the columns, and then the values.  The values are 
assigned to the columns in order.  So in our example the name of the product is set to ‘cheeseburger’, it’s price 
is 100, and it is placed into the category that has an id value of 3 (whatever that may be). 

Updating data 

The UPDATE statement accepts a list of values similar to the INSERT statement, as well as an optional WHERE 
clause similar to the SELECT statement.  
 
You must specify what values to update the existing data to, and the criteria for the rows that must be updated. 

UPDATE products  

    SET price = price + 100 

    WHERE category_id = 3;  

Aggregating data 

You can use the database to perform calculations and send you the result. 
 

Statement Returns 
AVG Average value of the data values 
SUM Total of all the data values found  
COUNT How many records were found 
DISTINCT COUNT How many unique records were found 
MIN The lowest value in the data set 
MAX The highest value in the data set 

 
Using these statements is as follows: 

SELECT AVG(price) FROM products; 

Grouping data 

You can tell SQL to group data by a column or combination of columns before returning it to you.  This is often 
useful in conjunction with the aggregating functions.   
 
Lets take an example where we want to find out the total amount of sales that each of our customers has 
purchased.  

SELECT email, SUM( sales_value )  

FROM  `transactions`  

GROUP BY email 

In this example we group transactions that have the same email address.  The SQL database engine will apply 
the SUM statement by adding up the sales values in each group and then returning that. 



 139 

 
I included the email address in the SELECT statement so that the output will have the email address of the 
customer, and the sum of all the sales values of transactions with their email address. 

Joins 

Joins are used to connect tables based on supplied criteria.  This lets you retrieve information from related 
tables.    
 
In our products and categories database you can retrieve the category name of products by joining the category 
table to the product table: 

SELECT *  

FROM  products  

JOIN categories ON categories.id = products.category_id 

We are joining the category table to the products table and give instructions to SQL on how to match rows.  A 
row from the categories table will be included if its “id” column matches the “category_id” column in the 
products table. 

Join Types 

There are several ways to join tables. 
 

Join Type Effect 
INNER JOIN Selects records that have matching values in both tables, as 

in the example above 
LEFT OUTER JOIN Select tables from the left table that have matching right 

table records 
RIGHT OUTER JOIN Select records from the right table that have matching left 

table records 
FULL OUTER JOIN Select all records that match either left or right table 

records 
 
These joins can be represented diagrammatically as follows: 

 
 



 140 

  

Prepared Statements 

When you issue a command to a SQL engine it has to parse the command in order to execute it.  After the 
statement has been executed SQL will discard the compiled code with the result that repeated calls with the 
same SQL command will need to be parsed individually.  Obviously this results in duplicated effort.   
 
You can save SQL from having to repeat its efforts by using prepared statements that become parsed code 
templates that SQL stores for multiple reuse.   
 
Prepared statements also offer significant security advantages.  Parameters are bound to the prepared 
statement, and are not included as part of the code string.  This means that it is not possible for your 
parameters to intrude on the code, which means that you no longer need to worry about escaping code to 
prevent SQL injection.  Just keep in mind the possibility of stored XSS attacks before you stop worrying about 
escaping data coming into or out of your database. 

<?php 

// prepare and bind 

$stmt = $conn->prepare("INSERT INTO users (username, password) VALUES (?, ?)"); 

$stmt->bind_param("ss", $username, $password); 

 

// set parameters and execute 

$username = "bob"; 

$password = password_hash("password", PASSWORD_BCRYPT); 

$stmt->execute(); 

Transactions 

A transaction is a set of SQL statements that will either all succeed or else have no effect.  After a transaction 
finishes the database must not have any table constraints invalidated and must be in a state where all the 
changes have been persisted.  A database must have some way of ensuring that transactions can run at the 
same time and not interfere with each other, for example by incrementing a primary key that another 
transaction is depending on. 
 
In summary, a transaction is a set of SQL statements that must complete successfully in an “all or nothing” 
manner.  After it runs the database must be in a consistent state and must be recoverable from error. 
 
The syntax for transactions varies between vendors, but there are three important statements.   
 



 141 

One statement will mark the beginning of the transaction block.  The SQL statements following this will be 
considered to be part of the transaction. 
 
There are two statements that can end a transaction.  One of them will tell SQL to go ahead and make all of the 
changes that the transaction is making.   
 
The other will tell SQL that for whatever reason you want to abandon the transaction and rather revert back to 
the state the database was in when the transaction started. 
 
I’ll tabulate the three most common vendors’ statements: 
 

MySQL MS-SQL ORACLE 
START TRANSACTION BEGIN TRANSACTION START TRANSACTION 
COMMIT COMMIT TRANSACTION COMMIT 
ROLLBACK ROLLBACK WORK ROLLBACK 

PHP Data Object (PDO) 

The PDO is a data abstraction layer that offers a single interface for you to interact with multiple data sources.  
While using the PDO you can use the same functions to interact with your database no matter the vendor. 
 
It’s important to understand that PDO is an access abstraction layer and does not abstract SQL or data types. 
The SQL that you pass to the PDO::query() or prepared statements must be valid for the vendor you are 
connecting to. 
 
PDO uses database adapters to be able to connect to the database.  These adapter classes implement PDO 
interfaces and expose vendor specific functions as regular extension functions. 
 
PDO is configured in the PHP configuration file.  At runtime you can change options with the 
PDO::setAttribute() function. 
 
The PDO extension makes available a number of predefined constants.  You won’t need to remember them all 
for the Zend examination, but take a look through the PHP manual89 and familiarize yourself with them. 
 
The PDO will emulate prepared statements for databases that don’t support them, but will otherwise use the 
native prepared statement functionality of the database. 

Connecting to PDO 

In order to connect to the database with PDO you create an instance of the PDO class.  The constructor accepts 
parameters for the database source (DSN) and the username/password if these are required. 

                                                        
89 https://secure.php.net/manual/en/pdo.constants.php  



 142 

<?php 

try { 

    $dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass); 

} catch (PDOException $e) { 

    echo "Error connecting to database: " . $e->getMessage(); 

} 

If there are errors connecting to the database then a PDOException will be thrown.   It is very important to 
note that the stack trace of the exception will probably contain the full database connection details.  Make sure 
that you catch it and don’t let it be displayed “raw”. 
 
To close a connection when you’re done with it you can set the pdo variable to null. 

$dbh = null; 

Database connections are automatically closed at the end of your running script unless you make them 
persistent.  Persistent database connections are not closed but are instead cached for another instance of the 
script to use.  This reduces the overhead of needing to connect to the database every time your web application 
runs. 

Transactions in PDO 

PDO offers transaction commands too, but does not emulate proper transaction handling.  This means that you 
can only use the PDO transaction functions on databases that natively support transactions.  The functions are 
PDO::beginTransaction(), PDO::commit(), and PDO::rollBack(). 



 143 

<?php 

$dsn = 'mysql:host=localhost;dbname=example'; 

$pdo = new PDO($dsn, 'dbuser', 'dbpass'); 

$pdo->setAttribute(PDO::ATTR_EMULATE_PREPARES, TRUE); 

$pdo->setAttribute(PDO::ATTR_ERRMODE, 

    PDO::ERRMODE_EXCEPTION); 

$password = password_hash("password", PASSWORD_BCRYPT); 

try { 

    $pdo->beginTransaction(); 

    $pdo->exec(" 

          INSERT INTO users 

              (username, password) 

          VALUES 

              ('bob', '{$password}'"); 

    // some more update or insert statements 

    $pdo->commit(); 

} catch (PDOException $e) { 

    $pdo->rollBack(); 

    echo 'Rolled back because: ' . $e->getMessage(); 

} 

In the example we make a connection to the database with PDO and start a transaction.   
 
We wrap all of the PDO transaction functions in a try…catch block.  If a PDO statement fails to run it will 
throw a PDOException.  We use the catch block to roll back the transaction. 

Fetching PDO Results 

We use the PDO::fetch() method to retrieve data from a PDO result.  PDO will maintain a cursor to 
traverse the result set and uses this to determine which element to return to you. 
 
PDO will return the data to you in a format that you specify in the first parameter to fetch().   
 



 144 

Fetch style Returns 
PDO::FETCH_ASSOC Returns an associative array with your database columns as 

keys 
PDO::FETCH_NUM Returns an array indexed by column number as returned by 

your result set 
PDO::FETCH_BOTH Returns an array with both the indexes of ASSOC and NUM 

style fetches. 
PDO::FETCH_BOUND Returns true and assigns the values of the columns in your 

result set to the PHP variables to which they were bound with 
the PDOStatement::bindColumn() method  

PDO::FETCH_CLASS Returns a new instance of the requested class mapping the 
columns of the result set to named properties in the class 

PDO::FETCH_INTO Updates an existing instance of the requested class, mapping 
as for FETCH_CLASS 

PDO::FETCH_OBJ Returns an anonymous object with property names that 
correspond to the column names from your result set 

PDO::FETCH_LAZY Combines PDO::FETCH_BOTH and PDO::FETCH_OBJ and 
creates the object variable names as they are accessed 

PDO::FETCH_NAMED As for PDO::FETCH_ASSOC returns an associative array.  If 
there are multiple columns with the same name the value 
referred to by that key will be an array of all the values in the 
row that had that column name. 

Prepared Statements in PDO 

Not all database engines support prepared statements and this is the only feature that PDO will emulate for 
adapters that don’t. 
 
The syntax for a prepared statement in PDO is very similar to using a native function.   

<?php 

$stmt = $dbh->prepare("INSERT INTO users (name, email) VALUES (:name, 

:value)"); 

$stmt->bindParam(':name', $name); 

$stmt->bindValue(':email',’alice@example.com’); 

 

// insert one row 

$name = 'one'; 

$stmt->execute(); 

Walking through the example we see that the prepare() method is used to create the statement object. 
 
We’re using two different forms of binding parameters as a means to demonstrate the different. 
 
In the first, bindParam(), we’re binding a variable to the statement parameter. When the statement executes 
the parameter will take the value of the variable at execution time. 
 



 145 

The second way to bind variables, bindValue(), binds a literal to the statement parameter.  If you used a 
variable name in bindValue() then the value of the variable at bind time is used.  Changes to the variable 
before the statement executes will not affect the parameter value. 

 

Repeated Calls to PDO Prepared Statements 
We have seen that the bindParam() method inserts the value of a variable at the time the statement is 
executed into the statement parameter.  You can see that using bindParam() allows you to repeatedly call 
the prepared statement, using different values for the parameters on each call. 
  
The method closeCursor() is used to clear the database cursor and return the statement to a state where it 
can be executed again.  Some databases have problems executing a prepared statement when a previously 
executed statement still has unfetched rows. 
 
 

Only values can be bound in a SQL statement, not entities like table names or columns.  You can only 
bind scalar values, not composite variables like arrays or objects. 


	Table of Contents
	Introduction
	Functions
	Strings and Patterns
	Arrays
	Object Orientated PHP
	Security
	Data Formats and Types
	Input-Output (I/O)
	Web Features
	Databases and SQL

		2016-01-10T18:57:10+0000
	Preflight Ticket Signature




