

Contents

Preface xi

I Zope 3 from a User’s Point of View 1

1 Installing Zope 3 3

1.1 Requirements . 3

1.2 Installing from SVN . 4

1.3 Installing the Source Distribution . 6

1.3.1 Unpacking the Package . 6

1.3.2 Building Zope . 6

1.3.3 Creating a Zope Instance . 7

1.3.4 Run Zope . 7

1.4 Installing the Source Distribution on Windows without make 7

1.5 Installing the Binary Distribution . 8

2 The new Web-based User Interface 9

2.1 Getting comfortable with the ZMI . 10

2.2 Help and Documentation . 13

2.3 The Scripter’s World . 14

2.4 Software versus Content Space . 14

2.4.1 Content Space . 14

2.4.2 Software Space . 15

3 Install Zope Packages 19

3.1 Step I: Determining the Installation Directory . 20

3.2 Step II: Fetching the Wiki application from SVN . 20

3.3 Step III: Registering the Package . 21

3.4 Step IV: Confirm the Installation . 21

3.5 Step V: Add a Sample Wiki . 21

4 Setting Up Virtual Hosting 23

i

ii
Zope 3 Developer’s Book

II The Ten-Thousand Foot View 27

5 The Zope 3 Development Process 29

5.1 From an Idea to the Implementation . 30
5.1.1 Implementing new Components . 30
5.1.2 Fixing a bug . 31

5.2 Zope 3 Naming Rules . 32
5.2.1 Directory Hierarchy Conventions . 32
5.2.2 Python Naming and Formatting Conventions 33
5.2.3 ZCML Naming and Formatting Conventions 34
5.2.4 Page Template Naming and Formatting Conventions 35
5.2.5 Test Writing Conventions . 35
5.2.6 Importance of Conventions . 36

6 An Introduction to Interfaces 37

6.1 Introduction . 37

6.2 Advanced Uses . 39

6.3 Using Interfaces . 39

7 The Component Architecture – An Introduction 41

7.1 Services . 42

7.2 Adapters . 44

7.3 Utilities . 45

7.4 Factories (Object Classes/Prototypes) . 45

7.5 Presentation Components . 46

7.6 Global versus Local . 47

8 Zope Schemas and Widgets (Forms) 49

8.1 History and Motivation . 50

8.2 Schema versus Interfaces . 50

8.3 Core Schema Fields . 51

8.4 Auto-generated Forms using the forms Package . 55

9 Introduction to ZCML 61

10 I18n and L10n Introduction 67

10.1 History . 68

10.2 Introduction . 68

10.3 Locales . 70

10.4 Messages and Message Catalogs . 70

10.5 Internationalizing Message Strings . 71
10.5.1 Python Code . 71
10.5.2 ZPT (Page Templates) . 73
10.5.3 DTML . 73

iii

10.5.4 ZCML . 73

11 Meta Data and the Dublin Core 75

12 Porting Applications 85

12.1 Porting an Application by Redesign . 86

12.2 Porting using compatibility layers and scripts . 87

III Content Components – The Basics 89

13 Writing a new Content Object 91

13.1 Preparation . 92

13.2 Initial Design . 92

13.3 Writing the interfaces . 93

13.4 Writing Unit tests . 96

13.5 Implementing Content Components . 98

13.6 Running Unit Tests against Implementation . 101

13.7 Registering the Content Components . 101

13.8 Configure some Basic Views . 105

13.9 Registering the Message Board with Zope . 108

13.10Testing the Content Component . 108

14 Adding Views 111

14.1 Message Details View . 112
14.1.1 Create Page Template . 112
14.1.2 Create the Python-based View class . 113
14.1.3 Registering the View . 115
14.1.4 Testing the View . 116

14.2 Specifying the Default View . 119

14.3 Threaded Sub-Tree View . 119
14.3.1 Main Thread Page Template . 119
14.3.2 Thread Python View Class . 120
14.3.3 Sub-Thread Page Template . 121
14.3.4 Register the Thread View . 121
14.3.5 Message Board Default View . 122

14.4 Adding Icons . 122

15 Custom Schema Fields and Form Widgets 125

15.1 Creating the Field . 126
15.1.1 Interface . 126
15.1.2 Implementation . 127
15.1.3 Unit Tests . 128

15.2 Creating the Widget . 129

iv
Zope 3 Developer’s Book

15.2.1 Implementation . 130

15.2.2 Unit Tests . 130

15.3 Using the HTML Field . 132

15.3.1 Registering the Widget . 132

15.3.2 Adjusting the IMessage interface . 132

16 Securing Components 135

16.1 Declaration of Permissions . 136

16.2 Using the Permissions . 137

16.3 Declaration of Roles . 138

16.4 Assigning Roles to Principals . 140

17 Changing Size Information 143

17.1 Implementation of the Adapter . 143

17.2 Unit tests . 144

17.3 Registration . 146

18 Internationalizing a Package 149

18.1 Internationalizing Python code . 150

18.2 Internationalizing Page Templates . 154

18.3 Internationalizing ZCML . 155

18.4 Creating Language Directories . 156

18.5 Extracting Translatable Strings . 156

18.6 Translating Message Strings . 157

18.7 Compiling and Registering Message Catalogs . 158

18.8 Trying the Translations . 159

18.9 Updating Translations on the Fly . 160

IV Content Components – Advanced Techniques 163

19 Events and Subscribers 165

19.1 Mail Subscription Interface . 166

19.2 Implementing the Mail Subscription Adapter . 166

19.3 Test the Adapter . 168

19.4 Providing a View for the Mail Subscription . 170

19.5 Message Mailer – Writing an Event Subscriber . 172

19.6 Testing the Message Mailer . 175

19.7 Using the new Mail Subscription . 178

19.8 The Theory . 179

v

20 Approval Workflow for Messages 183

20.1 Making your Message Workflow aware . 184

20.2 Create a Workflow via the Browser . 184

20.3 Assigning the Workflow . 187

20.4 Testing the Workflow . 187

20.5 The “Review Messages” View . 188

20.6 Adjusting the Message Thread . 190

20.7 Automation of Workflow and Friends creation . 191

20.8 The Theory . 194

21 Providing Online Help Screens 197

22 Object to File System mapping using FTP as example 201

22.1 Plain Text Adapters . 202
22.1.1 The Interface . 202
22.1.2 The Implementation . 203
22.1.3 The Configuration . 204

22.2 The “Virtual Contents File” Adapter . 204
22.2.1 The Interface . 205
22.2.2 The Implementation . 205
22.2.3 The Tests . 206
22.2.4 The Configuration . 209

22.3 The IReadDirectory implementation . 209
22.3.1 The Implementation . 210
22.3.2 The Tests . 210
22.3.3 The Configuration . 212

22.4 A special Directory Factory . 213

23 Availability via XML-RPC 217

23.1 XML-RPC Presentation Components . 218

23.2 Testing . 220

23.3 Configuring the new Views . 222

23.4 Testing the Features in Action . 223

24 Developing new Skins 225

24.1 Preparation . 226

24.2 Creating a New Skin . 226

24.3 Customizing the Base Templates . 227

24.4 Adding a Message Board Intro Screen . 230

24.5 Viewing a List of all Message Board Posts . 230

24.6 Adding a Post to the Message Board . 231

24.7 Reviewing “pending” Messages . 233

24.8 View Message Details . 235

vi
Zope 3 Developer’s Book

24.9 Replies to Messages . 236

V Other Components 241

25 Building and Storing Annotations 243

25.1 Introduction . 244

25.2 Alternative Annotations Mechanism . 244

25.3 Developing the Interfaces . 245

25.4 The KeeperAnnotations Adapter . 245

25.5 Unit Testing . 248

25.6 Configuration . 248

25.7 Functional Tests and Configuration . 249

26 New Principal-Source Plug-Ins 255

26.1 Defining the interface . 256

26.2 Writing the tests . 257

26.3 Implementing the plug-in . 259

26.4 Registration and Views . 262

26.5 Taking it for a test run . 263

27 Principal Annotations 267

27.1 The Principal Information Interface . 268

27.2 The Information Adapter . 268

27.3 Registering the Components . 270

27.4 Testing the Adapter . 271

27.5 Playing with the new Feature . 272

28 Creating a new Browser Resource 275

29 Registries with Global Utilities 279

29.1 Introduction . 279

29.2 Defining the Interfaces . 280

29.3 Implementing the Utility . 282

29.4 Writing Tests . 284

29.5 Providing a user-friendly UI . 286

29.6 Implement ZCML Directives . 287
29.6.1 Declaring the directive schemas . 287
29.6.2 Implement ZCML directive handlers . 288
29.6.3 Writing the meta-ZCML directives . 290
29.6.4 Test Directives . 291

29.7 Setting up some Smiley Themes . 293

29.8 Integrate Smiley Themes into the Message Board . 293

vii

29.8.1 The Smiley Theme Selection Adapter . 294

29.8.2 Using the Smiley Theme . 296

30 Local Utilities 299

30.1 Introduction to Local Utilities . 300

30.2 Defining Interfaces . 300

30.3 Implementation . 301

30.4 Registrations . 303

30.5 Views . 305

30.6 Working with the Local Smiley Theme . 307

30.7 Writing Tests . 308

31 Vocabularies and Related Fields/Widgets 315

31.1 Introduction . 315

31.2 The Vocabulary and its Term . 317

31.3 Testing the Vocabulary . 319

31.4 The Default Item Folder . 320

32 Exception Views 323

32.1 Introduction . 323

32.2 Creating the Exception . 324

32.3 Providing an Exception View . 325

32.4 Testing the Exception View . 326

VI Advanced Topics 329

33 Writing new ZCML Directives 331

33.1 Introduction . 331

33.2 Developing the Directive Schema . 333

33.3 Implementing the Directive Handler . 333

33.4 Writing the Meta-Configuration . 334

33.5 Testing the Directive . 335

34 Implementing a TALES Namespaces 337

34.1 Defining the Namespace Interface . 338

34.2 Implementing the Namespace . 339

34.3 Testing the Namespace . 340

34.4 Step IV: Wiring the Namspace into Zope 3 . 341

34.5 Trying the format Namespace . 342

viii
Zope 3 Developer’s Book

35 Changing Traversal Behavior 343

35.1 Case-Insensitive Folder . 344

35.2 The Traverser . 345

35.3 Unit Tests . 347

35.4 Functional Tests . 348

36 Registering new WebDAV Namespaces 351

36.1 Introduction . 352

36.2 Creating the Namespace Schema . 352

36.3 Implementing the IPhoto to IImage Adapter . 353

36.4 Unit-Testing and Configuration . 354

36.5 Registering the WebDAV schema . 356

36.6 Functional Testing . 357

37 Using TALES outside of Page Templates 361

37.1 Introduction . 362

37.2 The TALES Filesystem Runner . 362

38 Developing a new TALES expression 367

38.1 Implementing the SQL Expression . 369

38.2 Preparing and Implementing the tests . 371

38.3 Trying our new expression in Zope . 374

39 Spacesuits – Objects in Hostile Environements 377

39.1 Getting started . 377

39.2 The Labyrinth Game . 380

39.3 Securing the Labyrinth . 382

40 The Life of a Request 385

40.1 What is a Request . 385

40.2 Finding the Origin of the Request . 386

40.3 The Request and the Publisher . 387

VII Writing Tests 395

41 Writing Basic Unit Tests 397

41.1 Implementing the Sample Class . 397

41.2 Writing the Unit Tests . 399

41.3 Running the Tests . 401

42 Doctests: Example-driven Unit Tests 405

42.1 Integrating the Doctest . 406

ix

42.2 Shortcomings . 407

43 Writing Functional Tests 411

43.1 The Browser Test Case . 412

43.2 Testing “ZPT Page” Views . 413

43.3 Running Functional Tests . 416

44 Creating Functional Doctests 419

44.1 Setting up the Zope 3 Environment . 420

44.2 Setting up TCP Watch . 420

44.3 Recording a Session . 421

44.4 Creating and Running the Test . 421

45 Writing Tests against Interfaces 425

45.1 Introduction . 425

45.2 ISample, Tests, & Implementations . 426

VIII Appendix 433

A Glossary of Terms 435

B Credits 455

C License 457

D ZPL 463

x
Zope 3 Developer’s Book

Preface

The preface will be a brief introduction into Zope 3 and its capabilities as well as into Python , the
programming language Zope is written in.

What is Zope?

What is Zope? While this sounds like a simple question that should be answered in a line or two, I
often find myself in situations where I am unable to simple say: “It is an Open-Source Application
Server.” or “It is a Content Management System.”. Both of these descriptions are true, but they are
really putting a limit on Zope that simply does not exist. So before I will give my definition of Zope,
let’s collect some of the solutions Zope has been used for. As mentioned above, many people use
Zope as a Content Management System, which are usually Web-based (browser managed) systems.
Basically the users can manage the content of a page through a set of Web forms, workflows and
editing tools. However, there is an entirely different CMS genre, for which Zope also has been used.
Other companies, such as struktur AG, used Zope successfully to interface with the XML Database
Tamino (from software AG). The second common use is Zope as a Web-Application server, where
it is used to build Web-based applications, such as online shops or project management tools. Of
course, Zope is also suitable for regular Web sites.

And yet, there is a usage that we neglected so far. Zope can also be used as a reliable backend
server managing the logistics of a company’s operations. In fact, bluedynamics.com in Austria
built a logistic software based on Zope 2 ZClasses and a relational database that was able to handle
hundreds of thousands transactions each day from taking credit card information and billing the
customer up to ordering the products from the warehouse using XML-RPC. In my opinion this
is the true strength of Zope, since it allows not only Web-familiar protocols to talk to, but also
any other network protocol you can imagine. Zope 3, with its component architecture, accelerates
even more in this area, since third party products can be easily plugged in or even replace some
of the defaults. For example the Twisted framework can replace all of ZServer (the Zope Server
components).

Now that we have seen some of the common and uncommon uses of Zope it might be possible to
formulate a more formal definition of Zope, just in case you are being asked at one point. Zope is
an application and backend server framework that allows developers to quickly implement protocols,
build applications (usually Web-based) and function as glue among other net-enabled services.

Before Zope was developed, Zope Corporation was reviewing many possible programming lan-
guages to develop the framework, such as Java, C/C++, Perl and Python. After extensive research
they found that only Python would give them the competitive advantage in comparison to the other
large framework providers, such as IBM, BEA and others.

xi

xii
Zope 3 Developer’s Book

Powerful Python

Python is a high-level object-oriented scripting language producing – by design – clean code through
mandatory indentation. While Perl is also an interpreted scripting language, it lacks the cleanness
and object-orientation of Python. Java, on the other hand, provides a nice object-oriented approach,
but fails to provide powerful tools to build applications in a quick manner. So it is not surprising
that Python is used in a wide variety of real world situations, like NASA, which uses Python to
interpret their simulation data and connect various small C/C++ programs. Also, Mailman, the
well-known mailing list manager, is being developed using Python. On the other hand, you have
academics that use this easy-to-learn language for their introductory programming courses.

Since Python is such an integral part of the understanding of Zope, you should know it well.
If you are looking for some introductory documentation, you should start with the tutorial that is
available directly from the Python homepage http://www.python.org/doc/current/tut/tut.

html. Also, there are a wide variety of books published by almost every publisher.

In the beginning there was...

Every time I am being asked to give a presentation or write a survey-like article about Zope, I feel
the need to tell a little bit about its history, not only because it is a classic Open-Source story, but
also because it gives some background on why the software behaves the way it does. So it should
definitely not be missing here.

Before Zope was born, Zope Corporation (which was originally named Digital Creations) de-
veloped and distributed originally three separate products called Bobo, Principia and Aqueduct.
Bobo was an object publisher written in Python, which allowed one to publish objects as pages on
the web. It also served as object database and object request broker (ORB), converting URLs into
object paths. Most of this base was implemented by Jim Fulton in 1996 after giving a frustrating
Python CGI tutorial at the International Python Conference. Even though Bobo was licensed un-
der some sort of “free” license, it was not totally Open-Source and Principia was the commercial
big brother.

In 1998, Hadar Pedhazur, a well-known venture capitalist, convinced Digital Creations to open
up their commercial products and publish them as Open Source under the name Zope. Zope stands
for the “Z Object Publishing Environment”. The first Zope release was 1.7 in December 1998.
Paul Everitt, former CEO, and all the other people at Zope Corporation converted from a product
company into a successful consultant firm. Alone the story how Zope Corporation went from a
proprietary, product-based to a service-based company is very interesting, but is up to someone
else to tell.

In the summer of 1999, Zope Corporation published version 2.0, which will be the base for the
stable release until Zope 3.0 will outdate it in the next few years. Zope gained a lot of popularity with
the 2.x series; it is now included in all major Linux distributions and many books have been written
about it. Originally I was going to write this book on the Zope 2.x API, but with the beginning of
the Zope 3.x development in late 2001, it seemed much more useful to do the documentation right
this time and write an API book parallel to the development itself. In fact when these lines were
originally written, there was no Zope Management Interface , and the initial security had just been
recently implemented.

Preface
xiii

Zope 3 Components

Zope 3 will make use of many of the latest and hottest development patterns and technologies, and
that with “a twist” as Jim Fulton likes to describe it. But Zope 3 also reuses some of the parts
that were developed for previous versions. Users will be glad to find that Acquisition (but in a
very different form) is available again as well as Zope Page Templates and the Document Template
Markup Language - DTML (even though with less emphasis). Also, there is the consensus of a
Zope Management Interface in Zope 3 again, but is completely developed from scratch in a modular
fashion so that components cannot be only reused, but the entire GUI can be altered as desired.

But not only DTML, ZPT and Aquidition received a new face in Zope 3; external data han-
dling has been also totally reworked to make external data play better together with the inter-
nal persistence framework, so that the system can take advantage of transactions, and event chan-
nels. Furthermore, the various external data sources are now handled much more generically and
are therefore more transparent to the developer. But which external data sources are supported?
By default Zope 3 comes with a database adaptor for Gadfly , but additional adapters for Post-
GreSQL and other databases already exist and many others will follow. Data sources that support
XML-RPC, like the very scalable XML database Tamino, could also be seamlessly inserted. How-
ever, any other imaginable data source can be connected to Zope by developing a couple of Python
modules, as described in various chapters.

During the last five years (the age of Zope 2) not only Zope was developed and improved, but
also many third party products were written by members of the very active Zope community for
their everyday need. These products range from Hot Fixes, Database Adaptors and Zope objects to
a wide range of end user software, such as e-commerce, content management and e-learning systems.
However, some of these products turned out to be generically very useful to a wide variety of people;
actually, they are so useful, that they were incorporated into the Zope 3 core. The prime examples
are the two internationalization and localization tools Localizer (by Juan David Ibáñez Palomar)
and ZBabel (by me), whose existence shaped the implementation of the internationalization and
localization support Zope 3 significantly. Another great product that made it into the Zope 3 core
was originally written by Martijn Faassen and is called Formulator. Formulator allows the developer
to define fields (representing some meta-data of a piece of content) that represent data on the one
side and HTML fields on the other. One can then combine fields to a form and have it displayed
on the Web. The second great feature Formulator came with was the Validator, which validated
user-entered data on the server side. Formulator’s concepts were modularized into schemas and
forms/widgets and incorporated in Zope 3.

Altogether, the framework is much cleaner now (and more pythonic) and features that failed to
make it into the Zope 2 core were incorporated.

Goals of this book

The main target audience for this book are developers that would like to develop on the Zope 3
framework itself; these are referred to as Zope developers in this book. But also Python program-
mers will find many of the chapters interesting, since they introduce concepts that could be used in
other Python applications as well. Python programmers could also use this book as an introduc-
tion to Zope.

In general the chapters have been arranged in a way so that the Zope 3 structure itself could be
easily understood. The book starts out by getting you setup, so that you can evaluate and develop

xiv
Zope 3 Developer’s Book

with Zope 3. The second part of the book consists of chapters that are meant as introductions to
various important concepts of Zope 3. If you are a hands-on developer like me, you might want to
skip this part until you have done some development. The third and fourth part are the heart of the
book, since a new content component with many features is developed over a course of 12 chapters.
Once you understand how to develop content components, part five has a set of chapters that
introduce other components that might be important for your projects. The fifth part is intended
for people that wish to use Zope technologies outside of Zope 3. The emphasis on testing is one of
the most important philosophical transitions the Zope 3 development team has undergone. Thus
the last chapter is dedicated to various ways to write tests.

Last but not least this book should encourage you to start helping us to develop Zope 3. This
could be in the form of enhancing the Zope 3 core itself or by developing third party products,
reaching from new content objects to entire applications, such as an e-commerce system. This book
covers all the modules and packages required for you to start developing.

PART I
Zope 3 from a User’s Point of View

This part concentrates on getting Zope 3 setup on your computer.

Chapter 1: Installing Zope 3

Before you can go on trying all the code snippets provided by the following chapters and recipes,
you need to install Zope 3 on your system. This introduction chapter will only cover the basic
installation and leave advanced setups for the following chapters to cover.

Chapter 2: The new Web-based User Interface

While this has not much to do with Python development, one must be comfortable with the
GUI interface, so that s/he can test the features of the new code effectively. Furthermore, the TTW
development interface will be briefly introduced.

Chapter 3: Install Zope Packages

A simple chapter for installing packages in your Zope 3 installation.

Chapter 4: Setting Up Virtual Hosting

This chapter describes how to setup virtual hosting in Zope 3, such as it is required for using
Apache in front of Zope 3.

CHAPTER 1

INSTALLING ZOPE 3

Difficulty

Newcomer

Skills

• You should know how to use the command line of your operating system. (For
Windows releases an Installer is provided.)

• You need to know how to install the latest Python successfully on your system.

Problem/Task

Before we can develop anything for Zope 3, we should install it of course.

Solution

1.1 Requirements

Zope 3 requires usually the latest stable Python version. For the Zope X3 3.0.0
release, this was Python 2.3.4 or better. Note that you should always use the latest
bug-fix release. Zope 3 does not require you to install or activate any special packages;
the stock Python is fine. This has the great advantage that you can use pre-packaged
Python distributions (for example: RPM, deb, Windows Installer) of your favorite
OS.

The only catch is that Zope 3’s C modules must be compiled with the same C
compiler as Python. For example, if you install the standard Python distribution

3

4
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

on Windows – compiled with Visual C++ 7 – you cannot compile Zope 3’s modules
with Cygwin. However, the problem is not as bad as it seems. The Zope 3 binary
distributions are always compiled with the same compiler as the standard Python
distribution for this operating system. On the other hand, if you want to compile
everything yourself, you surely use only one compiler anyways.

On Un*x/Linux your best bet is gcc. All Zope 3 developers are using gcc, so it
will be always supported. Furthermore all Linux Python distribution packages are
compiled using gcc. On Windows, the standard Python distribution is compiled
using Visual C++ 7 as mentioned above. Therefore the Zope 3 binary Windows
release is also compiled with that compiler. However, people have also successfully
used gcc using Cygwin – which comes with Python. Finally, you can run Zope 3
on MacOS X as well. All you need are the developers tools that provide you with
gcc and the make program; everything you need. Both, Python and Zope 3, will
compile just fine.

Python is available at the Python Web site1.

1.2 Installing from SVN

In order to check out Zope 3 from SVN, you need to have a SVN client installed
on your system, of course. If you do not have a SVN account, you can use the
anonymous user to get a sandbox checked out:

svn co svn://svn.zope.org/repos/main/Zope3/trunk Zope3

After the checkout is complete, enter the Zope 3 directory:

cd Zope3

From there run make (so you need to have make installed, which should be
available for all mentioned environments). If your Python executable is not called
python2.3 and/or your Python binary is not in the path, edit the first line of the
Makefile to contain the correct path to the Python binary. Now just run make,
which will build/compile Zope 3:

make

Copy sample principals.zcml to principals.zcml and add a user with man-
ager rights as follows:

1 <principal

2 id="zope.userid" title="User Name Title"

3 login="username" password="passwd" />

4

5 <grant role="zope.Manager" principal="zope.userid" />

1http://www.python.org/

CHAPTER 1 INSTALLING ZOPE 3
1.2. INSTALLING FROM SVN

5

. Line 2: Notice that you do not need “zope.” as part of your principal id, but the
id must contain at least one dot (“.”), since this signals a valid id.

. Line 3: The login and password strings can be any random value, but must be
correctly encoded for XML.

. Line 5: If you do not use the default security policy, you might not be able to use
this zope:grant directive, since it might not support roles. However, if you use
the plain Zope 3 checkout then roles are available by default.

Furthermore, during development you often do not want to worry about security.
In this case you can simply give anybody the Manager role:

1 <grant role="zope.Manager" principal="zope.anybody" />

The fundamental application server configuration can be found in zope.conf. If
zope.conf is not available, zope.conf.in is used instead. In this file you can define
the types and ports of the servers you would like to activate, setup the ZODB storage
type and specify logging options. The configuration file is very well documented and
it should be easy to make the desired changes.

Now we are ready to start Zope 3 for the first time:

./bin/runzope

The following output text should appear:

2003-06-02T20:09:13 INFO PublisherHTTPServer zope.server.http (HTTP) started.

Hostname: localhost

Port: 8080

2003-06-02T20:09:13 INFO PublisherFTPServer zope.server.ftp started.

Hostname: localhost

Port: 8021

2003-06-02T20:09:13 INFO root Startup time: 5.447 sec real, 5.190 sec CPU

Once Zope comes up, you can now test the servers by typing the following URL
in your browser: http://localhost:8080/. Test FTP using ftp://username@

localhost:8021/. And even WebDAV is available using webdav://localhost:

8080/ in Konqueror.

An XML-RPC server is also built-in by default, but most objects do not support
any XML-RPC methods, so that you cannot test it right away. See chapter “Avail-
ability via XML-RPC” for detailed instructions on how to use the XML-RPC server.

6
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

1.3 Installing the Source Distribution

1.3.1 Unpacking the Package

The latest release of Zope 3 can be found at http://www.zope.org/Products/

ZopeX3. First download the latest Zope 3 release by clicking on the file that is
available for all platforms, i.e. ZopeX3-VERSION.tgz. Use tar or WinZip to
extract the archive; for example:

tar xzf ZopeX3-3.0.0.tgz

1.3.2 Building Zope

For the releases we provided the well-known “configure” / “make” procedure. So
you can start the configuration process by using

./configure

If you wish to place the binaries of the distribution somewhere other than /usr/

local/ZopeX3-VERSION, then you can specify the --prefix option as usual. Also,
if you have Python installed at a non-standard location, you can specify the Python
executable using --with-python. A full configuration statement could be

./configure --prefix=/opt/Zope3 --with-python=/opt/puython2.3/bin/python2.3

The immediately returned output is

Using Python interpreter at /opt/puython2.3/bin/python2.3

Configuring Zope X3 installation

Now that the source has been configured, we can build it using make. Type in
that command. Only one line stating

python2.3 install.py -q build

will be returned and the hard drive will be busy for several minutes compiling the
source. Once the command line returns, you can run the tests using

make check

Here both, the unit and functional tests are executed. For each executed test you
have one “dot” on the screen. The check will take between 5-10 minutes depending
on the speed and free cycles on your computer. The final output should look as
follows:

Python2.3 install.py -q build

Python2.3 test.py -v

Running UNIT tests at level 1

Running UNIT tests from /path/to/ZopeX3-VERSION/build/lib.linux-i686-2.3

[some 4000+ dots]

--

CHAPTER 1 INSTALLING ZOPE 3
1.4. INSTALLING THE SOURCE DISTRIBUTION ON WINDOWS WITHOUT make

7

Ran 3896 tests in 696.647s

OK

The exact amount of tests run will depend on the version of Zope, the operating
system and the host platform. If the last line displays an “OK”, you know that all
tests passed. Once you verified the check, you can install the distribution using

make install

1.3.3 Creating a Zope Instance

Once the installation is complete, Zope is available in the directory you specified in
--prefix or under /usr/local/ZopeX3-VERSION. However, Zope will not yet run,
since you have not created an instance yet. Instances are used for scenarios where one
wants to host several Zope-based sites using the same base software configuration.

Creating a new instance is easy. Enter the Zope 3 directory and enter the following
command:

/bin/mkzopeinstance -u username:password -d path/to/instance

This will create a Zope 3 instance in path/to/instance. A user having the
login “username” and password “password” will be created for you and the
“zope.manager” role is assigned to it. All the configuration for the created instance
are available in the path/to/instance/etc directory. Please review all the infor-
mation in there to ensure it fits your needs.

1.3.4 Run Zope

Zope is simply executed by calling

./bin/runzope

from the instance directory. The startup output will be equal to that of the source
Zope SVN installation.

You are all done now! Once the server is up and running, you can test it via you
favorite browser as described before.

1.4 Installing the Source Distribution on Windows without
make

Installing the source distribution on Windows is possible even without make. How-
ever, you will need a supported C compiler to build the package. If you do not have

8
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

a C compiler or Cygwin installed, please use the Windows installer to install Zope
3. See in the next section for more details.

Before installing Zope 3, you should have installed Python 2.3.4 or higher. On
Windows NT/2000/XP the extension .py is automatically associated with the
Python executable, so that you do not need to specify the Python executable when
running a script.

Once you unpacked the distribution, enter the directory. The software is built
using

install.py -q build

Once the built process is complete, you can run the tests with

test.py -v

which should give you the same output as under Un*x/Linux. Once the tests are
verified, the distribution is installed with the following command:

install.py -q install

You have now completed the installation of Zope 3. Follow now the final steps of
the previous section to create an instance and starting up Zope.

Notice: This way of installing Zope 3 makes it really hard to uninstall it later,
since you have to manually delete files/directories from various locations including
your Python’s Lib\site-packages\ and Scripts\ as well as completely removing
the zopeskel\ directory. If you use the Windows installer instead, an uninstallation
program is provided and registered in the Control Panel’s “Add/Remove Programs”
applet.

1.5 Installing the Binary Distribution

Currently we only provide binary releases for Windows. These releases assume that
you have the standard Windows Python release installed. The Windows binary
release is an executable that will automatically execute the installer. Simply follow
the instructions on the screen and Zope 3 will be completely installed for you.

You can later use the Control Panel’s “Add/Remove Programs” applet to uninstall
Zope 3 again.

CHAPTER 2

THE NEW WEB-BASED USER

INTERFACE

Difficulty

Newcomer

Skills

• Some high-level object-oriented skills are needed for the examples to make sense.

• Familiarity with the component architecture would be useful, since some of the
vocabulary would make more sense. Optional.

Problem/Task

At this point you might say: “I have installed Zope 3, but now what?” This
is a good question, especially if you have never seen any version of Zope before.
After Zope started with the bootstrap configuration, it starts up an HTTP and a
FTP server. Via the HTTP server, a Web user interface is provided in which the site
manager cannot only configure the server further, but also develop so called “through-
the-Web software” (short: TTW software). After introducing the basic elements
and concepts of the Web interface, which is known as the ZMI (Zope Management
Interface), a couple simple demonstrations are given. The Zope X3 3.0.0 release
concentrated mainly on filesystem-based development – which this book is about –
so that TTW is still very immature and not even available via the distribution.

Solution

9

10
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

After Zope 3 started, you can enter the Zope Management Interface (ZMI) via
the “manage” screen. The full URL is then http://localhost:8080/manage.

Figure 2.1: The Initial Contents View of the Root Folder

Zope 3 has a very flexible skinning support, which allows you to alter the look
and a little bit the feel of the ZMI. Other skins can be reached using the ++skin++

URL namespace. One of the other nice skins is “ZopeTop” – it is excluded from the
Zope X3 3.0.0 release but available in the repository.

This book will exclusively use the default skin to describe the UI.

2.1 Getting comfortable with the ZMI

The ZMI is basically a classic two column layout with one horizontal bar on the top.
The bar on the top is used for branding and some basic user information. The thin
left column is known as the “Navigators” column. The first box of this column is
usually the navigation tree, which is just a hierarchical view of the object database
structure. This works well for us, since the two main object categories are normal
objects and containers. Below the tree there can be a wide range of other boxes,
including “Add:”.

The main part of the screen is the wide right column known as the “workspace”.
The workspace specifically provides functionality that is centric to the accessed ob-

CHAPTER 2 THE NEW WEB-BASED USER INTERFACE

2.1. GETTING COMFORTABLE WITH THE ZMI
11

Figure 2.2: The Initial Contents View using the ZopeTop skin.

ject. On the top of the workspace is the full path of the object in “breadcrumbs”
form, which provides a link to each element in the path.

Below the location, a tab-box starts. The tabs, known as “ZMI views”, are various
different views that have been defined for the object. You can think of these views
as different ways of looking at the object. A good example is the “Contents” view
of a Folder object.

Below the tabs, you see another list of actions, known as “ZMI actions”. ZMI
actions are also object specific, but usually they are available in a lot of different
objects. Common actions include “Undo” , “Find” , “Grant” and “Help” which are
available on all objects.

Below the actions is the “viewspace”, which may contain several elements. All
views have the “content”, which contains the information and forms of the selected
tab. On the right side of the viewspace there can be an optional column called
“context information”. It is sometimes used to display view-specific help or meta-
data.

Overall, the entire ZMI is built to contain these elements for consistency.
So, let’s do something with the ZMI. Our goal will be to create a Folder and write

a ZPT Page that displays title of the folder. New objects can be added to the root
by clicking on “Add” of the ZMI actions. You will be now presented with a list of
all available content objects. Select the “Folder” and insert the name “folder” in the
input box on the bottom. Finalize the addition by clicking on the “Add” button.
The system will return you to the root folder’s contents view. To add a sensible

12
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

Figure 2.3: Marked up ZMI Screenshot Pointing Out all the Sections

title to our new folder, click on the empty cell of the “Title” column. An input field
should appear in which you may add the title “Some Cool Title” and hit enter.

Now enter the folder, and add a “ZPT Page” called “showTitle.html” the same
way you added the folder. Now go and edit the page and add the following code:

1 <html>

2 <body>

3 <h4>Folder Title</h4>

4

5 <h1 tal:content="context/zope:title">title here</h1>

6 </body>

7 </html>

The strange tal namespace on Line 5 is the first appearance of Zope’s powerful
scripting language, Page Templates. The content attribute replaces “title here”
with the title of the folder which is accessed using context/zope:title.

If you now click on the page’s “Preview” tab, you will see the title of the folder
being displayed. Of course you can just open the page directly using http://

localhost:8080/folder/showTitle.html.

CHAPTER 2 THE NEW WEB-BASED USER INTERFACE

2.2. HELP AND DOCUMENTATION
13

2.2 Help and Documentation

Zope 3 comes with an extensive online help system. Generally, it can be reached
either via the explicit “Help” link in the ZMI actions or via the context-sensitive
help box, which pops up on the right side of the viewspace, if help screens are
available.

Figure 2.4: The Online Help showing a Table of Contents on the left.

Another helpful feature is the interface introspector. You might have already
noticed the “Introspector” tab that is available for all objects. It provides a list of
all interfaces that the object provides and base classes that the object extends.

The interfaces and classes listed in the introspector are actually linked to the API
documentation, which is third major dynamic documentation tool in Zope 3. The
API Doc Tool is commonly accessed via http://localhost:8080/++apidoc++ and
provides dynamically-generated documentation for interfaces, classes, the component
architecture and ZCML.

Clearly, these tools are not just useful for the scripter or user of the Web inter-
face, but also for Python developers to get a fast overview of how components are
connected to each other and the functionality they provide.

14
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

Figure 2.5: The Introspector view for an object.

2.3 The Scripter’s World

While Zope 3 is truly an object- and component-oriented application server, we are
trying to accomedate the scripter – someone who is a high-level developer that is
not very familiar with advanced programming concepts – as well. Several tools have
been developed for the scripter and are available in the Zope 3 source repository.
However, for the Zope X3 3.0.0 release we decided to concentrate on providing the
Python developer with a solid framework to work with. The focus of the upcoming
releases will be provide facilities that help scripters to switch fromPHP, ColdFusion
and ASP to Zope 3. Furthermore, we will provide a direction to migrate a scripter
to become a developer.

2.4 Software versus Content Space

Zope 2 did a great mistake by allowing software and content to live in the same place.
We did not want to repeat the same mistake in Zope 3. Therefore we developed a
“content space” and “software space” . So far we have only worked in content space.

2.4.1 Content Space

As the name implies, in content space we only store content. While we think that
simple DTML and ZPT scripts are dynamic content, Python scripts are clearly soft-
ware and are therefore not available in content space. The only type of program-
ming that is supported here is what we consider scripter support. However, being a

CHAPTER 2 THE NEW WEB-BASED USER INTERFACE

2.4. SOFTWARE VERSUS CONTENT SPACE
15

Figure 2.6: The API Doc tool showing the Interfaces menu and the IFile details.

“scripter” in this sense is not a desirable state and we want to provide a way to help
the scripter become a TTW developer .

2.4.2 Software Space

Every “Site” object has a software space, which can be accessed via the “Manage
Site” action. You can see the link when looking at the contents of the root folder,
since the root folder is always a site. But how do you create one; it is not on the
list of addable types? To create a site, create a folder and click on the “Make a site”
action item. That’s it! Any folder can upgrade to become a site.

Once you have clicked on “Manage Site”, you are presented with an overview of
possible tasks to do. Each site consists of several packages, including the default

package, which is always defined. Packages are used to later pack up and distribute

16
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

software. An involved registration and constraint system ensures the integrity of the
setup.

If you now click on the “Visit default folder” action link, you end up in the contents
view of the package. The goal is that you add local components here that act as
software. Since this looks and behaves very similar to the folder’s content space’s
“Contents” view, we often call the added components “meta-content”.

Okay, let’s see how all this hangs together. The simplest example is to create
a local Translation Domain and use it to translate a silly message. Assuming that
you are already in the contents view of the default package, click on “Add”, select
“Translation Domain”and enter “Translations” as the name; press the “Add” but-
ton to submit the request. You will now be prompted to register the component.
Create a registration by clicking on “Register”. Register the domain under the name
“silly” (which will be the official domain name). The provided interface should be
ILocalTranslationDomain and the registration status is set to “Active”. Finish the
request by clicking on the “Add” button.

Now you have an active Translation Domain utility. Click on the “Translate”
tab to enter the translation environment. The first step is to add some languages.
Enter en under “New Language” and press that ”Add” button. Do the same for
de. Now you have to select both, English and German from the list on the left and
click “Edit”. You will see that the table further down on the page grew by two
more columns each representing a language. To add a new translation, look at the
first row. For the Message Id, enter “greeting”, for the de and en column “Hallo
Welt!” and “Hello World!”, respectively. To save the new translation hit the “Edit
Messages” button at the bottom of the screen. You now have a translation of the
greeting into English and German.

Now that we have defined our software – the Translation Domain – it is time to
go back to content space and “use” the new software. In the root folder create a new
ZPT Page called “i18n.html” and add the following content:

1 <html>

2 <body i18n:domain="silly">

3 <h1 i18n:translate="">greeting</h1>

4 </body>

5 </html>

Once you save these lines and hit the “Preview” tab, you will see a big “Hello
World!” on your screen, assuming that you have English as the preferred language.
If you change the language now to German (de), then “Hallo Welt!” should appear.

In Mozilla you can change the preferred language under “Edit”, “Preferences...”,
“Navigator” and “Languages”. Simply add “German [de]” and move it to the top of
the list.

CHAPTER 2 THE NEW WEB-BASED USER INTERFACE

2.4. SOFTWARE VERSUS CONTENT SPACE
17

Figure 2.7: The “Translate” screen of the Translation Domain utility.

We just saw how simple it is to develop software in the Site and then use it in
Content space. As Zope 3 matures you will much more impressive features, such as
TTW development of content component using Schemas and writing new views.

This concludes our little diversion into the lands of through-the-web development.
After talking a little bit more about setting up Zope, we will turn to filesystem-based
development and start giving a more formal introduction to the concepts in Zope 3.

18
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

CHAPTER 3

INSTALL ZOPE PACKAGES

Difficulty

Newcomer

Skills

• You should know how to use the command line of your operating system.

• You should know how to install Python and Zope 3 (and do it before reading
this chapter).

Problem/Task

After having installed Zope 3, there is only so much you can do with it. However,
there is a bunch of interesting 3rd party add-on packages, such as relational database
adapters and a Wiki implementation. This chapter will demonstrate how to install
these packages, especially the ones maintained in the Zope repository.

Solution

Installing 3rd party packages in Zope 3 is much more pythonic and explicit than
in Zope 2. A Zope 3 add-on package can be put anywhere in your Python path like
any other Python package. This means that you can use the distutils package to
distribute your add-on.

However, once you installed the package, the Zope 3 framework does not know
about it and no magical package detection is used to find available packages. The
Zope 3 framework is configured using the Zope Configuration Markup Language
(ZCML). Zope-specific Python packages also use ZCML to register their components

19

20
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

with Zope 3. Therefore we will have to register the packages root ZCML file with
the startup mechanism.

In this chapter I will demonstrate how to install the “Wiki” for Zope 3 application.
If you are using the repository version of Zope 3, it will be already installed, but the
steps are the same for all other packages as well.

3.1 Step I: Determining the Installation Directory

Determining the place to install a package can be one of the most difficult challenges,
since packages can be anywhere in the path hierarchy. For example, Jim Fulton’s
Buddy Demo package is a top-level Python package, whereby the Wiki application
lives in zope.app and the Jobboard Example in zope.app.demo.

However, we usually want to place any 3rd party packages in the common Zope
3 directory structure, since it will be easier to find the packages later. Once we have
determined the Zope 3 package root we are all set. For the repository distribution
the package root is Zope3/src, where Zope3 is the directory that you checked
out from the repository, i.e. svn://svn.zope.org/repos/main/Zope3/trunk. For
distributions the package root is Zope3/lib/python, where Zope3 is /usr/local/

ZopeX3-VERSION by default or the directory specified using the --prefix option of
configure.

Since we are installing the Wiki application, we have to go to the Zope3/zope/app

directory, which should be available in every Zope installation.

3.2 Step II: Fetching the Wiki application from SVN

The next step is to get the package. Usually you probably just download a TAR or
ZIP archive and unpack it in the directory. However, for the Wiki application there
is no archive and we have to fetch the package from SVN.

Assuming you have the SVN client installed on your computer, you can use the
following command to do an anonymous checkout of the wiki package from the
Zope X3 3.0 branch:

svn co \

svn://svn.zope.org/repos/main/Zope3/branches/ZopeX3-3.0/src/zope/app/wiki \

wiki

While SVN allows you to name the created directory whichever way you want to,
it is necessary to name the directory wiki, since imports in the package assume this
name. Once the command line returns, the package should be located at Zope3/

zope/app/wiki.

CHAPTER 3 INSTALL ZOPE PACKAGES

3.3. STEP III: REGISTERING THE PACKAGE
21

3.3 Step III: Registering the Package

The next step is to register the package’s new components with the Zope 3 frame-
work. To do that we have to place a file in the package-includes directory. In
a repository hierarchy this directory is found in Zope3. In the distribution instal-
lation, it is located in Zope3/etc. Enter this directory now and add a file called
wiki-configure.zcml with the following content:

1 <include package="zope.app.wiki" />

The package-includes directory is special in the sense that it executes all
files ending on -meta.zcml will be executed when all meta directives are initiated
and all files with -configure.zcml are evaluated after all other configuration was
completed.

Once you save the file, Zope will be able to evaluate the Wiki package’s configu-
ration.

3.4 Step IV: Confirm the Installation

If Zope 3 is running, stop it. Start Zope 3 and read the messages it prints during
startup. If it starts without any error messages, your package has been successfully
installed.

Note that Zope 3 has no way (contrary to Zope 2) to show you which products
have been successfully installed, since there is no formal concept of a “Zope add-on”.
However, you usually can tell immediately about the success of an installation by
entering the ZMI. If the “Wiki” object is available as a new content type, then you
know the configuration was loaded correctly.

3.5 Step V: Add a Sample Wiki

In a web browser, visit your Zope 3 web server by entering the URL http:

//localhost:8080/ or similar, depending on your browser and whether Zope 3
installed on the local machine. Click on the “top” folder in the Navigation box (up-
per left). To add a sample job board:

• Click “Add” in the actions menu.

• Select “Wiki” from the list of content types.

• Type “wiki” (without quotes) in the text field and click the “Add” button.

• Since the Wiki object provides a custom adding screen, you have to confirm the
addition once more by clicking the “Add” button.

22
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

You should now see a Wiki entry in the list of objects. To experiment with the
object, simply click on “wiki”.

That’s it. As you can see, the installation of a Zope 3 add-on package is equivalent
to the Python way with the addition that you have to point Zope 3 to the ZCML
file of the package.

CHAPTER 4

SETTING UP VIRTUAL HOSTING

Difficulty

Newcomer

Skills

• Have a basic understanding of the namespace syntax in Zope URLs.

• You should be familiar with the Apache configuration file.

Problem/Task

One of the most common tasks in the Zope world is to hide Zope behind the
Apache Web Server in order to make use of all the nice features Apache provides,
most importantly SSL encryption.

Solution

Apache and other Web servers are commonly connected to Zope via rewrite rules
specified in virtual hosts. It is Zope’s task to interpret these requests correctly and
provide meaningful output. You might think that this is easy since you just have to
point to the right URL of the Zope server. But this is only half the story. What
about URLs that point to another object? At this point you need to tell Zope what
the true virtual hosting address is. In Zope 3 this is accomplished using a special
namespace called vh, which specifies the “public” address.

Before we can start setting up a virtual hosting environment on our server, we
should complete the following checklist:

23

24
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

1. Make sure Zope 3 is running at http://localhost:8080/site/ or more gener-
ically at http://destination url:port/path-to-site/.

2. Make sure Apache is running at http://www.example.com:80/ or more gener-
ically at http://public url:port/

Zope 3 uses its URL namespace capability to allow virtual hosting, so that no
special component or coding practice is required, which means virtual hosting is
always available. Generally, namespaces are specified using ++namespace++ as one
element of the URL. For the vh namespace we have ++vh++Public-URL++. Note
that the ++ at the end of the URL is specific to the vh namespace. It signalizes the
end of the public URL.

The namespace approach has the advantage that one can never lock her/himself
out due to misconfiguration. Some Zope 2 virtual hosting solutions had this problem
and caused unnecessary headaches. In Zope 2 one also had to add an additional
object. Zope 3 is not using any service or utility for this task, which makes virtual
hosting support a very core functionality.

However, from an Apache point of view, the setup is very similar to Zope 2. In
the httpd.conf file – usually found somewhere in /etc or /etc/httpd – insert
the following lines:

1 LoadModule proxy_module /path/to/apache/1.3/libproxy.so

2

3 Listen 80

4

5 NameVirtualHost *:80

6

7 <VirtualHost *:80>

8 SSLDisable

9 ServerName www.example.com

10 RewriteEngine On

11 RewriteRule ^/site(/?.*) \

12 http://localhost:8080/site/++vh++http:www.example.com:80/site/++$1 \

13 [P,L]

14 CustomLog /var/log/apache/example.com/access.log combined

15 ErrorLog /var/log/apache/example.com/error.log

16 </VirtualHost>

. Line 1: Load the module that allows rewriting and redirecting the URL.

. Line 3: Setup the Apache server for the default port 80.

. Line 5: Declare all incoming request on port 80 as virtual hosting sites.

. Line 7-16: These are all specifc configuration for the virtual host at port 80.

. Line 8: Do not use SSL encryption for communication. We’ll only allows normal
HTTP connections.

CHAPTER 4 SETTING UP VIRTUAL HOSTING
25

. Line 9: The virtual host is know as www.example.com to the outside world.

. Line 10: Turn on the Rewrite Engine, basically telling Apache that this virtual
host will rewrite and redirect requests.

. Line 11-13: The code on these lines should be really in one line. It defines the
actual rewrite rule. The rule says:

If you find the URL after the hostname and port to begin with /site, then redirect
this URL to http://localhost:8080/site/++vh++http:www.example.com:80/

site/++ plus whatever was behind /site.

Example: www.example.com:80/site/hello.html is rewritten to http://

localhost:8080/site/++vh++http:www.example.com:80/site/++/hello.html.

Note that the part after ++vh++ must strictly be of the form 〈protocol〉:〈host〉:
〈port〉/〈path〉. Even if the port is 80 you have to specify it.

. Line 14: Defines the location of the access log.

. Line 15: Defines the location of the error log.

And we are done. It’s easy, isn’t it? All you need to do is to restart Apache, so
that the changes in configuration will take effect.

There is nothing special that needs to be configured on the Zope 3 side. Zope is
actually totally unaware of the virtual hosting setup. Note that you do not have to
map the URL www.example.com/site to localhost:8080/site but choose any
location on the Zope server you like.

You can now combine the above setup with all sorts of other Apache configurations
as well, for example SSL. Just use port 443 instead of 80 and enable SSL.

Current Problems: The XML navigation tree in the management interface does
not work with virtual hosting, because of the way it treats a URL.

Thanks to Marius Gedminas for providing the correct Apache setup.

26
Zope 3 Developer’s Book

PART I ZOPE 3 FROM A USER’S POINT OF VIEW

PART II
The Ten-Thousand Foot View

In this part of the book an overview over some of the fundamental ideas in Zope 3
is given without jumping into the technical detail. The reader might prefer to read
these recipes after reading some of the more hands on sections, like the ones that
follow.

Chapter 5: The Zope 3 Development Process

This chapter briefly introduces the process that is used to develop and fix components for Zope
3.

Chapter 6: An Introduction to Interfaces

Since Interfaces play a special role in Zope 3, it is important to understand what they are used
for and what they offer to the developer.

Chapter 7: The Component Architecture – An Introduction

An overview over components and their possible interaction.

Chapter 8: Zope Schemas and Widgets (Forms)

One of the powerful features coming up over and over again in Zope 3, are schemas, an extension
to interfaces that allows attributes to be specified in more detail allowing auto-generation of forms
as well as the conversion and validation of the inputted data.

Chapter 9: Introduction to ZCML

While you are probably familiar with ZCML by now, it is always good to review.

Chapter 10: I18n and L10n Introduction

This introduction presents the new I18n and L10n features of Zope 3 and demonstrates how a
developer can completely internationalize his/her Zope application. I18n in ZPT, DTML, ZCML
and Python code will be discussed.

Chapter 11: Meta Data and the Dublin Core

Everyone knows about it, everyone talks about it, but few know the details. Naturally, the fields
of the DC will be discussed as well of how they can and should be used.

Chapter 12: Porting Applications

For many developers it is very important to have a migration path from their Zope 2 applications
to Zope 3. This chapter will concentrate on the technical aspects and discuss the design changes
that have to be applied to make an old Zope application fit the new model. The port of ZWiki will
be used as an example.

CHAPTER 5

THE ZOPE 3 DEVELOPMENT PROCESS

Difficulty

Newcomer

Skills

• Be familiar with Python’s general coding style.

Problem/Task

The simple question this chapter tries to answer is: “How can I participate in the
Zope 3 development?” However, the Zope 3 developers strongly encourage 3rd party
package developers to adopt the same high standard of code quality and stability
that was used for Zope 3 itself.

Solution

Since Zope 3 was developed from scratch, there was much opportunity; not only in
the sense of the software, but also in terms of processes, organization and everything
else around a software project.

Very early on, it was decided that the Zope 3 project would provide a great oppor-
tunity to implement some of the methods suggested by the eXtreme Programming
development paradigm. The concept of “sprints” was introduced in the Zope devel-
opment community, which are designed to boost the development and introduce the
new framework to community members. Other changes include the establishment of
a style guide and a unique development process. It is the latter that I want to dis-
cuss in this chapter, since it is most important to the actual developer.

29

30
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

5.1 From an Idea to the Implementation

When you have a big software project, it is necessary to have some sort of (formal)
process that controls the development. Such a process stops developers from hacking
and checking in half-baked code, which requires a lot of discipline among free software
developers, since there is often no compensation. With the start of the Zope 3
development, we tried to implement a flexible process that can be adjusted to the
task at hand.

Once a developer has an idea about a desired feature, he usually presents the idea
on the Zope 3 developers mailing list or on IRC. Here the developer can figure out
whether his feature already exists or whether the task the feature seeks to complete
can be accomplished otherwise. If the idea is a good one, then one of the core
developers usually suggests to write a formal proposal that will be available in the
Zope 3 Proposals wiki. Once the developer has written a proposal, s/he announces
it to the mailing list for discussion. Comments to the proposals are usually given
via E-mail or directly as comments on the wiki page. The discussion often requires
changes to be made to the proposal by adjusting the design or thinking of further
use-cases. Once a draft is approved by the other developers – silence is consent,
though Jim Fulton normally likes to have the last say – it can be implemented.
While we tried hard not to make the proposal writer the implementor, it works out
that the proposal writer almost always has to implement the proposal.

But how can you get the developer “status” for Zope 3? Besides the community
acceptance, there are a couple formal steps one must take to receive checkin rights.
The first step is to sign the “Zope Contributor Agreement” , which can be found
at http://dev.zope.org/CVS/Contributor.pdf. Once you have signed and sent
this document to Zope Corporation, you can deposit your SSH key online for secure
access. All this is described in very much detail on the http://dev.zope.org/CVS/

wiki pages.

As developer you usually check in new features (components) or bug fixes. Both
processes are slightly different, since a bug fix is much less formal.

5.1.1 Implementing new Components

Let’s say you want to implement a new component and integrate it into Zope 3.
For the development of new software eXtreme Programming provides a nice method,
which we adopted for Zope 3 and is outlined in the following paragraphs.

Starting with your proposal, you develop the interface(s) for your component.
Often you will have written the interfaces already in the proposal, since it helps
explaining the functionality. If not, use the text of the proposal for documenting

CHAPTER 5 THE ZOPE 3 DEVELOPMENT PROCESS

5.1. FROM AN IDEA TO THE IMPLEMENTATION
31

your interfaces and its methods. For a detailed introduction to interfaces see the
next chapter, which covers the formal aspects of writing interfaces.

Next, one should write the tests that check the implementation and the in-
terfaces themselves. When testing against interfaces, one can use so-called stub-
implementations of the interfaces. See chapter “Writing Tests against Interfaces”. If
you are not certain about implementation, use prototype code which is thrown away
afterwards. Note: I found that this step usually requires the most understanding
of Zope 3, so that most of the learning process happens at this point. However, it
is also the point were most new developers get frustrated. See the “Writing Tests”
part in general for an extended discussion about tests.

Now, you are ready to write the implementation of the interfaces. There is a nice
little tool called pyskel.py (found in the ZOPE3/utilities folder) that will help
you to get a skeleton for the class implementing a specified interface. You can get
hands-on experience in the “Content Components – The Basics” part.

The final step is to run the tests. Start out by running the new tests only and,
after everything passes, all of the Zope 3 tests as confirmation. Once all of Zope 3’s
tests pass, you can check-in the code. It is a good idea to ask the other developers
to update their sandboxes and review your code and functionality.

5.1.2 Fixing a bug

In order to effectively fix bugs, you need to have supporter status for the Zope 3 Bug
and Feature Collector, so that you can change the status of the various issues you
are trying to solve. You can also ask an existing supporter of course, though this is
much more cumbersome. Contact the Zope 3 mailing list (zope3-dev@zope.org)
to get this status and they will help you.

Once you have access, accept an issue by assigning it to you in the Collector. At
this point noone else will claim the issue anymore. The first step is to create tests
that clearly point out the bug and fail due to the bug. Now try to fix the bug.
While fixing you might discover other untested functionality and side-effects, so it is
common to write more tests during the “fixing” process.

Finally, similar to the development of new components, you should run the new/lo-
cal tests first, see whether they pass and then run the global tests. It sometimes hap-
pens that you will not be able to solve a bug, since tests of other packages will fail
that you do not understand. At that stage, you should create a branch and ask other
developers for help. Once you are done with the code and all tests pass, check in the
changes and ask people to have a look. Once you are more experienced, a code re-
view will not be necessary anymore.

32
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

5.2 Zope 3 Naming Rules

Zope 2 was a big mess when it comes to the naming of classes, methods and files. It
was almost impossible to find a method in the API. I was always very impressed by
the well-organized and consistent Java API, where you often just “guess” a method
name without looking it up. Therefore the Zope 3 developers introduced a strict
naming style guide that is maintained as part of the Zope 3 development wiki. In
retrospect the guide brought us a lot of cleanness to the code base and made it much
easier to remember Zope 3’s APIs.

In the following sub-sections I will give you an overview of these conventions. See
http://dev.zope.org/Zope3/CodingStyle for the detailed and up-to-date guide.

5.2.1 Directory Hierarchy Conventions

First of all, package and module names are all lowercase. They should be also kept
short, so that two consecutive words should be rare. If they appear, just put them
together; use no underscore.

The top-level directories are considered packages, like zodb or zope.i18n for
example. There is a special package called zope.app that contains the Zope 3
application server. It is special because it contains application server specific sub-
packages, which can be distributed separately. Each distribution package contains
an interfaces module (depending on your needs it can be implemented as a file-
based module or as package). This module should capture all externally available
interfaces. Local interfaces that will be only implemented once can live in the same
module with its implementation.

Usually, presentation-specific code lives in a separate module in the package; there-
fore you will often see a browser directory or browser.py file in the package. If the
package only defines a few small views a file is preferred, as it is usually the case for
XML-RPC views, since you usually have only a couple of classes for the XML-RPC
support.

There are no rules on where a third party package must be placed as long as it
is found in the Python path. Some developers prefer to place additional packages
into ZOPE3/src and make them top-level packages. Others place their packages in
ZOPE3/src/zope/app to signalize the package’s dependency on the Zope application
server.

CHAPTER 5 THE ZOPE 3 DEVELOPMENT PROCESS

5.2. ZOPE 3 NAMING RULES
33

5.2.2 Python Naming and Formatting Conventions

While the generic Python style guide allows you to either use spaces or tabs as
indentation, we only use four spaces in Zope for indentation, since otherwise the
code base might be corrupted, which can cause a lot of grief.

For method and variable naming we use exclusively Camel case naming (same as
Java) throughout the public API. Private attribute names can contain underscores.
For other usages of the underscore character (), see PEP 8, the Python style guide.
The underscore character is mainly used in method and variable names to signify
private and protected attributes and methods (including built-in ones, like init).
Classes always start with upper case with exception of ZCML directives, which is a
special case. Attribute and method names always begin with a lower letter, whereby
a method should always start with a verb. Here is an example of these rules:

1
��������� SimpleExample:

2

3 �
	�� __init__(� 	 � � , text):

4
� 	 � � .text = text

5

6 �
	�� getText(� 	 � �):
7 �
	������� � 	 � � .text

Additionally, for legal reasons and to protect the developers’ rights, the Zope 3
community requires a file header in every Python file. Excluded are empty init .

py files. Here is the standard ZPL file header:

1 ##

2 #

3 # Copyright (c) 2004 Zope Corporation and Contributors.

4 # All Rights Reserved.

5 #

6 # This software is subject to the provisions of the Zope Public License,

7 # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.

8 # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED

9 # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

10 # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS

11 # FOR A PARTICULAR PURPOSE.

12 #

13 ##

14 """A one line description of the content of the module.

15

16 If necessary, one can write a longer description here. This is also a

17 good place to include usage notes and requirements.

18

19 Id

20 """

. Line 3: The copyright notice should always contain all years this file has been
worked on. At the beginning of each year we use a script to add the new year to
the file header.

34
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

. Line 1–13: Only use this header, if you are the only author of the code or you
have the permission of the original author to use this code and publish it under
the ZPL 2.1. Just to be on the safe side, always ask Jim Fulton about checking
in code that was not developed by yourself. Of course, you must be yourself
willing to publish your code under the ZPL. Note that you do *not* need to sign a
contributor agreement to add this header, unless you want to add the code in the
zope.org source repository. Also, the ZPL 2.1 does not automatically make Zope
Corporation a copyright owner of the code as well, as it was the code for ZPL 2.0.

. Line 19: This is a place holder for the source code repository to insert file revision
information, which can be extremely useful.

. Line 14–20: The module documentation string should always be in a file. The first
line of the doc string is a short description of the module. Next, an empty line is
inserted after which you can give more detailed documentation of the module. For
example, in executable files, you usually store all of the help in this doc string.

In general, you should document your code well, so that others can quickly un-
derstand what it does. Feel free to refer to the interface documentation.

Interfaces have a couple more naming constraints. The name of an interface should
always start with a capital “I”, so that they can be easily distinguished from classes.
Also, interface declarations are used for documenting the behavior and everything
around the component, so that you should have almost all your documentation here.
Zope 3’s API documentation tool mainly uses the interface doc strings for providing
information to the reader.

5.2.3 ZCML Naming and Formatting Conventions

ZCML is a dialect of XML, so that the usual good practices of XML apply. ZCML
sub-elements are indented by two spaces; again, let’s not use tab characters, as their
width is ambiguous. All attributes of an element should be each on a separate line
with an indentation of four spaces.

1 <configure

2 namespace="http://namespaces.org/my-namespace">

3

4 <namespace:directive

5 attr="value">

6

7 <namespace:sub-directive

8 attr1="value"

9 attr2="This is a long value that

10 spans over two lines."

11 />

12

13 </namespace:directive>

CHAPTER 5 THE ZOPE 3 DEVELOPMENT PROCESS

5.2. ZOPE 3 NAMING RULES
35

14

15 </configure>

While it is possible to specify any amount of ZCML namespaces inside a
configure element, you should only declare the namespaces you actually use, like
you only import objects in Python that the code below works with. As for all source
code in Zope, we try to avoid long lines greater than 80 characters. However, some-
times you will notice that this is not possible, since the dotted Python identifiers
and ids can become very long. In these rare cases it is okay to have lines longer than
80 characters.

5.2.4 Page Template Naming and Formatting Conventions

Page Templates were designed, like the name says, to provide presentation templates.
Unfortunately, it is possible to supply Python-based logic via TALES expressions as
well. In Zope 3 templates we avoid Python code completely, since the necessary logic
can be provided by an HTML Presentation component as seen in the “Adding Views”
chapter. In general, even if you have complex non-Python logic in a template, try to
think about a way to move your logic into the Python-based presentation class.

Finally, HTML is a subset of XML, which means that all contents of double tags
should be indented by two spaces (as for ZCML). For tag attributes we use four
spaces as indentation. Remember that it is very hard to read and debug incorrectly
indented HTML code!

5.2.5 Test Writing Conventions

While not necessary for the standard Python unittest package, the Zope 3 test
runner expects unit tests to be in a module called tests. If tests is a directory
(package), then you should not forget to have an empty init .py file in the
directory. Similarly, you should have an ftests module for functional tests .

Usually you have several testing modules in a tests directory. All of these
modules should begin with the prefix test . Note that this is one of the few
violations to not use the underscore character in a module name. The prefix is very
helpful in detecting the actual tests, since sometimes supporting files are also located
in the tests directory.

The testing methods inside a TestCase do not have doc strings, since the test
runner would use the doc strings for reporting instead of the method names, which
makes it much harder to find failing tests. Instead, choose an instructive method
name – do not worry if it is long – and write detailed comments if necessary. Finally, if
a test case tests a particular component, then you should always include an interface
verification test:

36
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

1 �
	�� test_interface(� 	 � �):
2

� 	 � � .assert_(IExample.providedBy(SimpleExample()))

This is probably the most trivial test you write, but also a very important one,
since it tells you whether you fully implemented the interface.

5.2.6 Why is Having and Following the Conventions Important?

While I addressed some of the motivations for strict naming conventions at the
beginning of the chapter, here are some more reasons. First off, there are many
people working on the project. Everybody has an idea of an ideal style for his/her
code, but in a project like this, only one can be adopted. If none would be created,
people would constantly correct others’ code and at the end we would have a most
colorful mix of styles and the code would be literally unmaintainable.

Naming conventions also make the the API more predictable and are consequently
more “usable” in a sense. For example, if I only remember the name of a class, like
“simple example”, I will always now how the spelling of the class will look like, i.e.
SimpleExample. There is no ambiguity in the name at all.

A lot of time was spent on developing the directory structure. The goal is to have
a well thought-out and flat tree so that the imports of the corresponding modules
would stay manageable. Eventually we adopted the Java design for this reason. The
development team also desired to be able to separate contract, implementation and
presentation in order to address the different development roles (developer, scriptor,
graphic designer, information architect and translator) of the individuals contributing
to the project.

Ultimately we hope that these conventions are followed by all ZPL code in the
zope.org source code repository.

For more information see the Zope 3 development wiki page at: http://dev.

zope.org/Zope3/CodingStyle

CHAPTER 6

AN INTRODUCTION TO INTERFACES

Difficulty

Newcomer

Skills

• You should know Python well, which is a requirement for all chapters.

• Some knowledge about the usage of formal interfaces in software design. Op-
tional.

Problem/Task

In every chapter in this book you will hear about interfaces in one way or another.
Hence it is very important for the reader to understand the purpose of interfaces.

Solution

6.1 Introduction

In very large software projects, especially where the interaction with a lot of other
software is expected and desired, it is necessary to develop well-specified application
programming interfaces (APIs). We could think of APIs as standards of the frame-
work, such as the RFC or POSIX standards. Once an interface is defined and made
public, it should be very hard to change it. But an API is also useful inside a single
software, known as internal API.

37

38
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Interfaces (in the sense we will use the term) provide a programmatic way to
specify the API in a programming language.

While other modern programming languages like Java use interfaces as a native
language feature, Python did not even have the equivalent of a formal interface until
recently. Usually, in Python the API is defined by the class that implements it, and
it was up to the documentation to create a formal representation of the API. This
approach has many issues. Often developers changed the API of a class without
realizing that they broke many other people’s code. Programmed interfaces can
completely resolve this issue, since alarm bells can be rung (via tests) as soon as an
API breakage occurs. Here is a simple example of a Python interface (as used by the
Zope project):

1 ������� zope.interface
�
�������� Interface, Attribute

2

3
�
������� IExample(Interface):

4 """This interface represents a generic example."""

5

6 text = Attribute("The text of the example")

7

8 ��	�� setText(text):

9 "This method writes the passed text to the text attribute."

10

11 ��	�� getText():

12 "This method returns the value of the text attribute."

. Line 1: We import the only two important objects from zope.interface here,
the meta-class Interface and the class Attribute .

. Line 3: We “misuse” the class declaration to declare interfaces as well. Note
though, that interfaces are not classes and do not behave as such! Using
Interface as base class will make this object an interface.

. Line 4: In Zope 3 interfaces are the main source for API documentation, so that
it is necessary to always write very descriptive doc strings. The interface doc
string gives a detailed explanation on how objects implementing this interface are
expected to function.

. Line 6: The Attribute class is used to declare attributes in an interface. The
constructor of this class only takes one string argument, which is the documenta-
tion of this attribute. You might say now that there is much more meta-data that
an attribute could have, such as the minimum value of an integer or the maximum
length of a string for example. This type of extensions to the Attribute class
are provided by another module called zope.schema, which is described in “Zope
Schemas and Widgets (Forms)”.

CHAPTER 6 AN INTRODUCTION TO INTERFACES

6.2. ADVANCED USES
39

. Line 8–9 & 11–12: Methods are declared using the def keyword as usual. The
difference is, though, that the first argument is not self. You only list all of the
common arguments. The doc string is again used for documentation.

Other than that, methods can contain anything you like; yet, Zope does not use
anything else of the method content. If you use the zope.interface package
apart from Zope 3, you could use the method body to provide formal descriptions
of pre- and postconditions, argument types and return types.

The above is a typical but not practical example of an interface. Since we use
Python, it is not necessary to specify both, the attribute and the setter/getter meth-
ods. In this case we would usually just specify the attribute as part of the interface
and implement it as a Python property if necessary.

6.2 Advanced Uses

Once you have Python-based interfaces, many new possibilities develop. You can
now use interfaces as objects that can define contracts. For example, you can say
that there is a class AllText that converts IExample to IAllText, where the latter
interface has a method getAllText() that returns all human-readable text from
IExample. Such a class is known as an Adapter. More formally, adapters use one
interface (IExample) to provide/implement another interface (IAllText).

Even more commonly, interfaces are used for identification. Zope 3’s utility reg-
istry often executes queries of the form: “Give me all utilities that implement in-
terface I1.” Interfaces are even used to classify other interfaces! For example, I
might declare my IExample interface to be an IContentType. I can then go to
the utility registry and ask: “Give me all interfaces that represent a content type (
IContentType).” Once I know these content type interfaces, I can figure out which
classes are content types.

You can see that interfaces provide a solution to a wide range of use cases. By the
way, it is very common to create empty interfaces purely for identification purposes;
these interfaces are known as “marker interfaces”.

6.3 Using Interfaces

In objects interfaces are used as follows:

1 �
����� zope.interface
�
��� ���� implements

2 �
����� interfaces
�
� � ���
 IExample

3

4
��������� SimpleExample:

5 implements(IExample)

40
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

The implements() method tells the system that instances of the class provide
IExample. But of course, modules and classes themselves can implement interfaces
as well. For modules you can use moduleProvides(*interfaces). For classes
you can insert classImplements(*interfaces) directly in the class definition or
use classProvides(cls,*interfaces) for an existing class. Also, you can use
directlyProvides(instance,*interfaces) for any object as well (including in-
stances of classes).

The Interface object itself has some nice methods. The most common one is
providedBy(ob), which checks whether the passed object implements the interface
or not:

1 >>> ex = SimpleExample()

2 >>> IExample.providedBy(ex)

3 True

Similarly you can pass in a class and test whether instances of this class implement
the interface by calling IExample.implementedBy(SimpleExample).

The last useful method is isOrExtends(interface). This method checks
whether the passed interface equals the interface or whether the passed interface
is a base (extends) of the interface.

When creating classes from an interface, there is a helpful script called pyskel.py

that creates a class skeleton from an interface. Before using the script you have to
make sure the ZOPE3/src is in your Python path. Usage:

python2.3 utilities/pyskel.py dotted.path.ref.to.interface

This call creates a skeleton of the class in your console, which saves you a lot of
typing. The order of the attributes and methods as they appear in the interface is
preserved.

As a last note, since Python does not comone with interfaces, the zope.

interface package provides some interfaces that are implemented by the built-in
Python types. They can be found in zope.interface.common.

This concludes the overview of interfaces. This introduction should be sufficient
to get you started with the chapters. Many of the concepts will become much clearer
as you work through the hands-on examples of the following parts of the book.

CHAPTER 7

THE COMPONENT ARCHITECTURE –
AN INTRODUCTION

Difficulty

Newcomer

Skills

• Be familiar with object-oriented programming.

• Be knowledgeable about interfaces, i.e. by reading the previous chapter on
interfaces.

• Knowledge of component-oriented programming is preferable. Optional.

Problem/Task

When the Component Architecture for Zope was first thought about, it was in-
tended as an extension to Zope 2, not a replacement as it developed to become. The
issue was that the existing Zope 2 API was too bloated and inconsistent, due to
constant feature additions, bug fixes and coding inconsistencies. The extremely bad
practice of “monkey patching” became a normality among developers to overcome
the limitations of the API and fix bugs. Monkey patching is a method of overwrit-
ing library functions and class methods after importing them, which is a powerful,
but dangerous, side effect of loosely-typed scripting languages.

Another motivation was to incorporate the lessons learned from consulting jobs
and building large Web applications, which demonstrated the practical limits of
simple object inheritance. The need for a more loosely-connected architecture arose

41

42
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

with many objects having rather tiny interfaces in contrast to Zope 2’s few, large
objects. This type of framework would also drastically reduce the learning curve,
since a developer would need to learn fewer APIs to accomplish a given task.

All these requirements pointed to a component-oriented framework that is now
known as the “Component Architecture” of Zope 3. Many large software projects
have already turned to component-based systems. Some of the better-known projects
include:

• COM (Microsoft’s Object Model)

• Corba (Open source object communication protocol)

• KParts (from the KDE project)

• Mozilla API (it is some ways very similar to Zope 3’s CA)

• JMX (Sun’s Java Management Extensions manages Beans)

However, while Zope 3 has many similarities with the above architectures, thanks
to Python certain flexibilities are possible that compiled languages do not allow.

Solution

In this chapter I will give you a high-level introduction to all component types.
Throughout the book there will be concrete examples on developing most of the
component types introduced here.

7.1 Services

Services provide fundamental functionality without which the application server
would fail to function. They correspond to “Tools” in CMF (Zope 2) from which
some of the semantics were also inspired.

Services do not depend on other components at all. You only interact with other
components by passing them as arguments to the constructor or the methods of
the service. Any given application should have only a few services that cover the
most fundamental functionality. When dealing with locality, services should always
delegate requests upward – up to the global version of the service – if a request can
not be answered locally.

The most fundamental services are the registries of the components themselves.
Whenever you register a class as a utility using ZCML, for example, then the class is
registered in the “Utility Service” and can be retrieved later using the service. And
yes, we also have a “Service Service” that manages all registered services.

CHAPTER 7 THE COMPONENT ARCHITECTURE – AN INTRODUCTION

7.1. SERVICES
43

Another service is the Error Reporting service, which records all errors that oc-
curred during the publication process of a page. It allows a developer to review the
details of the error and the state of the system/request at the time the error oc-
curred.

��� ��� ��� 	�
����
� ���������������������! #"$�%�'&)(*�+�,- ��'./(��

021�3�4)5�687#9�3�6)4 : 3;=<�>�?/@�: AB4
02;C3�4)5�687=9D3�6)4 : 3;=<�ED33�9CF%3�G%4 6�: 3;H?�: G�48I/AC7=9/JDF�4 7'F�K/L 7C1M?DN�7C7=L�OQP�R�L ;C3%ID: 1�G%7=683@=F%3DS�AC3�9D4 : 7#G�;H?#4)T�9L 3UOV<�> >�?#W�7#: @
021�3�4)XD7C1�Y�G%4 6�: 3;=<�>�?=4 TZ9�L 3
021�3�4)XD7C1�Y�G%4 6)J%[\J%] @�<�: @M?D: G%4 >

^ ���8_���`a��bD_��)�)� �%c�d-��� e�� ���
f ED33�9#F%3�G�4)6�: 3;H?D: G�4�OMg�h
f Ai7=9DJ/F�4 7'F�K/L 7C1M?DN�7i7=LOQP�R�L ;C3
0j68R�: ;#: G%1�<�: G�k 7H?�I�683l�T%3;i4%?] ma3l�T%3�;i4�Oona7#G�3�>�?#W�7=: @
021�3�4)5�687#9�3�6)4 : 3;=<�>�?/@�: AB4
02;C3�4)5�687=9D3�6)4 : 3;=<�ED33�9CF%3�G%4 6�: 3;H?�: G�48I/AC7=9/JDF�4 7'F�K/L 7C1M?DN�7C7=L�OQP�R�L ;C3%ID: 1�G%7=683@=F%3DS�AC3�9D4 : 7#G�;H?#4)T�9L 3UOV<�> >�?#W�7#: @
021�3�4)XD7C1�Y�G%4 6�: 3;=<�>�?=4 TZ9�L 3
021�3�4)XD7C1�Y�G%4 6)J%[\J%] @�<�: @M?D: G%4 >

��� ��� ��� 	�
����
� �-�����%���! ="p�%�'&)(*�+�,! D�'.D(�

0V68R�: ;=: G�1�<�: G�k 7H?ID683l�T%3�;i4�?D: ma3�l�T%3;i4�Oona7=G%3�>�?#W�7#: @

Figure 7.1: UML diagram of the Error Reporting Service.

A convention for service interfaces is that they only contain accessor methods.
Mutator methods are usually implementation-specific and are provided by additional
interfaces. A consequence of this pattern is that services are usually not modified once
the system is running. Please note though that we strongly discourage developers
from writing services for applications. Please use utilities instead.

Services make use of acquisition by delegating a query if it cannot be answered
locally. For example, if I want to find a utility named “hello 1” providing the interface
IHello and it cannot be found at my local site, then the Utility Service will delegate
the request to the parent site. This goes all the way up to the global Utility Service.
Only if the global service cannot provide a result, an error is returned. For more
details about local and global components see “Global versus Local” below.

44
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

7.2 Adapters

Adapters could be considered the “glue components” of the architecture, since they
connect one interface with another and allow various advanced programming tech-
niques such as Aspect-Oriented Programming. An adapter takes a component im-
plementing one interface and uses this object to provide another interface.

��������� 	����
�� ����� 	������ ����� 	
��� � � � �����! "� #%$'&��)(+* *
��,�$'&�-+���" !� #'$%&��.(/* *0+1 ��� 23$%&�-�4 5����" "� #'$%&��0�6 ��� 23$'&�-�4 � ��7��8���! "� #%$'&���5��%9�$:� &

� � ��� 	�; <=����	�
> ?�@ A B C�D"A E C
0GFIH � � ��4 &�J�� J�� 6 � H � 1 5��%9�$K� &

� � ��� 	�; <=����	�
> LMC�N�O8D"A E C
0�H ��J�&�4 5�� 6 � H � 10�6 � PK��4 5���� Q�23$'� R � �� � H S J�#%� 6 J H �

� T�U�� ��T+�� �� ��& �
� R8� 6 J�T�� J�&�J�UV� � HXW

� � ��� 	�; <=����	�
> Y�ZQN�[G\]E C
0+1 ��� 23$%&�-�4 5����" "� #%$%&��0�6 ��� 2^$%&�-�4 � ��7��8���" !� #%$'&���5��%9�$K� &

����_�� � � 	�;
` a � � 	
0)b�b � !� � b�b 4 #%$K Q� �V7��Q��c d�7�J�T�U�� ��5��K9�$:� &0�H ��J�&�4 5�� 6 � H � 10�6 � PK��4 5���� Q�0GFIH � � ��4 &�J�� J�� 6 � H � 1 5��%9�$K� &

J�&�J�UV� 6

Figure 7.2: UML diagram of an Adapter adapting IExample to IReadFile and IWriteFile.

This allows the developer to split up the functionality into small API pieces and
keep the functionality manageable. For example, one could write an adapter that
allows an IExample content component to be represented as a file in FTP (see
diagram above). This can be done by implementing the IReadFile and IWriteFile

interface for the content component. Instead of adding this functionality directly to
the SimpleExample class by implementing the interfaces in the class, we create an
adapter that adapts IExample to IReadFile and IWriteFile. Once the adapter
is registered for both interfaces (usually through ZCML), it can be used as follows:

1 read_file = zapi.getAdapter(example, IReadFile)

2 write_file = zapi.getAdapter(example, IWriteFile)

The getAdapter() method finds an adapter that maps any of the interfaces
that are implemented by example (SimpleExample instance) to IReadFile. An
optional argument named context can be passed as a keyword argument, specifying
the place to look for the adapter. None causes the system to look only for global
adapters. The default is the site the request was made from.

In this particular case we adapted from one interface to another. But adapters
can also adapt from several interface to another. These are known as multi-adapters.

CHAPTER 7 THE COMPONENT ARCHITECTURE – AN INTRODUCTION

7.3. UTILITIES
45

While multi-adapters were first thought of as unnecessary, they are now used in a
wide range of applications.

The best side effect of adapters is that it was not necessary to touch the original
implementation SimpleExample at all. This means that I can use any Python
product in Zope 3 by integrating it using adapters and ZCML.

7.3 Utilities

Utilities are similar to services, but do not provide vital functionality, so applications
should not be broken if utilities are missing. This statement should be clarified by
an example.

In pre-alpha development of Zope 3, SQL Connections to various relational
databases were managed by a service. The SQL Connection Service would man-
age SQL connections and the user could then ask the service for SQL connections by
name. If a connection was not available, then the service would give a negative an-
swer. Then we realized the role of utilities, and we were able to rid ourselves of the
SQL Connection Service and implement SQL connections as utilities. Now we can
ask the Utility Service to give us an object implementing ISQLConnection and hav-
ing a specified name. We realized that many services that merely acted as registries
could be thrown out and the objects they managed became utilities. This greatly
reduced the number of services and the complexity of the system. The lesson here is
that before you develop a service, evaluate whether it would just act as a container,
in which case the functionality is better implemented using utilities.

7.4 Factories (Object Classes/Prototypes)

Factories, as the name suggests, exist merely to create other components and ob-
jects. Factories can be methods, classes or even instances that are callable. The
developer only encounters them directly when dealing with content objects (since
ZCML creates factories for you automatically) if you specify the factory directive.
The functionality and usefulness of factories is best described by an example.

Let’s consider our SimpleExample content component once more. A factory has
to provide two methods. The obvious one is the call () method that creates and
returns a SimpleExample instance. The second method, called getInterfaces()

returns a list of interfaces that the object created by calling call will provide.
Factories are simply named utilities that provide IFactory. Using a spe-

cial sub-directive you can register a factory using an id, such as example.

SimpleExample. Once the factory is registered, you can use the component ar-

46
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

chitecture’s createObject() method to create Simple Examples using the factory
(implicitly):

1 ex = zapi.createObject(’example.SimpleExample’)

The argument is simply the factory id. By the way, a factory id must be unique
in the entire system and the low-level functionality of factories is mostly hidden
by high-level configuration. Optionally you can specify a context argument, that
specifies the location you are looking in. By default it is the site of the request; if
you specify None, only global factories are considered.

7.5 Presentation Components – Views, Resources, Skins,
Layers

Presentation components, especially views, are very similar to adapters, except that
they take additional parameters like layers and skins into account. In fact, in future
versions of Zope 3, the presentation service will be removed and presentation com-
ponents will become adapters. Presentation components are used for providing pre-
sentation for other components in various output formats (presentation types), such
as HTML, FTP, XML-RPC and so on.

In order to make a view work, two pieces of information have to be provided. First,
the view must know for which object it is providing a view. This object is commonly
known as the context of the view. Second, we need to know some protocol-specific
information, which is stored in a Request object that is always accessible under the
variable name request in the view. For HTML, for example, the request contains
all cookies, form variables and HTTP header values, but also the authenticated user
and the applicable locale. The return values of the methods of a view depend on the
presentation type and the method itself. For example, HTTP views usually return
the HTML body, whereas FTP might return a list of “filenames”.

Resources are presentation components in their own right. In comparison to views,
they do not provide a presentation of another component but provide some presen-
tation output that is independent of any other component. HTML is a prime exam-
ple. Stylesheets and images (layout) are often not considered content and also do
not depend on any content object, yet they are presentation for the HTTP presen-
tation type. However, not all presentation types require resources; both FTP and
XML-RPC do not have such independent presentation components.

Next, views and resources are grouped by layers, which are usually used for group-
ing similar look and feel. In Zope 2’s CMF framework, layers are the folders con-
tained by the portal skins tool. An example for a layer is debug, which simply
inserts Python tracebacks into exception HTML pages.

CHAPTER 7 THE COMPONENT ARCHITECTURE – AN INTRODUCTION

7.6. GLOBAL VERSUS LOCAL
47

Multiple layers can then be stacked together to skins. Currently we have several
skins in the Zope 3 core: “rotterdam” (default), “Basic”, “Debug”, and “ZopeTop”
(excluded from the 3.0 distribution). The skin can simply be changed by typing
++skin++SKINNAME after the root of your URL, for example:

http://localhost:8080/++skin++ZopeTop/folder1

When you develop an end-user Web site, you definitely want to create your own
layer and incorporate it as a new skin. You want to avoid writing views for your site
that each enforce the look and feel. Instead you can use skins to create a look and
feel that will work for all new and existing templates.

7.6 Global versus Local

Zope 3 separates consciously between local and global components. Global compo-
nents have no place associated with them and are therefore always reachable and
present. They are always initialized and registered at Zope 3 startup via the Zope
Configuration Markup Language (ZCML), which I mentioned before. Therefore,
global components are not persistent meaning they are not stored in the ZODB at
all. Their state is destroyed (and should be) upon server shutdown.

Local components, on the other hand, are stored in the ZODB at the place in the
object tree they were defined in. Local components always only add and overwrite
previous settings; they can never remove existing ones. Creating new local compo-
nents can be done using the Web Interface by clicking “Manage Site”. This will lead
you into the configuration namespace and is always marked by ++etc++site in the
URL.

Every folder can be promoted to become a site. Once a local site manager is
declared for a folder by clicking on “Make Site”, we call this object/folder a site.

As mentioned before, local components use an explicit acquisition process when
looking up information. For example, I want to get the factory for SimpleExample.

When looking for any component, the original site of the publication is chosen.
However, sometimes it is desired to start looking for a component from a different
site. In these cases you simply specify the context in the call.

1 factory = zapi.getFactory(’example.SimpleExample’, context=other_site)

If a local Utility Service exists and an IFactory utility with the name example.

SimpleExample is found, then it is returned. If not, then the local Utility Service
delegates the request to the next site. Requests can be delegated all the way up
to the global Utility Service at which point an answer must be given. If the global
Utility Service does not know the answer either, a ComponentLookupError is raised.

48
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

We can see that there are slight semantic differences between global and local
implementations of a service, besides the difference in data storage and accessibility.
The global service never has to worry about place or the delegation of the request.
The net effect is that global components are often easier to implement than their local
equivalent. Furthermore, local components usually have writable APIs in addition
to the readable ones, since they have to allow run-time management.

CHAPTER 8

ZOPE SCHEMAS AND WIDGETS

(FORMS)

Difficulty

Newcomer

Skills

• Be familiar with the various built-in Python types.

• Be familiar with HTML forms and CGI.

• Knowledge about Formulator (Zope 2) is of advantage. Optional.

Problem/Task

In the early stages of development, the Zope 3 developers decided that it would be
cumbersome to manually write HTML forms and to manually validate the input. We
realized that if we would extend interfaces, we could auto-generate HTML forms and
also automatically validate any input. This chapter gives some background informa-
tion and formally introduces the zope.schema and zope.app.form packages.

Solution

49

50
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

8.1 History and Motivation

Originally, I simply wanted to port Formulator, a very successful Zope 2 product to
auto-generate and validate forms, to Zope 3. In Formulator, one would create various
input fields (like integers or text lines) in a form and provide some meta-data about
the fields, like the maximum and minimum length of a string. You could then tell
the form to simply render itself. For more details see http://zope.org/Members/

infrae/Formulator.
Even though Formulator tried to split application logic and presentation, vari-

ous parts were still not sufficiently separated, mainly due to the limitations Zope
2 provided. Therefore the original port remained a hack in Zope 3 until the idea
of schemas was developed by Jim Fulton and Martijn Faassen (the original author
of Formulator) during the Berlin BBQ Sprint (April 2002) when trying to combine
Zope 3’s version of Formulator and class properties. After all presentation logic was
removed, Formulator fields felt a lot like interface specification for attributes. So it
was realized, that if we supply more meta-data to the attribute declarations in in-
terfaces, then we could accomplish auto-generation and validation of HTML forms.
These extended attributes are still known as “fields”. If an interface contains any
fields, then this interface is conventionally called a schema.

The following three main goals of schemas developed:

1. Full specification of properties on an API level

2. Data input validation and conversion

3. Automated GUI form generation (mainly for the Web browser)

8.2 Schema versus Interfaces

As mentioned before, schemas are just an extension to interfaces and therefore depend
on the zope.interface package. Fields in schemas are equivalent to methods
in interfaces. Both are complementary to each other, since they describe different
aspects of an object. The methods of an interface describe the functionality of a
component, while the schema’s fields represent the state.

It is thus not necessary to develop a new syntax for writing schemas and we simply
reuse the interface declaration:

1 ������� zope.interface
�
�������� Interface

2 ������� zope.schema
�
��� ���� Text

3

4
�
������� IExample(Interface):

5

6 text = Text(

7 title=u"Text",

CHAPTER 8 ZOPE SCHEMAS AND WIDGETS (FORMS)
8.3. CORE SCHEMA FIELDS

51

8 description=u"The text of the example.",

9 required=True)

. Line 2: All default fields can be simply imported from zope.schema.

. Line 7–8: The title and description are used as human-readable text for the form
generation. Of course, they also serve as documentation of the field itself.

. Line 9: Various fields support several other meta-data fields. The required option
is actually available for all fields and specifies whether an object implementing
IExample must provide a value for text or not.

8.3 Core Schema Fields

After we have seen a simple example of a schema, let’s now look at all the basic fields
and their properties.

• Properties that all fields support:

– title (type: TextLine): The title of the attribute is used as label when
displaying the field widget.

– description (type: Text): The description of the attribute is used for
tooltips and advanced help.

– required (type: Bool): Specifies whether an attribute is required or not
to have a value. In add-forms, required attributes are equivalent to required
constructor arguments.

– readonly (type: Bool): If a field is readonly, then the value of the attribute
can be set only once and can then only be displayed. Often a unique id for
some object is a good candidate for a read-only field.

– default (type: depends on field): The default value that is given to the
attribute, if no initialization value was provided. This value is often speci-
fied, if a field is required.

– order (type: Int): Fields are often grouped by some logical order. This
value specifies a relative position in this order. We usually do not set
this value manually, since it is automatically assigned when an interface is
initialized. The order of the fields in a schema is by default the same as the
order of the fields in the Python code.

• Bytes, BytesLine

52
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Bytes and BytesLine only differ by the fact that BytesLine cannot contain
a new line character. Bytes behave identical to the Python type str.

Bytes and BytesLine fields are iteratable.

– min length (type: Int): After the white space has been normalized, there
cannot be less than this amount of characters in the bytes string. The
default is None, which refers to no minimum.

– max length (type: Int): After the white space has been normalized, there
cannot be more than this amount of characters in the bytes string. The
default is None, which refers to no maximum.

• Text, TextLine

The two fields only differ by the fact that TextLine cannot contain a newline
character. Text fields contain unicode, meaning that they are intended to be
human-readable strings/text.

Text and TextLine fields are iteratable.

– min length (type: Int): After the white space has been normalized, there
cannot be less than this amount of characters in the text string. The default
is None, which refers to no minimum.

– max length (type: Int): After the white space has been normalized, there
cannot be more than this amount of characters in the text string. The
default is None, which refers to no maximum.

• SourceText

Source Text is a special field derived from Text, which contains source code
of any type. It is more or less a marker field for the forms machinery, so that
special input fields can be used for source code.

• Password

Password is a special derivative for the TextLine field and is treated separately
for presentation reasons. However, someone also might want more fine-grained
validation for passwords.

• Bool

The Bool field has no further attributes. It maps directly to Python’s bool

object.

• Int

Int fields directly map to Python’s int type.

CHAPTER 8 ZOPE SCHEMAS AND WIDGETS (FORMS)
8.3. CORE SCHEMA FIELDS

53

– min (type: Int): Specifies the smallest acceptable integer. This is useful
in many ways, such as allowing only positive values by making this field 0.

– max (type: Int): Specifies the largest acceptable integer, which excludes
the value itself. It can be used to specify an upper bound, such as the
current year, if you are interested in the past only.

Both attributes combined allow the programmer to specify ranges of acceptable
values.

• Float

Float fields directly map to Python’s float type.

– min (type: Float): Specifies the smallest acceptable floating point number.
This is useful in many ways, such as allowing only positive values by making
this field 0.0.

– max (type: Float): Specifies the largest acceptable floating point number,
which excludes the value itself (typical computer programming pattern).
It can be used to specify an upper bound, such as 1.0, if you are only
interested in probabilities.

Both attributes combined allow the programmer to specify ranges of acceptable
values.

• Datetime

Similar to Int and Float, Datetime has a min and max field that specify
the boundaries of the possible values. Acceptable values for these fields must
be instances of the builtin datetime type.

• Tuple, List

The reason both of these fields exists is that we can easily map them to their
Python type tuple and list, respectively.

Tuple and List fields are iteratable.

– min length (type: Int): There cannot be less than this amount of items
in the sequence. The default is None, which means there is no minimum.

– max length (type: Int): There cannot be more than this amount of items
in the sequence. The default is None, which means there is no maximum.

– value type (type: Field): Values contained by these sequence types
must conform to this field’s constraint. Most commonly a Choice field
(see below) is specified here, which allows you to select from a fixed set of
values.

54
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

• Dict

The Dict is a mapping field that maps from one set of fields to another.

Dict fields are iteratable.

– min length (type: Int): There cannot be less than this amount of items
in the dictionary. The default is None, which means there is no minimum.

– max length (type: Int): There cannot be more than this amount of items
in the dictionary. The default is None, which means there is no maximum.

– key type (type: Field): Every dictionary item key has to conform to the
specified field.

– value type (type: Field): Every dictionary item value has to conform to
the specified field.

• Choice

The Choice field allows one to select a particular value from a provided set of
values. You can either provide the values as a simple sequence (list or tuple)
or specify a vocabulary (by reference or name) that will provide the values.
Vocabularies provide a flexible list of values, in other words the set of allowed
values can change as the system changes. Since they are so complex, they are
covered separately in “Vocabularies and Fields”.

– vocabulary (type: Vocabulary): A vocabulary instance that is used to
provide the available values. This attribute is None, if a vocabulary name
was specified and the field has not been bound to a context.

– vocabularyName (type: TextLine): The name of the vocabulary that is
used to provide the values. The vocabulary for this name can only be looked
up, when the field is bound, in other words has a context. Upon binding,
the vocabulary is automatically looked using the name and the context.

The constructor also accepts a values argument that specifies a static set of
values. These values are immediately converted to a static vocabulary.

• Object

This field specifies an object that must implement a specific schema. Only
objects that provide the specified schema are allowed.

– schema (type: Interface): This field provides a reference to the schema
that must be provided by objects that want to be stored in the described
attribute.

CHAPTER 8 ZOPE SCHEMAS AND WIDGETS (FORMS)
8.4. AUTO-GENERATED FORMS USING THE forms PACKAGE

55

• DottedName

Derived from the BytesLine field, the DottedName field represents valid
Python-style dotted names (object references). This field can be used when
it is desirable that a valid and resolvable Python dotted name is provided.

This field has no further attributes.

• URI

Derived from the BytesLine field, the URI field makes sure that the value
is always a valid URI. This is particularly useful when you want to reference
resources (such as RSS feeds or images) on remote computers.

This field has no further attributes.

• Id

Both, the DottedName and URI field, make up the Id field. Any dotted name
or URI represent a valid id in Zope. Ids are used for identifying many types of
objects, such as permissions and principals, but also for providing annotation
keys.

This field has no further attributes.

• InterfaceField

The Interface field has no further attributes. Its value must be an object that
provides zope.interface.Interface, in other words it must be an interface.

For a formal listing of the Schema/Field API, see the API documentation tool at
http://localhost:8080/++apidoc++ or see zope.schema.interfaces module.

8.4 Auto-generated Forms using the forms Package

Forms are much more Zope-specific than schemas and can be found in the zope.app.

forms package. The views of schema fields are called widgets. Widgets responsible
for data display and conversion in their specific presentation type. Currently widgets
exist mainly for HTML (the Web browser).

Widgets are separated into two groups, display and input widgets. Display widgets
are often very simply and only show a text representation of the Python object. The
input widgets, however, are more complex and display a greater variety of choices.
The following list shows all available browser-based input widgets (found in zope.

app.form.browser):
Text Widgets

56
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Text–based widgets always require some sort of keyboard input. A string repre-
sentation of a field is then converted to the desired Python object, like and integer
or a date.

• TextWidget: Being probably the simplest widget, it displays the text input
element and is mainly used for the TextLine, which expects to be unicode. It
also serves as base widget for many of the following widgets.

• TextAreaWidget: As the name suggests this widget displays a text area and
assumes its input to be some unicode string. (note that the Publisher already
takes care of the encoding issues).

• BytesWidget, BytesAreaWidget: Direct descendents from TextWidget and
TextAreaWidget, the only difference is that these widgets expect bytes as input
and not a unicode string, which means they must be valid ASCII encodable.

• ASCIIWidget: This widget, based on the BytesWidget, ensures that only ASCII
character are part of the inputted data.

• PasswordWidget: Almost identical to the TextWidget, it only displays a
password element instead of a text element.

• IntWidget: A derivative of TextWidget, it only overwrites the conversion
method to ensure the conversion to an integer.

• FloatWidget: Derivative of TextWidget, it only overwrites the conversion
method to ensure the conversion to an floating point.

• DatetimeWidget: Someone might expect a smart and complex widget at this
point, but for now it is just a simple TextWidget with a string to datetime

converter. There is also a DateWidget that only handles dates.

Boolean Widgets

Boolean widgets’ only responsibility is to convert some binary input to the Python
values True or False.

• CheckBoxWidget: This widget displays a single checkbox widget that can be
either checked or unchecked, representing the state of the boolean value.

• BooleanRadioWidget: Two radio buttons are used to represent the true and
false state of the boolean. One can pass the textual value for the two states in
the constructor. The default is “on” and “off” (or their translation for languages
other than English).

CHAPTER 8 ZOPE SCHEMAS AND WIDGETS (FORMS)
8.4. AUTO-GENERATED FORMS USING THE forms PACKAGE

57

• BooleanSelectWidget, BooleanDropdownWidget: Similar to the BooleanRadioWidget,
textual representations of the true and false state are used to select the value.
See SelectWidget and DropdownWidget, respectively, for more details.

Single Selection Widgets

Widgets that allow a single item to be selected from a list of values are usually
views of a field, a vocabulary and the request, instead of just the field and request
pair. Therefore so called proxy–widgets are used to map from field–request to field–
vocabulary–request pairs. For example the ChoiceInputWidget, which takes a
Choice field and a request object, is simply a function that looks up another widget
that is registered for the Choice field, its vocabulary and the request. Below is a
list of all available widgets that require the latter three inputs.

• SelectWidget: This widget provides a multiply–sized selection element where
the options are populated through the vocabulary terms. If the field is not
required, a “no value” option will be available as well. The user will allowed to
only select one value though, since the Choice field is not a sequence–based
field.

• DropdownWidget: As a simple derivative of the SelectWdiget, it has its size set
to “1”, which makes it a dropdown box. Dropdown boxes have the advantage
that they always just show one value, which makes some more user–friendly for
single selections.

• RadioWidget: This widget displays a radio button for each term in the vocab-
ulary. Radio buttons have the advantage that they always show all choices and
are therefore well suitable for small vocabularies.

Multiple Selections Widgets

This group of widgets is used to display input forms collection–based fields, such
as List or Set. Similar to the single selection widgets, two proxy-widgets are
used to look up the correct widget. The first step is to map from field– request

to field– value type– request using a widget called CollectionInputWidget.
This allows us to use different widgets when the value type is an Int or Choice

field for example. Optionally, a second proxy–widget is used to convert the field–
value type– request pair to a field– vocabulary– request pair, as it is the case
when the value type is a choice field.

• MultiSelectWidget: Creates a select element with the multiple attribute
set to true. This creates a multi-selection box. This is especially useful for
vocabularies with many terms. Note that if your vocabulary supports a query
interface, you can even filter your selectable items using queries.

58
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

• MultiCheckBoxWidget: Similar to the multi-selection widget, this widget allows
multi-value selections of a given list, but uses checkboxes instead of a list. This
widget is more useful for smaller vocabularies.

• TupleSequenceWidget: This widget is used for all cases where the value type
is not a Choice field. It used the widget of the value type field to add new
values to the tuple. Other input elements are used to remove items.

• ListSequenceWidget: This widget is equivalent to the previous one, except
that it generates lists instead of tuples.

Miscellaneous Widgets

• FileWidget: This widget displays a file input element and makes sure the
received data is a file. This field is ideal for quickly uploading byte streams as
required for the Bytes field.

• ObjectWidget: The ObjectWidget is the view for an object field. It uses the
schema of the object to construct an input form. The object factory, which is
passed in as a constructor argument, is used to build the object from the input
afterwards.

Here is a simple interactive example demonstrating the rendering and conversion
functionality of a widget:

1 >>> �
��� � zope.publisher.browser
�
� � ���� TestRequest

2 >>> �
��� � zope.schema
�
�������
 Int

3 >>> �
��� � zope.app.form.browser
�
� � ���� IntWidget

4 >>> field = Int(__name__=’number’, title=u’Number’, min=0, max=10)

5 >>> request = TestRequest(form={’field.number’: u’9’})

6 >>> widget = IntWidget(field, request)

7 >>> widget.hasInput()

8 True

9 >>> widget.getInputValue()

10 9

11 >>> ���
�
�� widget().replace(’ ’, ’\n ’)

12 <input

13
�
�����
� ="textType"

14 id="field.number"

15 name="field.number"

16 size="10"

17 type="text"

18 value="9"

19

20 />

. Line 1 & 5: For views, including widgets, we always need a request object. The
TestRequest class is the quick and easy way to create a request without much
hassle. For each presentation type there exists a TestRequest class. The class

CHAPTER 8 ZOPE SCHEMAS AND WIDGETS (FORMS)
8.4. AUTO-GENERATED FORMS USING THE forms PACKAGE

59

takes a form argument, which is a dictionary of values contained in the HTML
form. The widget will later access this information.

. Line 2: Import an integer field.

. Line 3 & 6: Import the widget that displays and converts an integer from the
HTML form. Initializing a widget only requires a field and a request.

. Line 4: Create an integer field with the constraint that the value must lie between
0 and 10. The name argument must be passed here, since the field has not
been initialized inside an interface, where the name would be automatically
assigned.

. Line 7–8: This method checks whether the form contained a value for this widget.

. Line 9–10: If so, then we can use the getInputValue() method to return the
converted and validated value (an integer in this case). If we would have chosen
an integer outside this range, a WidgetInputError would have been raised.

. Line 11–20: Display the HTML representation of the widget. The replace() call
is only for better readability of the output.

Note that you usually will not have to deal with these methods at all manually,
since the form generator and data converter does all the work for you. The only
method you will commonly overwrite is validate(), which you will use to validate
custom values. This brings us right into the next subject, customizing widgets.

There are two ways of customizing widgets. For small adjustments to some pa-
rameters (properties of the widget), one can use the browser:widget subdirective of
the browser:addform and browser:editform directives. For example, to change
the widget for a field called “name”, the following ZCML code can be used.

1 <browser:addform

2 ... >

3

4 <browser:widget

5 field="name"

6 class="zope.app.form.browser.TextWidget"

7 displayWidth="45"

8 style="width: 100%"/>

9

10 </browser:addform>

In this case we force the system to use the TextWidget for the name, set the
display width to 45 characters and add a style attribute that should try to set the
width of the input box to the available width.

The second possibility to change the widget of a field is to write a custom view
class. In there, custom widgets are easily realized using the CustomWidget wrapper
class. Here is a brief example:

60
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

1 ������� zope.app.form.widget
�
��� ���� CustomWidget

2 ������� zope.app.form.browser
�
�������� TextWidget

3

4
�
������� CustomTextWidget(TextWidget):

5 ...

6

7
�
������� SomeView:

8 name_widget = CustomWidget(CustomTextWidget)

. Line 1: Since CustomWidget is presentation type independent, it is defined in
zope.app.form.widget.

. Line 4–5: You simply extend an existing widget. Here you can overwrite every-
thing, including the validate() method.

. Line 7–8: You can hook in the custom widget by adding an attribute called
name widget, where name is the name of the field. The value of the attribute
is a CustomWidget instance. CustomWidget has only one required constructor
argument, which is the custom widget for the field. Other keyword arguments can
be specified as well, which will be set as attributes on the widget.

More information about schemas can be found in the README.txt file of the zope.

schema package. The Zope 3 development Web site also contains some additional
material.

This concludes our introduction to schemas and forms. For examples of schemas
and forms in practice, see the first chapters of the “Content Components – The
Basics” part.

CHAPTER 9

INTRODUCTION TO THE ZOPE

CONFIGURATION MARKUP LANGUAGE

(ZCML)

Difficulty

Newcomer

Skills

• Be familiar with the previous chapters of this section, specifically the introduc-
tion to the component architecture.

• Some basic familiarity with XML is of advantage. Optional.

Problem/Task

Developing components alone does not make a framework. There must be some
configuration utility that tells the system how the components work together to create
the application server framework. This is done using the Zope Configuration Markup
Language (ZCML) for all filesystem-based code. Therefore it is very important that a
developer knows how to use ZCML to hook up his/her components to the framework.

Solution

As stated above, it became necessary to develop a method to setup and configure
the components that make up the application server. While it might seem other-
wise, it is not that easy to develop an effective configuration system, since there are

61

62
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

several requirements that must be satisfied. Over time the following high-level re-
quirements developed that caused revisions of the implementation and coding styles
to be created:

1. While the developer is certainly the one that writes the initial cut of the con-
figuration, this user is not the real target audience. Once the product is writ-
ten, you would expect a system administrator to interact much more frequently
with the configuration, adding and removing functionality or adjust the config-
uration of the server setup. System administrators are often not developers, so
that it would be unfortunate to write the configuration in the programming lan-
guage, here Python. But an administrator is familiar with configuration scripts,
shell code and XML to some extend. Therefore an easy to read syntax that is
similar to other configuration files is of advantage.

2. Since the configuration is not written in Python, it is very important that the
tight integration with Python is given. For example, it must be very simple
to refer to the components in the Python modules and to internationalize any
human-readable strings.

3. The configuration mechanism should be declarative and not provide any facil-
ities for logical operations. If the configuration would support logic, it would
become very hard to read and the initial state of the entire system would be
unclear. This is another reason Python was not suited for this task.

4. Developing new components sometimes requires to extend the configuration
mechanism. So it must be easy for the developer to extend the configuration
mechanism without much hassle.

To satisfy the first requirement, we decided to use an XML-based language (as
the name already suggests). The advantage of XML is also that it is a “standard
format”, which increases the likelihood for people to be able to read it right away.
Furthermore, we can use standard Python modules to parse the format and XML
namespaces help us to group the configuration by functionality.

A single configuration step is called a directive . Each directive is an XML tag,
and therefore the tags are grouped by namespaces. Directives are done either by
simple or complex directives. Complex directives can contain other sub-directives.
They are usually used to provide a set of common properties, but do not generate
an action immediately.

A typical configuration file would be:

1 <configure

2 xmlns="http://namespaces.zope.org/zope">

3

4 <adapter

CHAPTER 9 INTRODUCTION TO ZCML
63

5 factory="product.FromIXToIY"

6 for="product.interfaces.IX"

7 provides="product.interfaces.IY" />

8

9 </configure>

All configuration files are wrapped by the configure tag, which represents the
beginning of the configuration. In the opening of this tag, we always list the names-
paces we wish to use in this configuration file. Here we only want to use the generic
Zope 3 namespace, which is used as the default. Then we register an adapter with
the system on line 4–7. The interfaces and classes are referred to by a proper Python
dotted name. The configure tag might also contain an i18n domain attribute
that contains the domain that is used for all the translatable strings in the configu-
ration.

As everywhere in Zope 3, there are several naming and coding conventions
for ZCML inside a package. By default you should name the configuration file
configure.zcml. Inside the file you should only declare namespaces that you are
actually going to use. When writing the directives make sure to logically group di-
rectives together and use comments as necessary. Comments are written using the
common XML syntax: 〈!--...--〉. For more info see Steve’s detailed ZCML Style
Guide at http://dev.zope.org/Zope3/ZCMLStyleGuide for more info.

To satisfy our fourth requirement, it is possible to easily extend ZCML through
itself using the meta namespace . A directive can be completely described by four
components, its name, the namespace it belongs to, the schema and the directive
handler:

1 <meta:directive

2 namespace="http://namespaces.zope.org/zope"

3 name="adapter"

4 schema=".metadirectives.IAdapterDirective"

5 handler=".metaconfigure.adapterDirective" />

These meta-directives are commonly placed in a file called meta.zcml.
The schema of a directive, which commonly lives in a file called metadirectives.

py, is a simple Zope 3 schema whose fields describe the available attributes for
the directive. The configuration system uses the fields to convert and validate the
values of the configuration for use. For example, dotted names are automatically
converted to Python objects. There are several specialized fields specifically for the
configuration machinery:

• PythonIndentifier – This field describes a python identifier, for example a
simple variable name.

• GlobalObject – An object that can be accessed as a module global, such as a
class, function or constant.

64
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

• Tokens – A sequence that can be read from a space-separated string. The
value type of the field describes token type.

• Path – A file path name, which may be input as a relative path. Input paths
are converted to absolute paths and normalized.

• Bool – An extended boolean value. Values may be input (in upper or lower
case) as any of: yes, no, y, n, true, false, t, or f.

• MessageID – Text string that should be translated. Therefore the directive
schema is the only place that needs to deal with internationalization. This
satisfies part of requirement 2 above.

The handler, which commonly lives in a file called metaconfigure.py, is a func-
tion or another callable object that knows what needs to be done with the given in-
formation of the directive. Here is a simple (simplified to the actual code) example:

1 �
	�� adapter(_context, factory, provides, for_, name=’’):

2

3 _context.action(

4 discriminator = (’adapter’, for_, provides, name),

5 callable = provideAdapter,

6 args = (for_, provides, factory, name),

7)

The first argument of the handler is always the context variable, which has a
similar function to self in classes. It provides some common methods necessary
for handling directives. The following arguments are the attributes of the directive
(and their names must match). If an attribute name equals a Python keyword, like
for in the example, then an underscore is appended to the attribute name.

The handler should also not directly execute an action, since the system should
first go through all the configuration and detect possible conflicts and overrides.
Therefore the context object has a method called action that registers an action
to be executed at the end of the configuration process. The first argument is the
discriminator, which uniquely defines a specific directive. The callable is the
function that is executed to provoke the action, the args argument is a list of
arguments that is passed to the callable and the kw contains the callable’s keywords.

As you can see, there is nothing inheritly difficult about ZCML. Still, people
coming to Zope 3 often experience ZCML as the most difficult part to understand.
This often created huge discussions about the format of ZCML. However, I believe
that the problem lies not within ZCML itself, but the task it tries to accomplish.
The components themselves always seem so clean in implementation; and then you
get to the configuration. There you have to register this adapter and that view,
make security assertions, and so on. And this in itself seems overwhelming at first
sight. When I look at a configuration file after a long time I often have this feeling

CHAPTER 9 INTRODUCTION TO ZCML
65

too, but reading directive for directive often helps me to get a quick overview of the
functionality of the package. In fact, the configuration files can help you understand
the processes of the Zope 3 framework without reading the code, since all of the
interesting interactions are defined right there.

Furthermore, ZCML is well documented at many places, including the Zope 3
API documentation tool at http://localhost:8080/++apidoc++/. Here is a short
list of the most important namespaces:

• zope – This is the most generic and fundamental namespace of all, since it
allows you to register all basic components with the component architecture.

• browser – This namespace contains all of the directives that deal with HTML
output, including managing skins and layer, declare new views (pages) and
resources as well as setup auto-generated forms.

• meta – As discussed above, you can use this namespace to extend ZCML’s
available directives.

• xmlrpc – This is the equivalent to browser, except that allows one to specify
methods of components that should be available via XML-RPC.

• i18n – This namespace contains all internationalization- and localization-
specific configuration. Using registerTranslations you can register new
message catalogs with a translation domain.

• help – Using the register directive, you can register new help pages with the
help system. This will give you context-sensitive help for the ZMI screens of
your products.

• mail – Using the directives of this namespace you can setup mailing components
that your application can use to send out E-mails.

66
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

CHAPTER 10

INTRODUCTION TO ZOPE’S I18N AND

L10N SUPPORT

Difficulty

Newcomer

Skills

• Be familiar with the previous chapters of this section, specifically the introduc-
tion to components.

• You should be familiar with common tasks and problems that arise when de-
veloping translatable software.

• Know about the gettext and/or ICU tools. Optional.

Problem/Task

Often it is not acceptable to provide an application in just one language and it
must be possible to provide the software in many languages. But the problem is
not solved there. Besides simple text, one must also handle date/time and number
formats for example, since they are specific to regions and languages as well. This
chapter will give the reader an overview of the utilities that Zope 3 provides to solve
these issues.

Solution

67

68
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

10.1 History

One of the most severe issues of Zope 2 was the lack of multi-language support. This
significantly limited the adoption of Zope outside English-speaking regions. Later
support was partially added through add-on products like Localizer, ZBabel, which
allowed translation of DTML and Python code (and therefore ZPT). However, these
solutions could not overcome the great limitation that Zope 2 is not unicode aware.
Several workarounds to the problem were provided, but they did not provide a solid
solution.

Once the internationalization effort was initiated and the i18n Page Template
namespace was developed for Zope 3, it was backported to Zope 2 and a Placeless
Translation Service product was provided by the community (http://www.zope.

org/Members/efge/TranslationService). 1

When the Zope 3 development was opened to the community, it was realized that
internationalization is one of the most important features, since Zope has a large
market in Latin America, Asia and especially Europe. Therefore, the first public
Zope 3 sprint in January 2002 was dedicated to this subject. Furthermore, Infrae
paid me for two weeks to work on Zope 3’s internationalization and localization
support. Since then I have maintained and updated the internationalization and
localization support for Zope 3.

10.2 Introduction

In the previous section I used the terms internationalization and localization, but
what do they mean? Internationalization, often abbreviated as I18n, is the process
to make a software translatable. This includes preparing and marking strings for
translation, provide utilities to represent data (like dates/times and numbers) in
regional formats and to be able to recognize the region/language setting of the user.
The last section of this chapter will deal in detail on how to internationalize the
various components of your Zope 3 code. Localization, on the other hand, is the
process to translate the software to a particular language/region. For this task, one
needs a tool to extract all translatable strings and another one to aid the translation
process. Localization data for number formatting, currencies, timezones and much
more are luckily already compiled in large volumes of XML-locale files.

There are three goals which the Zope 3 I18n support tries to accomplish:

1. The support will only deal with the translation of software, not content. Inter-
nationalizing and localizing content requires very custom software that imple-
ments very specific workflows.

1Zope 3 uses now Translation Domain Utilities instead of Translation Services.

CHAPTER 10 I18N AND L10N INTRODUCTION

10.2. INTRODUCTION
69

2. Since Zope 3 is a network application server, instead of a simple application,
the I18n solution should be flexible enough to support changing locale settings
among different users. This is appreciably more difficult to implement than the
I18n for an application that runs on a client.

3. It should be very simple and transparent to internationalize 3rd party add-on
products.

In the Open Source world, there are two established solutions for providing I18n
libraries and L10n utilities, GNU Gettext and ICU . The latter was primarily devel-
oped to replace the original Java I18n support. However, Gettext is the defacto stan-
dard for the Free Software world (for example KDE and Gnome), but it has some
major shortcomings. Gettext only does the translation of messages (human readable
strings) okay – not even well. On the other hand, there are many translation tools
that support the gettext format, such as KBabel, a true power tool for translating
message catalogs . Therefore, it is important to support the gettext message cata-
log format, even if it is only through import and export facilities.

ICU, in contrast, is a very extensive and well-developed framework that builds
upon the experience of the Java I18n libraries. ICU provides objects for everything
that you could ever imagine, including locales, object formatting and transliteration
rules. The best of all is that the information of over 220 locales is available in XML
files. These files contain complete translations of all countries and languages, date/-
time formatting/parsing rules for three different formats (follow standard specifica-
tion) – including all month/weekday names/abbreviations, timezone specifications
(city names inclusive) – and number formatting/parsing rules for decimal, scientific,
monetary, percent and per-mille numbers.

The first decision we made concerning I18n was to make all human-readable
text unicode, so that we would not run into the same issues as Zope 2. Only
the publisher would convert the unicode to ASCII (using UTF-8 or other encod-
ings). The discussion and decision of this subject are immortalized in the proposal
at http://dev.zope.org/Zope3/UnicodeForText).

Since the ICU framework is simply too massive to be ported to Python for Zope
3, we decided to adopt the locales support from ICU (using the XML files as data)
and support the gettext message catalogs for translation, simply because the gettext
tools are available as standard libraries in Python. From the XML locale files we
mainly use the date/time and number patterns for formatting and parsing these data
types. Two generic pattern parsing classes have been written respectively and can
be used independently of Zope 3’s I18n framework. On top of these pattern parsing
classes are the formatter and parser class for each corresponding data type. But all
this is hidden behind the Locale object, which makes all of the locale data available
and provides some convenience functions.

70
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

10.3 Locales

The Locale instance for a user is available via the request object, which is always
available from a view. However, one can easily test the functionality of Locale
instances using the interactive Python prompt. Go to the directory ZOPE3/src

and start Python. You can now use the following code to get a locale:

1 >>> �
��� � zope.i18n.locales
�
�������� LocaleProvider

2 >>> provider = LocaleProvider(’./zope/i18n/locales/data’)

3 >>> locale = provider.getLocale(’en’, ’US’)

You can now for example retrieve the currency that is used in the US and get the
symbol and name of the currency:

1 >>> numbers = locale.numbers

2 >>> currency = numbers.currencies[’USD’]

3 >>> currency.symbol

4 u’$’

5 >>> currency.type

6 u’USD’

7 >>> currency.displayName

8 u’US Dollar’

The more interesting tasks are formatting and parsing dates/times. There are
four predefined date/time formatters that you can choose from: “short”, “medium”,
“full”, and “long”. Here we just use “short”:

1 >>> formatter = locale.dates.getFormatter(’dateTime’, length=’short’)

2 >>> formatter.parse(u’1/25/80 4:07 AM’)

3 datetime.datetime(1980, 1, 25, 4, 7)

4 >>> �
��� � datetime
�
�������� datetime

5 >>> dt = datetime(1980, 1, 25, 4, 7, 8)

6 >>> formatter.format(dt)

7 u’1/25/80 4:07 AM’

For numbers you can choose between “decimal”, “percent”, “scientific”, and “cur-
rency”:

1 >>> formatter = locale.numbers.getFormatter(’decimal’)

2 >>> formatter.parse(u’4,345.03’)

3 4345.0299999999997

4 >>> formatter.format(34000.45)

5 u’34,000.45’

10.4 Messages and Message Catalogs

While the object formatting is the more interesting task, the more common one is the
markup and translation of message strings. In order to manage translations better,
message strings are categorized in domains. There is currently only one domain for
all of the Zope core called “zope”. Products, such as ZWiki, would use a different

CHAPTER 10 I18N AND L10N INTRODUCTION

10.5. INTERNATIONALIZING MESSAGE STRINGS
71

domain, such as “zwiki”. Translatable messages are particularly marked in the code
(see the section below) and are translated before their final output.

All message translations for a particular language of one domain are stored in
a message catalog. Therefore we have a message catalog for each language and
domain pair. We differentiate between filesystem (global) and ZODB (local) product
development. Global message catalogs are standard gettext PO files. The PO files
for the “zope” domain are located in ZOPE3/src/zope/app/locales/〈REGION〉/LC
MESSAGES/zope.po, where REGION can be de, en or pt BR.

Local message catalogs, on the other hand, are managed via the ZMI through lo-
cal translation domains. In such a utility you can create new languages, domains and
message strings, search through existing translations and make changes, import/ex-
port external message catalogs (Gettext PO files), and synchronize this translation
domain with another one. Especially the synchronization between translation do-
main utilities is very powerful, since it allows easy translation upgrades between de-
velopment and production environments.

Okay, now we know how to manage translatable strings, but how can we tell
the system which strings are translatable? Translatable strings can occur in ZPT,
DTML, ZCML and Python code. We noticed however, that almost all Python-based
translatable strings occur in views, which led us to the conclusion that message
strings outside views are usually a sign of bad programming and we have only found
a few exceptions (like interface declarations). This leads to a very important rule:

Translations of human readable strings should be done very late in the publication

process, preferrably just before the final output.

In the next section we will go into some more detail on how to markup the code
in each language.

10.5 Internationalizing Message Strings

10.5.1 Python Code

As mentioned before, Zope is not a simple application, and therefore we cannot
translate a text message directly in the Python code (since we do not know the
user’s locale), but must mark them as translatable strings, which are known as
MessageIds. Message Ids are created using Message Id factories. The factory takes
the domain as argument to the constructor:

1 �
����� zope.i18nmessageid
�
� � ���
 MessageIDFactory

2 _ = MessageIDFactory(’demo’)

Note: The (underscore) is a convention used by gettext to mark text as trans-
latable.

Now you can simply mark up translatable strings using the function:

72
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Figure 10.1: This is the main translation screen. It allows you add languages to the domain to
edit. Once a language is created, you need to select it for modification. You can then add new
messages or edit existing ones of the languages you selected. The filter option will help you to filter
the message ids, so that you can find messages faster.

1 title = _(’This is the title of the object.’)

But this is the simple case. What if you want to include some data? Then you
can use:

1 text = _(’You have $x items.’)

2 text.mapping = {’x’: x}

In this case the number is inserted after the translation. This way you can avoid
having a translation for every different value of x.

CHAPTER 10 I18N AND L10N INTRODUCTION

10.5. INTERNATIONALIZING MESSAGE STRINGS
73

Figure 10.2: Using this screen you can import Gettext PO files or export the existing translations
to Gettext PO files.

10.5.2 ZPT (Page Templates)

For Page Templates we developed a special i18n namespace (as mentioned before),
which can be used to translate messages. The namespace is well documented at
http://dev.zope.org/Zope3/ZPTInternationalizationSupport and some exam-
ples can be found at http://dev.zope.org/Zope3/ZPTInternationalizationExamples.

10.5.3 DTML

There is no DTML tag defined for doing translations yet, but we think it will be
very similar to the ZBabel and Localizer version, since they are almost the same.

10.5.4 ZCML

I briefly described ZCML’s way of internationalizing text in the previous chapter. In
the schema of each ZCML directive you can declare translatable attributes simply
by making them MessageId fields. The domain for the message strings is provided
by the i18n domain attribute in the configure tag. Therefore the user only has to
specify this attribute to do the I18n in ZCML.

Once the code is marked up, you must extract these strings from the code and
compile message catalogs. For this task there is a tool called ZOPE3/utilities/

i18nextract.py. Its functionality and options are discussed in “Internationalizing
a Product”.

74
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Figure 10.3: With the Synchronization screen, you can synchronize translations accross remote
domains.

CHAPTER 11

META DATA AND THE DUBLIN CORE

Difficulty

Newcomer

Skills

• It is necessary that you are familiar with the previous chapters of this part,
specifically the introduction to components.

• You should be familiar with the term “meta-data” and what it implies.

• Be knowledgeable about the Dublin Core standard. Optional.

Problem/Task

Any advanced system has the need to specify meta-data for various artifacts of its
system, especially for objects that represent content. For a publishing environment
like Zope 3 it is important to have a standard set of meta-data fields for all content
objects. Already in Zope 2’s CMF, the Dublin Core was used to provide such a set
of fields.

Solution

Even though I expect that you know what the term “meta-data” means, it can be
useful to do a quick review since people use the term in a very broad sense. Data in
general is the information an object inheritly carries. It represents the state and is
necessary to identify the object. Meta-data on the other hand is information about

the object and its content. It is not required for the object to function in itself

75

76
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

(i.e. object methods should not depend on meta-data) but the meta-data might be
important for an object to function inside a larger framework, providing additional
information for identification, cataloging, indexing, integration with other systems,
etc.

One standard set of meta-data is called “Dublin Core” (dublincore.org). The
Dublin Core provides additional information about content-centric objects, such as
the title, description (summary or abstract) and author of the object. As said before,
Dublin Core was very successful in Zope 2’s CMF and Plone.

In the Dublin Core, short DC, all elements are lists, meaning that they can have
multiple values. The DC elements are useful to us, because they cover the very most
common meta-data items, like the creation date, title, and author. This data is
useful in the context of most objects and at least their high-level meaning is easily
understood. But there are some issues with the Dublin Core as well. There is a
temptation for developers to interpret some deep meaning into the DC elements,
since it is such a well-established standard. As Ken Manheimer pointed out, even
the Dublin Core designers succumbed to that temptation, and tried to be a bit too
ambitious, with some of the fields.

A good example here is the contributor element. It is not clear what is meant
by a contributor. Is it an editor, translator, or an additional content author? And
how does this information help me, if I want to find the person who last modified
the object or publication? Therefore it becomes important to specify the meaning
of the various elements (and the items in a particular element) for each specific
implementation, such as Zope 3. All the elements and how they are implemented
are well documented by the interfaces found in ZOPE3/src/zope/app/interfaces/

dublincore.py and in the section below.

The Dublin Core Elements

The following Dublin Core element list was taken from http://dublincore.org/

documents/2003/02/04/dces/. I added and edited some more comments with re-
gard to Zope 3’s implementation.

Title

Label

Title

CHAPTER 11 META DATA AND THE DUBLIN CORE
77

Definition

A human-readable name given to the resource.1

Comment

In the Zope 3, the name of a resource is a unique string within its container (it used
to be called “id” in Zope 2). However, names of objects are often not presented to
the end user. The title is used to represent an object instead.

Creator

Label

Creator

Definition

An entity primarily responsible for making the content of the resource.

Comment

A creator in Zope is a special example of a principal, which can take a lot of forms,
but it will typically be a user of the application. Zope 3 stores the user id in this
field.

Subject

Label

Subject and Keywords

Definition

A topic of the content of the resource.

Comment

Typically, Subject will be expressed as keywords, key phrases or classification codes
that describe a topic of the resource. Recommended best practice is to select a value
from a controlled vocabulary or formal classification scheme. Note that this is ideal
for cataloging.

1Resource is the generic term for an object in the Dublin Core language and has nothing to do with Zope 3’s
concept of a resource, which is a presentation component that does not require a context. You should read “content
component” instead of resource for all occurrences of the term in this chapter.

78
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Description

Label

Description

Definition

An account of the content of the resource.

Comment

Examples of Description include, but is not limited to: an abstract, table of con-
tents, reference to a graphical representation of content or a free-text account of the
content. In Zope 3 we usually use the description to give some more details about
the semantics of the object/resource, so that the user gains a better understanding
about its purpose.

Publisher

Label

Publisher

Definition

An entity responsible for making the resource available

Comment

It is unlikely that this entity will be used heavily in Zope 3, but it might be useful
for workflows of News sites and other publishing applications. The Publisher is the
name/id of a principal.

Contributor

Label

Contributor

Definition

An entity responsible for making contributions to the content of the resource.

CHAPTER 11 META DATA AND THE DUBLIN CORE
79

Comment

Examples of Contributor include a person, an organization, or a service. Typically,
the name of a Contributor should be used to indicate the entity. As mentioned
before, this term is incredibly vague and needs some additional policy; Zope 3 has
not made up such a policy yet. The Contributor is the name/id of a principal.

Date

Label

Date

Definition

A date of an event in the lifecycle of the resource.

Comment

Typically, Date will be associated with the creation or availability of the resource.
Recommended best practice for encoding the date value is defined in a profile of ISO
8601 [W3CDTF] and includes (among others) dates of the form YYYY-MM-DD.
Note, that often time matters to us as well; of course, instead of saving text we store
Python datetime objects. Also note that the definition is very vague and needs some
more policy to be useful.

Type

Label

Resource Type

Definition

The nature or genre of the content of the resource.

Comment

Type includes terms describing general categories, functions, genres, or aggregation
levels for content. Recommended best practice is to select a value from a controlled
vocabulary (for example, the DCMI Type Vocabulary [DCT1]). To describe the
physical or digital manifestation of the resource, use the “Format” element. For
content objects the resource type is clearly the “Content Type”. For other objects it

80
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

might be simply the registered component name. However, Zope 3 is not using this
element yet.

Format

Label

Format

Definition

The physical or digital manifestation of the resource.

Comment

Typically, Format may include the media-type or dimensions of the resource. For-
mat may be used to identify the software, hardware, or other equipment needed to
display or operate the resource. Examples of dimensions include size and duration.
Recommended best practice is to select a value from a controlled vocabulary (for ex-
ample, the list of Internet Media Types [MIME] defining computer media formats).
We have not used this element so far, even though I think we could use some of the
existing framework for this.

Identifier

Label

Resource Identifier

Definition

An unambiguous reference to the resource within a given context.

Comment

Recommended best practice is to identify the resource by means of a string or number
conforming to a formal identification system. Formal identification systems include
but are not limited to the Uniform Resource Identifier (URI) (including the Uniform
Resource Locator (URL)), the Digital Object Identifier (DOI) and the International
Standard Book Number (ISBN). In Zope 3’s case this could be either the object’s
path or unique id (as assigned by some utility.

CHAPTER 11 META DATA AND THE DUBLIN CORE
81

Source

Label

Source

Definition

A Reference to a resource from which the present resource is derived.

Comment

The present resource may be derived from the Source resource in whole or in part.
Recommended best practice is to identify the referenced resource by means of a
string or number conforming to a formal identification system. I do not see how this
is generically useful to Zope components, though I think is could be applicable in
specific applications written in Zope.

Language

Label

Language

Definition

A language of the intellectual content of the resource.

Comment

Recommended best practice is to use RFC 3066 [RFC3066] which, in conjunction
with ISO639 [ISO639]), defines two- and three primary language tags with optional
subtags. Examples include “en” or “eng” for English, “akk” for Akkadian, and “en-
GB” for English used in the United Kingdom. Note that we have a system in place
to describe locales; see the introduction to internationalization and localization.

Relation

Label

Relation

Definition

A reference to a related resource.

82
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Comment

Recommended best practice is to identify the referenced resource by means of a string
or number conforming to a formal identification system. Another vague element,
since it does not specify what sort of relation is meant; it could be “containment”
for example, in which case the parent object would be a good candidate. However,
more policy is required to make the field useful to Zope.

Coverage

Label

Coverage

Definition

The extent or scope of the content of the resource.

Comment

Typically, Coverage will include spatial location (a place name or geographic coordi-
nates), temporal period (a period label, date, or date range) or jurisdiction (such as
a named administrative entity). Recommended best practice is to select a value from
a controlled vocabulary (for example, the Thesaurus of Geographic Names [TGN])
and to use, where appropriate, named places or time periods in preference to nu-
meric identifiers such as sets of coordinates or date ranges. This seems not to be
useful to Zope generically.

Rights

Label

Rights Management

Definition

Information about rights held in and over the resource.

Comment

Typically, Rights will contain a rights management statement for the resource, or
reference a service providing such information. Rights information often encompasses
Intellectual Property Rights (IPR), Copyright, and various Property Rights. If the

CHAPTER 11 META DATA AND THE DUBLIN CORE
83

Rights element is absent, no assumptions may be made about any rights held in or
over the resource. Zope 3 could use this element to show its security settings on
this object, in other words who has read and modification access to the resource.
It makes little sense to use this element to generically define a copyright or license
entry. Again, specific applications might have a better use for this element.

84
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

CHAPTER 12

PORTING APPLICATIONS FROM ZOPE

2 TO ZOPE 3

Difficulty

Sprinter

Skills

• You should have some understandings of Zope 3 and know how to develop
filesystem-based products for it. If necessary read part C and D of this book
first.

• You should know how to develop Zope 2 products.

• It is usefull to know the the ZWiki for Zope 2 product and its purpose.

• Be familiar with the Zope 2 implementation of ZWiki. Optional.

Problem/Task

Porting applications from an older to a new version of a framework is always
tricky, espsecially if new version is a total rewrite and based on a totally different
software model. But Zope 3 is not only a complete rewrite of Zope 2, but also a
complete shift in philosophy and development style.

There are two methods to approach porting an application. The first one is to
completely redesign the existing Zope 2 application in light of the Zope 3 framework.
The second method uses various compatibility layers and conversions scripts to allow
the existing code to run under Zope 3.

85

86
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Solution

12.1 Porting an Application by Redesign

The great advantage of redesigning and reimplementing an application is that one
can make use of all the new tools and gadgets available under the new framework.
In the case of Zope 3, this tends to make the new implementation much cleaner and
to consist of less code. The disadvantage here is that this solution will take a lot
of time, since usually all the logic must be written from scratch. However, the GUI
templates are usually less affected and will be reusable.

This section is based on my experience with porting the core functionality of the
ZWiki product for Zope 2 to Zope 3 for which I had some help from Simon Michael,
the original author of ZWiki. It turns out that this section also serves well as a
comparison between the development models of Zope 2 and 3.

Just as a review: What are Wikis? Wikis are easily editable Web pages that
are linked through keywords. If a word in a Wiki page is identical to the name of
another Wiki page, then a so-called Wiki link is inserted at this position making a
connection to the other Wiki page. If a mixed-case term is found in a Wiki Page
(like “Zope3Book”), then a question mark is placed behind it. If you click it you
are able to create a new Wiki Page with the name “Zope3Book”. Every user of the
Wiki can usually update and add new content and Wiki pages. These properties
make Wikis a great tool for interactive and networked technical documentation and
communication.

In the Zope 2 implementation, most of the ZWiki functionality is in a gigantic
121 kB file called ZWikiPage.py, including core and advanced functionality, Zope
2 presentation logic as well as documentation. It was almost impossible for me to
understand what’s going on and the entire code did not seem very Pythonic. For
example, all possible source to ouput converters (STX to HTML, Plain Text to
HTML, STX with DTML to HTML, etc.) were hardcoded into this one massive
class and new converters could only be added through monkey patching. The code
was so massive, that I had to ask Simon to find the core functionality code for
me. However, I do not think that the messy code is his fault though; it is a classic
example of the break down of the of the Zope 2 development model. Since Zope
2 encourages development of extensions through inheritance, old applications often
consist of massive classes that eventually become unmanagable.

But where do we start with the refactoring? The first task is to (re)identify the
core functionality of the object you try to port. For the ZWikiPage class the main
purpose is to store the source of the page and maybe the type of the source, i.e.
Plain Text, STX, reST or whatever. Note that the object itself has no knowledge

CHAPTER 12 PORTING APPLICATIONS

12.2. PORTING USING COMPATIBILITY LAYERS AND SCRIPTS
87

whatsoever about how to convert from the various source types to HTML for exam-
ple, since these converters are presentation specific. The new implementation of the
WikiPage object is now only 26 lines long! All additional, non-core features will be
added through adapters and views later.

Okay, we have a nice compact content object, but now we have to add some
presentation logic. Since we used schemas to define the attributes of the WikiPage

object, we can create add and edit screens purely using ZCML directives, which
means no further Python or ZPT code. The tricky part to get the converters right.
I decided to have an ISource interface, which would serve as a base for all possible
source types (Plain Text, STX, ReST, etc.) and an ISourceRenderer, which would
serve as a base to render a particular source type to a particular presentation type
(i.e. Browser, XUL, . . .). That means that renderers are simply views of ISource

objects. To ease the implementation of new source renderers for other developers,
new ZCML directives were developed to hide the low-level management of source
types and renderers. The renderer code was later placed in a seperate package (
zope.app.renderer), since it is useful for many other applications as well. See the
interfaces in zope.app.renderer.interfaces for details.

The result was very nice. With some abstraction and new configuration code I was
able to make the content object to be totally agnostic of the rendering mechanism.
Furthermore, it is easy to add new third party source types and renderers without
altering or monkey patching the original product. Add-on features, such as a page
hierarchy and E-mail notification support have been implemented using adapters and
annotations. See the chapters in the two Content Components parts for more details
on how to develop a product from scratch and extending it without touching the
original code.

The Zope 3 Wiki implementation is part of the Zope 3 core and can be found at
ZOPE3/src/zwiki.

12.2 Porting using compatibility layers and scripts

The advantage of using conversion scripts and compatibility layers is that porting
an application should be fast and easy. However, while this saves a lot of initial
development time, such a solution will not facilitate the usage of the new features of
the framework and one might keep a lot of unnecessary code around.

There are currently no compatibility layers and scripts available for porting Zope
2 applications to Zope 3. The current plan is that they will be written after Zope
X3.0 is out of the door.

A final alternative for porting applications is to use Zope 2 and 3 at the same
time and convert features slowly as you can. The “Five” project, initiated by Martijn

88
Zope 3 Developer’s Book

PART II THE TEN-THOUSAND FOOT VIEW

Faassen, in a Zope 2 product that makes Zope 3 available under Zope 2 and allows
one to use ZCML to configure Zope 2. See http://codespeak.net/z3/five.html

for the project’s homepage.

PART III
Content Components – The Basics

This section deals with the creation of content objects and basic functionality
around them. In order to make the chapters flow better, they will be all guided by
the creation of a simple message board application.

Chapter 13: Writing a new Content Object

This chapter will describe how to implement a new simple content component/object.

Chapter 14: Adding Views

This chapter will demonstrate various methods to create Browser-specific views for a component.

Chapter 15: Custom Schema Fields and Form Widgets

This chapter basically tells you how to implement your own field and corresponding widget. It
will then be demonstrated how this field and widget can be used in a content object.

Chapter 16: Securing Components

Zope 3 comes with an incredible security system; but the best system is only as good as the end
developer using it. This chapter will give some hands-on tips and tricks on how to make your code
secure.

Chapter 17: Changing Size Information

There exists a small interface for content objects that will allow them to display and compare
their size. This is a short chapter explaining this feature.

Chapter 18: Internationalizing a Package

This chapter will give step by step instructions on how to internationalize the application we
developed in the previous chapters and how to create a German translation for it.

CHAPTER 13

WRITING A NEW CONTENT OBJECT

Difficulty

Newcomer

Skills

• The developer should be familiar with Python and some object-oriented con-
cepts. Component-based programming concepts are a plus.

• Some understanding of the schema and interface packages. Optional.

Problem/Task

Of course it is essential for any serious Zope 3 developer to know how to implement
new content objects. Using the example of a message board, this chapter will outline
the main steps required to implement and register a new content component in Zope
3.

Solution

This chapter is the beginning of the development of MessageBoard content type
and everything that is to it. It serves very well as the first hands-on task, since it will
not assume anything other than that you have Zope 3 installed, know some Python
and are willing to invest some time in learning the framework.

91

92
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

13.1 Step I: Preparation

Before you start, you should have installed Zope 3, created a principal.zcml file
and have successfully started Zope. You have already done that? Okay, then let’s
start.

Other than in Zope 2, Zope 3 does not require you to place add-on packages in
a special directory and you are free to choose where to put it. The most convenient
place is inside ZOPE3/src (ZOPE3 is your Zope 3 directory root), since it does not
require us to mess with the PYTHONPATH. To clearly signalize that this application
is demo from the book, we place all of the code in a package called book. To create
that package, add a directory using

mkdir ZOPE3/src/book

on Unix.
To make this directory a package, place an empty init .py file in the new

directory. In Unix you can do something like

echo "# Make it a Python package" >> ZOPE3/src/book/__init__.py

but you can of course also just use a text editor and save a file of this name. Just
make sure that there is valid Python code in the file. The file should at least contain
some whitespace, since empty files confuse some archive programs.

Now we create another package inside book called messageboard, in a similar
manner (do not forget to create the init .py file). From now on we are only
going to work inside this messageboard package, which should be located at ZOPE3/

src/book/messageboard.
Note: While the source code, that you can download for every step at http://

svn.zope.org/book/trunk/messageboard, contains a license header, we omit these
throughout the book to save typing and space. However, the copyright as stated in
the source files still applies.

13.2 Step II: The Initial Design

As stated above, our goal is to develop a fully functional, though not great-looking,
Web-based message board application. The root object will be the MessageBoard,
which can contain postings or Message objects from various users. Since we want to
allow people to respond to various messages, we need to allow messages to contain
replies, which are in turn just other Message objects.

That means we have two container-based components: The MessageBoard con-
tains only messages and can be added to any Folder or container that wishes to be

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.3. WRITING THE INTERFACES
93

able to contain it. To make the message board more interesting, it also has a de-
scription, which briefly introduces the subject/theme of the discussions hosted. Mes-
sages, on the other hand should be only contained by message boards and other mes-
sages. They will each have a title and a body.

This setup should contain all the essential things that we need to make the object
usable. Later on we will associate a lot of other meta-data with these components
to integrate them even better into Zope 3 and add additional functionality.

13.3 Step III: Writing the interfaces

The very first step of the coding process is always to define your interfaces, which
represent your external API. You should be aware that software that is built on top
of your packages expect the interfaces to behave exactly the way you specify them.
This is often less of an issue for attributes and arguments of a method, but often
enough developers forget to specify what the expected return value of a method or
function is or which exceptions it can raise or catch.

Interfaces are commonly stored in an interfaces module or package. Since
our package is not that big, we are going to use a file-based module; therefore start
editing a file called interfaces.py in your favorite editor.

In this initial step of our application, we are only interested in defining one inter-
face for the message board itself and one for a single message, which are listed below
(add these to the file interfaces.py):

1 �
����� zope.interface
�
��� ���� Interface

2 �
����� zope.schema
�
� � ���� Text, TextLine, Field

3

4 �
����� zope.app.container.constraints
�
��� ���� ContainerTypesConstraint

5 �
����� zope.app.container.constraints
�
��� ���� ItemTypePrecondition

6 �
����� zope.app.container.interfaces
�
��� ���� IContained, IContainer

7 �
����� zope.app.file.interfaces
�
�������
 IFile

8

9

10
��������� IMessage(Interface):

11 """A message object. It can contain its own responses."""

12

13 ��	�� __setitem__(name, object):

14 """Add a IMessage object."""

15

16 title = TextLine(

17 title=u"Title/Subject",

18 description=u"Title and/or subject of the message.",

19 default=u"",

20 required=True)

21

22 body = Text(

23 title=u"Message Body",

24 description=u"This is the actual message. Type whatever you wish.",

25 default=u"",

94
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

26 required=False)

27

28

29
�
������� IMessageBoard(IContainer):

30 """The message board is the base object for our package. It can only

31 contain IMessage objects."""

32

33 ��	�� __setitem__(name, object):

34 """Add a IMessage object."""

35

36 __setitem__.precondition = ItemTypePrecondition(IMessage)

37

38 description = Text(

39 title=u"Description",

40 description=u"A detailed description of the content of the board.",

41 default=u"",

42 required=False)

43

44

45
�
������� IMessageContained(IContained):

46 """Interface that specifies the type of objects that can contain

47 messages."""

48 __parent__ = Field(

49 constraint = ContainerTypesConstraint(IMessageBoard, IMessage))

50

51

52
�
������� IMessageContainer(IContainer):

53 """We also want to make the message object a container that can contain

54 responses (other messages) and attachments (files and images)."""

55

56 ��	�� __setitem__(name, object):

57 """Add a IMessage object."""

58

59 __setitem__.precondition = ItemTypePrecondition(IMessage, IFile)

. Line 1: Import the base Interface class. Any object that has this meta-class in its
inheritance path is an interface and not a regular class.

. Line 2: The attributes and properties of an object are described by fields. Fields
hold the meta-data about an attribute and are used, among other things, to vali-
date values and create auto-generated input forms. Most fields are defined in the
zope.schema package. For more details and a complete list of fields see “Zope
Schemas and Widgets (Forms)”.

. Line 4: ContainerTypesConstraint conditions allow us to tell the system to
which type of containers an object can be added. For example, a message only
wants to be contained by the message board and another message (when it is a
reply to the parent message). See below how it is used.

. Line 5: The ItemTypePrecondition is the opposite of the container types con-
straint in that it specifies the object types that can be contained by a container.
See below for its usage.

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.3. WRITING THE INTERFACES
95

. Line 6: Objects providing the IContained interface can be included in the Zope
object tree. We also import IContainer here, which is used as a base interface
in Line 29 and 52. IContainer defines all necessary methods for this object to
be recognized as a container by Zope 3.

Note that we do not need to inherit Interface directly, since IContainer already
inherits it, which automatically makes IMessageBoard also an interface.

. Line 10: You might have already noticed the “I” in front of all the interfaces,
which simply stands for “Interface” as you might have guessed already. It is a
convention in Zope, so that we do not confuse interfaces and classes, since these
two different object types cannot be used in the same way.

In general messages simply are objects that have a title and a body. Nothing more.
We later declare more semantics through additional interfaces and meta-data.

. Line 16–20: A simple title/subject headline for the message. Note that we made
this a TextLine instead of a Text field, so that no newline characters can be
inserted. This way the title will be relatively short and will be perfect for the title
display where desired.

. Line 22–26: The body is the actual message content. Note that we made no
restriction to its size, which you might want to do, in case you are afraid of spam
filling your message board.

. Line 33–36: We do not want to allow any content type to be added to a message
board. In fact, we just want to be able to add IMessage objects. Therefore we de-
clare a precondition on the setitem () method of the message board interface.
Simply list all allowed interfaces as arguments of the ItemTypePrecondition con-
structor.

Note: Even though IContainer already defined setitem (), we have to de-
clare it here again, so that it is in the scope of the interface and specific to the
IMessageBoard; otherwise all IContainer objects will have this precondition.

. Line 38–42: Declare a property on the interface that will contain the description
of the message board. It is a typical Text field with the usual options (see “Zope
Schemas and Widgets (Forms)” for details). One note though: Notice that we
always use unicode strings for human-readable text – this is a required convention
throughout Zope 3. One of the major focus points of Zope 3 is internationalization
and unicode strings are the first requirement to support multi-lingual applications.

. Line 45–49: This interface describes via field constraint which other content types
can contain a message. Clearly message boards can contain messages, but also
messages can contain other messages – known as responses. We usually specify

96
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

this constraint on the parent on the main content type interface (i.e. IMessage)
directly, but since this constraint refers explicitely to IMessage we have to wait
till the interface is defined.

. Line 52–59: We also want the message to be container, so it can contain responses
and attachments. However, we do not want any object to be able to be added to
messages, so we add a precondition as we did for the IMessageBoard interface.
Again, we have to do this in a separate interface here, since we reference IMessage

in the condition.

13.4 Step IV: Writing Unit tests

There are two ways unit tests can be written in Zope 3. The first one is through
special TestCase classes using the unittest package, which was modeled after
JUnit. The second technique is writing tests inside doc strings, which are commonly
known as doc tests.

Late in the development of Zope 3 doc tests became the standard way of writing
tests. For philosophical and technical differences between the two approaches, see the
section on “Writing Tests”, especially the “Writing Basic Unit Tests” and “Doctests:
Example-driven Unit Tests” chapters.

Common unit tests, however, are of advantage when it is desirable to reuse ab-
stract tests, as it is the case for various container tests. Therefore, we will use unit
tests for the container tests and doc tests for everything else.

First, create a package called tests inside the messageboard package. Note that
calling the test module tests (file-based test modules would be called tests.py)
is a convention throughout Zope 3 and will allow the automated test runner to pick
up the tests.

Next, start to edit a file called test messageboard.py and insert:

1

�
�������
 unittest

2 ������� zope.testing.doctestunit
�
� � ���
 DocTestSuite

3

4 ������� zope.app.container.tests.test_icontainer
�
�������
 TestSampleContainer

5

6 ������� book.messageboard.messageboard
�
�������� MessageBoard

7

8

9
�
������� Test(TestSampleContainer):

10

11 ��	�� makeTestObject(� 	 � �):
12 ��	������� MessageBoard()

13

14 �
	�� test_suite():

15 ��	������� unittest.TestSuite((

16 DocTestSuite(’book.messageboard.messageboard’),

17 unittest.makeSuite(Test),

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.4. WRITING UNIT TESTS
97

18))

19

20

�
� __name__ == ’__main__’:

21 unittest.main(defaultTest=’test_suite’)

A lot of cool stuff just happened here. You just got your first 12 unit tests. Let’s
have a closer look:

. Line 1: The unittest module comes with stock Python and is used to create the
test suite.

. Line 2: Zope provides a specialized DocTestSuite that integrates doc tests into
the common unittest framework and allows the doc tests to be run via the test
runner.

. Line 4: There are some basic tests for containers, so we should import them.
Freebie tests are always good.

. Line 9–13: Define the Container tests. We only have to provide an instance of the
container we would like to be tested as the return value of the makeTestObject()

method.

. Line 15–19: The test suite() method collects all the defined test cases and
compiles them into one test suite. This method must always be named that way,
so that the test runner picks up the suite.

Besides the container test, we also already register the doc tests.

. Line 21–23: We also want to allow any test module to be executable by itself.
Here we just tell the test runner to execute all tests of the test suite returned by
test suite(). These lines are common boilerplate for any test module in Zope 3.

Now it is time to do the second test module for the IMessage component. To
start, we simply copied the test messageboard.py to test message.py and mod-
ified the new file to become:

1

�
�������� unittest

2 �
����� zope.testing.doctestunit
�
�������
 DocTestSuite

3

4 �
����� zope.app.container.tests.test_icontainer
�
�������� TestSampleContainer

5

6 �
����� book.messageboard.message
�
�������
 Message

7

8

9
��������� Test(TestSampleContainer):

10

11 ��	�� makeTestObject(� 	 � �):
12 �
	������� Message()

13

14 ��	�� test_suite():

98
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

15 ��	������� unittest.TestSuite((

16 DocTestSuite(’book.messageboard.message’),

17 unittest.makeSuite(Test),

18))

19

20

�
� __name__ == ’__main__’:

21 unittest.main(defaultTest=’test_suite’)

There is not really any difference between the two testing modules, so that I am
not going to point out the same facts again.

Note that none of the tests deal with implementation details yet, simply because
we do not know what the implementation details will be. These test could be used by
other packages, just as we used the SampleContainer base tests, since these tests
only depend on the API. In general, however, tests should cover implementation-
specific behavior.

13.5 Step V: Implementing Content Components

Now we are finally ready to implement the content components of the package. This
is the heart of this chapter. But how do we know which methods and properties we
have to implement? There is a neat tool called pyskel.py in ZOPE3/utiltities

that generates a skeleton. Go to ZOPE3/src and type:

python2.3 ../utilities/pyskel.py \

book.messageboard.interfaces.IMessageBoard

The expected result is shown below. The tool inspects the given interface and
creates the skeleton of an implementing class. It also recurses into all base interfaces
to get their methods. Here the generated code:

1 ������� zope.interface
�
�������� implements

2 ������� book.messageboard.interfaces
�
��� ���� IMessageBoard

3

4
�
������� MessageBoard:

5 __doc__ = IMessageBoard.__doc__

6

7 implements(IMessageBoard)

8

9

10 ��	�� __setitem__(� 	 � � , name, object):

11 "See book.messageboard.interfaces.IMessageBoard"

12

13 # See book.messageboard.interfaces.IMessageBoard

14 description = None

15

16 ��	�� __getitem__(� 	 � � , key):

17 "See zope.interface.common.mapping.IItemMapping"

18

19 ��	�� get(� 	 � � , key, default=None):

20 "See zope.interface.common.mapping.IReadMapping"

21

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.5. IMPLEMENTING CONTENT COMPONENTS
99

22 ��	�� __contains__(� 	 � � , key):

23 "See zope.interface.common.mapping.IReadMapping"

24

25 ��	�� __getitem__(� 	 � � , key):

26 "See zope.interface.common.mapping.IItemMapping"

27

28 ��	�� keys(� 	 � �):
29 "See zope.interface.common.mapping.IEnumerableMapping"

30

31 ��	�� __iter__(� 	 � �):
32 "See zope.interface.common.mapping.IEnumerableMapping"

33

34 ��	�� values(� 	 � �):
35 "See zope.interface.common.mapping.IEnumerableMapping"

36

37 ��	�� items(� 	 � �):
38 "See zope.interface.common.mapping.IEnumerableMapping"

39

40 ��	�� __len__(� 	 � �):
41 "See zope.interface.common.mapping.IEnumerableMapping"

42

43 ��	�� get(� 	 � � , key, default=None):

44 "See zope.interface.common.mapping.IReadMapping"

45

46 ��	�� __contains__(� 	 � � , key):

47 "See zope.interface.common.mapping.IReadMapping"

48

49 ��	�� __getitem__(� 	 � � , key):

50 "See zope.interface.common.mapping.IItemMapping"

51

52 ��	�� __setitem__(� 	 � � , name, object):

53 "See zope.app.container.interfaces.IWriteContainer"

54

55 ��	�� __delitem__(� 	 � � , name):

56 "See zope.app.container.interfaces.IWriteContainer"

This result is good but some parts are unnecessary; we will for example simply
inherit the BTreeContainer base component, so that we do not have to imple-
ment the methods from the IReadMapping, IEnumerableMapping, IReadMapping,
IItemMapping and IWriteContainer interfaces.

Open a new file called messageboard.py for editing. The implementation of the
message board including doc tests looks like this:

1 �
����� zope.interface
�
��� ���� implements

2 �
����� zope.app.container.btree
�
�������
 BTreeContainer

3

4 �
����� book.messageboard.interfaces
�
� � ���� IMessageBoard

5

6
��������� MessageBoard(BTreeContainer):

7 """A very simple implementation of a message board using B-Tree Containers

8

9 Make sure that the ‘‘MessageBoard‘‘ implements the ‘‘IMessageBoard‘‘

10 interface:

11

12 >>> from zope.interface.verify import verifyClass

13 >>> verifyClass(IMessageBoard, MessageBoard)

100
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

14 True

15

16 Here is an example of changing the description of the board:

17

18 >>> board = MessageBoard()

19 >>> board.description

20 u’’

21 >>> board.description = u’Message Board Description’

22 >>> board.description

23 u’Message Board Description’

24 """

25 implements(IMessageBoard)

26

27 # See book.messageboard.interfaces.IMessageBoard

28 description = u’’

. Line 1: The implements() method is used to declare that a class implements one
or more interfaces. See “An Introduction to Interfaces” for more details.

. Line 2: Everything that has to do with containers is located in zope.app.

container. BTreeContainers are a very efficient implementation of the
IContainer interface and are commonly used as base classes for other container-
ish objects, such as the message board.

. Line 7–24: The class docstring’s purpose is to document the class. To follow
Python documentation standards, all docstrings should be using the re-structured
text format. And doc tests are considered documentation, so it should be written
in a narrative style.

On line 12–14 we verify that the MessageBoard component really implements
IMessageBoard. The verifyClass function actually checks the object for the
existence of the specified attributes and methods.

Lines 18 through 23 just give a demonstration about the default description

value and how it can be set. The test seems trivial, but at some point you might
change the implementation of the description attribute to using properties and
the test should still pass.

. Line 25: Here we tell the class that it implements IMessage. This function call
might seem like magic, since one might wonder how the function knows as to which
class to assign the interface. For the ones interested, it uses sys.getframe().

. Line 27–28: Make the description a simple attribute.

Note: Python is very unique in this way. In almost any other object-oriented lan-
guage (for example Java) one would have written an accessor (getDescription())
and a mutator (setDescription(desc)) method. However, Python’s attribute
and property support makes this unnecessary, which in turn makes the code
cleaner.

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.6. RUNNING UNIT TESTS AGAINST IMPLEMENTATION
101

The next task is to write the Message object, which is pretty much the same code.
Therefore we will not list it here and refer you to the code at http://svn.zope.org/

book/trunk/messageboard/step01/message.py. The only difference is that in this
case the Message component must implement IMessage, IMessageContained, and
IMessageContainer.

13.6 Step VI: Running Unit Tests against Implementation

After having finished the implementation, we need to make sure that all the tests
pass. There is a script called test.py that will run all or only specified tests for
you. To run the test against your implementation, execute the following line from
the Zope 3 root directory:

python2.3 test.py -vpu --dir src/book/messageboard

The -v option cases the currently running test to be displayed, the -p allows us
to see the progress of the tests being run and -u tells the test runner to just run
the unit tests. For a list of all available options run the script with the -h (help)
option.

You should see 26 tests pass. The output at the of the test run should look like
this:

Configuration file found.

Running UNIT tests at level 1

Running UNIT tests from /opt/zope/Zope3/Zope3-Cookbook

26/26 (100.0%): test_values (....messageboard.tests.test_messageboard.Test)

--

Ran 26 tests in 0.346s

OK

It is very likely that some tests are failing or the test suite does not even run due
to syntax errors. This is totally normal and exactly the reason we write tests in the
first place. In these cases keep fixing the problems until all tests are passing.

13.7 Step VII: Registering the Content Components

Now that we have developed our components, it is necessary to tell Zope 3 how to
interact with them. This is commonly done using Zope’s own configuration language
called ZCML. The configuration is stored in a file called configure.zcml by con-
vention. Start to edit this file and add the following ZCML code:

1 <configure

2 xmlns="http://namespaces.zope.org/zope">

3

4 <interface

102
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

5 interface=".interfaces.IMessageBoard"

6 type="zope.app.content.interfaces.IContentType"

7 />

8

9 <content class=".messageboard.MessageBoard">

10 <implements

11 interface="zope.app.annotation.interfaces.IAttributeAnnotatable"

12 />

13 <implements

14 interface="zope.app.container.interfaces.IContentContainer"

15 />

16 <factory

17 id="book.messageboard.MessageBoard"

18 description="Message Board"

19 />

20 <require

21 permission="zope.ManageContent"

22 interface=".interfaces.IMessageBoard"

23 />

24 <require

25 permission="zope.ManageContent"

26 set_schema=".interfaces.IMessageBoard"

27 />

28 </content>

29

30 <interface

31 interface=".interfaces.IMessage"

32 type="zope.app.content.interfaces.IContentType"

33 />

34

35 <content class=".message.Message">

36 <implements

37 interface="zope.app.annotation.interfaces.IAttributeAnnotatable"

38 />

39 <implements

40 interface="zope.app.container.interfaces.IContentContainer"

41 />

42 <require

43 permission="zope.ManageContent"

44 interface=".interfaces.IMessage"

45 />

46 <require

47 permission="zope.ManageContent"

48 interface=".interfaces.IMessageContainer"

49 />

50 <require

51 permission="zope.ManageContent"

52 set_schema=".interfaces.IMessage"

53 />

54 </content>

55

56 </configure>

. Line 1–2, 65: As the file extension promises, configuration is done using XML. All
configuration in a ZCML file must be surrounded by the configure element. At
the beginning of the configure element, we list all the ZCML namespaces that

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.7. REGISTERING THE CONTENT COMPONENTS
103

we are going use and define the default one. In this case we only need the generic
zope namespace. You will get to know many more namespaces as we develop new
functionality in the following chapters.

. Line 4–7: It is sometimes necessary to categorize interfaces. One type of category
is to specify which interface provides a content type for Zope 3. The zope:

interface directive is used to assign these types on interfaces. Another way to
think about it is that interfaces are just components, and components can provide
other interfaces.

. Line 9–28: The zope:content directive registers the MessageBoard class as a
content component. The element always has only one attribute, class, that
points to the component’s class using a dotted Python path.

• Line 10–12: In order for the object to have a creation and modification date
as well as other meta-data (for example the Dublin Core), we need to tell
the system that this object can have annotations associated with itself. This
is not necessarily required, but is a good habit. See the chapter on “Using
Annotations to Store Meta-Data” for details.

Annotations store add-on data which is also commonly known as meta-data,
since it is data that is not necessary for the correct functioning of the object
itself. However, meta-data allows an object to be better integrated in the
system. Annotations are heavily used in Zope 3.

In general, the zope:implements sub-directive allows you to assert new imple-
mented interfaces on a class. It is totally equivalent to classImplements(Class,

ISomeInterface) in Python. So why would we want to declare interfaces in
ZCML instead of Python? For one, it clutters the Python code and distracts
from the actual functionality of the component. Also, when dealing with 3rd
party Python packages, we do not want to touch this code, but still be able to
make assertions about objects, so that they can be used inside Zope 3 with-
out modification.

Note that usually only “marker interfaces”, interfaces that have no methods
and/or properties, are declared via ZCML, since no additional Python code
for the implementation of the interface is required.

• Line 13–15: The IContentContainer interface is another example of a marker
interface. All that it declares is that this container contains ordinary content
in content space, which is clearly the case for our message board.

• Line 16–19: The zope:factory sub-directive allows us to register a factory
named book.messageboard.MessageBoard for the MessageBoard compo-
nent.

104
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

Every factory needs an id (first directive argument) through which the factory
can be accessed and executed. However, you are not required to specify an id;
if you don’t, the literal string value of the zope:content’s class attribute
is used, which would be .messageboard.MessageBoard in this case.

The zope:factory directive also supports two human-readable information
strings, title and description, that can be used for user interfaces.

• Line 20–27: In Zope 3 we differentiate between trusted and untrusted envi-
ronments. Trusted environments have no security or can easily circumvent se-
curity. And example is file-based Python code, which is always trusted. The
opposite is true for untrusted environments; here security should apply every-
where and should not be avoidable. All Web and FTP transactions are con-
sidered untrusted.

Of course, we want to use our message board via the Web, since it is the default
user interface of Zope 3. To make it usable, we have to declare the minimal
security assertions for the properties and methods of our component. Security
assertions are done using the zope:require and zope:allow directive.

The require directive usually starts out with specifying a permission. Then
we have to decide what we want to protect with this declaration. Here are
your choices:

1. The attributes attribute allows us to specify attributes and methods
(note that methods are just callable attributes) that can be accessed if the
user has the specified permission.

2. set attributes allows you to specify individual attributes that can be
modified or mutated. Note that you should not list any methods here,
since otherwise someone could override a method inserting malicious code.

3. If you specify one or more interfaces using the interface attribute, the
directive will automatically extract all declared methods and properties of
the interfaces and grant access rights to them.

4. When you specify a set of schemas using the set schema attribute, then
all the defined properties in it are granted modification rights. Methods
listed in the schema will be ignored.

Note: In ZCML tokens of a list are separated by simple whitespace and not
by comma, as you might have expected.

A somewhat different option to the above choices is the like class attribute,
which must be specified without any permission. If used, it simply transfers
all the security assertions from the specified class to the class specified in the
zope:content directive that encloses the security assertions. In our case this
is our MessageBoard component. The usage of the directive looks like this:

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.8. CONFIGURE SOME BASIC VIEWS
105

1 <require like_class=".message.Message" />

Here the MessageBoard would simply “inherit” the security assertions made
for the Message component.

The second security directive, zope:allow, either takes a set of attributes

or interfaces. All attributes specified will be publicly available for everyone
to access. This is equivalent to requiring someone to have the zope.Public

permission, which every principal accessing the system automatically pos-
sesses.

So now it is easy to decipher the meaning of our two security assertions. We
basically gave read and write access to the IMessageBoard interface (which
includes all IContainer methods and the description attribute), if the
user has the zope.ManageContent permission.

. Line 30–54: This is the same as above for the Message content component.

13.8 Step VIII: Configure some Basic Views

Even though the content components are registered now, nothing interesting will
happen, because there exists only a programmatic way of adding and editing the
new components. Thus we are going to define some very basic browser views to
make the content components accessible via the browser-based user interface.

First create a package called browser (do not forget the init .py file) inside
the messageboard package. Add a new configuration file, configure.zcml, inside
browser and insert the following content:

1 <configure

2 xmlns="http://namespaces.zope.org/browser">

3

4 <addform

5 label="Add Message Board"

6 name="AddMessageBoard.html"

7 schema="book.messageboard.interfaces.IMessageBoard"

8 content_factory="book.messageboard.messageboard.MessageBoard"

9 fields="description"

10 permission="zope.ManageContent"

11 />

12

13 <addMenuItem

14 class="book.messageboard.messageboard.MessageBoard"

15 title="Message Board"

16 description="A Message Board"

17 permission="zope.ManageContent"

18 view="AddMessageBoard.html"

19 />

20

21 <editform

106
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

22 schema="book.messageboard.interfaces.IMessageBoard"

23 for="book.messageboard.interfaces.IMessageBoard"

24 label="Change Message Board"

25 name="edit.html"

26 permission="zope.ManageContent"

27 menu="zmi_views" title="Edit"

28 />

29

30 <containerViews

31 for="book.messageboard.interfaces.IMessageBoard"

32 index="zope.View"

33 contents="zope.View"

34 add="zope.ManageContent"

35 />

36

37 <addform

38 label="Add Message"

39 name="AddMessage.html"

40 schema="book.messageboard.interfaces.IMessage"

41 content_factory="book.messageboard.message.Message"

42 fields="title body"

43 permission="zope.ManageContent"

44 />

45

46 <addMenuItem

47 class="book.messageboard.message.Message"

48 title="Message"

49 description="A Message"

50 permission="zope.ManageContent"

51 view="AddMessage.html"

52 />

53

54 <editform

55 schema="book.messageboard.interfaces.IMessage"

56 for="book.messageboard.interfaces.IMessage"

57 label="Change Message"

58 fields="title body"

59 name="edit.html"

60 permission="zope.ManageContent"

61 menu="zmi_views" title="Edit"

62 />

63

64 <containerViews

65 for="book.messageboard.interfaces.IMessage"

66 index="zope.View"

67 contents="zope.View"

68 add="zope.ManageContent"

69 />

70

71 </configure>

. Line 2: In this configuration file we do not use the zope, but the browser

namespace, since we want to configure browser-specific functionality. Also note
that browser is the default namespace, so that our directives do not need the
namespace prefix.

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.8. CONFIGURE SOME BASIC VIEWS
107

Namespaces for ZCML start commonly with http://namespaces.zope.org/ fol-
lowed by the short name of the namespace, which is commonly used in this book
to refer to namespaces.

. Line 4-11: Register an auto-generated “Add” form for the Message Board.

• Line 5: The label is a small text that is shown on top of the screen.

• Line 6: The name of the view. The name is the string that is actually part of
the URL.

• Line 7: This defines the schema that will be used to generate the form. The
fields of the schema will be used to provide all the necessary meta data to
create meaningful form elements.

• Line 8: The content factory is the class/factory used to create the new content
component.

• Line 9: The fields are a list of field names that are displayed in the form. This
allows you to create forms for a subset of fields in the schema and to change
the order of the fields in the form.

• Line 10: Specifies the permission required to be able to create and add the
new content component.

. Line 13–19: After creating a view for adding the message board, we now have
to register it with the add menu, which is done with the browser:addMenuItem

directive. The title is used to display the item in the menu. The important
attribute is the view, which must match the name of the add form.

. Line 21–28: Declaring an edit form is very similar to defining an add form and
several of the options/attributes are the same. The main difference is that we do
not need to specify a content factory, since the content component already exists.

The for attribute specifies the interface for which type of component the edit
form is for. All view directives (except the browser:addform) require the for

attribute. If you would like to register a view for a specific implementation, you
can also specify the class in the for attribute.

We also commonly specify the menu for edit views directly in the directive using
the menu and title attribute as seen on line 27. The zmi views menu is the
menu that creates the tabs on the default Web UI. It contains all views that are
specific to the object.

. Line 30–35: The message board is a container and a quick way to register all nec-
essary container-specific views is to use the browser:containerViews directive.
Note though that this directive is not very flexible and you should later replace it
by writing regular views.

108
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

. Line 37–69: These are exactly the same directives over again, this time just for
the IMessage interface.

In order for the system to know about the view configuration, we need to refer-
ence the configuration file in messageboard/configure.zcml. To include the view
configuration, add the following line:

1 <include package=".browser" />

13.9 Step IX: Registering the Message Board with Zope

At this stage we have a complete package. However, other than in Zope 2, you have
to register a new package explicitly. That means you have to hook up the components
to Zope 3. This is done by creating a new file in ZOPE3/package-includes called
messageboard-configure.zcml. The name of the file is not arbitrary and must be
of the form *-configure.zcml. The file should just contain one directive:

1 <include package="book.messageboard" />

When Zope 3 boots, it will walk through each file of this directory and execute
the ZCML directives inside each file. Usually the files just point to the configuration
of a package.

13.10 Step X: Testing the Content Component

Congratulations! You have just finished your first little Zope 3 application, which
is quiet a bit more than what would minimally be required as you will see in a
moment. It is time now to harvest the fruits of your hard work. Start your Zope
3 server now, best using makerun from the Zope 3 root. If you get complains
about the Python version being used, edit the Makefile and enter the correct path
to Python’s executable. Other errors that might occur are due to typos or mis-
configurations. The ZCML interpreter will give you the line and column number of
the failing directive in Emacs-friendly format. Try to start Zope 3 again and again
until you have fixed all the errors and Zope 3 starts up ending with this output:

2003-12-12T23:14:58 INFO PublisherHTTPServer zope.server.http (HTTP) started.

Hostname: localhost

Port: 8080

2003-12-12T23:14:58 INFO PublisherFTPServer zope.server.ftp started.

Hostname: localhost

Port: 8021

2003-12-12T23:14:58 INFO root Startup time: 11.259 sec real, 5.150 sec CPU

CHAPTER 13 WRITING A NEW CONTENT OBJECT

13.10. TESTING THE CONTENT COMPONENT
109

Note that you also get some internationalization warnings, which you can safely
ignore for now.

Once the server is up and running, go to your favorite browser and display the
following URL:
http://localhost:8080/@@contents.html

At this point an authentication box should pop up and ask you for your username
and password – users are listed in the principals.zcml. If you have not added
any special user, use “gandalf” as the login name and “123” as password. After the
authentication is complete you should be taken to the Zope 3 Web user interface.
Under Add: you can now see a new entry “Message Board”.

Feel free to add and edit a message board object.
Once you created a message board, you can click on it and enter it. You will

now notice that you are only allowed to add “Message” objects here. The choice is
limited due to the conditions we specified in the interfaces. The default view will be
the “Edit” form that allows you to change the description of the board. The second
view is the “Contents” with which you can manage the messages of the message
board.

Add a “Message” now. Once you added a message, it will appear in the “Contents”
view. You can now click on the message. This will allow you to modify the data
about the message and add new messages (replies) to it. With the code we wrote so
far, you are now able to create a complete message board tree and access it via the
Web UI.

Note that you still might get errors, in which case you need to fix them. Most often
you have security problems, which narrows the range of possible issues tremendously.
Unfortunately, NotFoundError is usually converted to ForbiddenAttributeError,
so be careful, if you see this problem.

Another common trap is that standard error screens do not show the trace-
back. However, for these situations the Debug skin comes in handy – instead
of http://localhost:8080/@@contents.html use http://localhost:8080/++

skin++Debug/@@contents.html and the traceback will be shown.
Note: If you make data-structural changes in your package, it might become

necessary to delete old instances of the objects/components. Sometimes even this
is not enough, so that you have to either delete the parent Folder or best delete
the Data.fs (ZODB) file. There are ways to upgrade gracefully to new versions of
objects, but during development the listed methods are simpler and faster.

The code is available in the Zope SVN under http://svn.zope.org/book/

trunk/messageboard/step01.

110
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

CHAPTER 14

ADDING VIEWS

Difficulty

Newcomer

Skills

• Knowledge gained in the “Writing a new Content Object” chapter.

• Some understanding of the presentation components. Optional.

Problem/Task

Now that we have two fully-functional content objects, we have to make the
functionality available to the user, since there are currently only three very simple
views: add, edit and contents. In this chapter we will create a nice message details
screen as well as a threaded sub-branch view for both messages and the message
board.

Solution

This chapter revolves completely around browser-based view components for the
MessageBoard and Message classes. Views, which will be mainly discussed here, are
secondary adapters. They adapt IRequest and some context object to some output
interface (often just zope.interface.Interface).

There are several ways to write a view. Some of the dominant ones include:

1. We already learned about using the browser:addform, browser:editform and
browser:containerViews directive. These directives are high-level directives

111

112
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

and hide a lot of the details about creating and registering appropriate view
components.

Forms can be easily configured via ZCML, as you have done in the previous
chapter. Forms are incredibly flexible and allow you any degree of customization.

2. There is a browser:page and a browser:pages directive, which are the most
common directives for creating browser views and groups of views easily. We
will use these two directives for our new views.

3. The zope:view directive is very low-level and provides functionality for regis-
tering multi-views, which the other directives are not capable of doing. How-
ever, for the average application developer the need to use this directive might
never arise.

14.1 Step I: Message Details View

Let’s now start with the creation of the two new browser views, which is the goal of
this chapter. While we are able to edit a message already, we currently have no view
for simply viewing the message, which is important, since not many people will have
access to the edit screen.

The view displaying the details of a message should contain the following data of
the message: the title, the author, the creation date/time, the parent title (with a
link to the message), and the body.

Writing a view usually consists of writing a page template, some supporting
Python view class and some ZCML to insert the view into the system. We are
going to start by creating the page template.

14.1.1 (a) Create Page Template

Create a file called details.pt in the browser package of messageboard and fill
it with the following content:

1 <html metal:use-macro="views/standard_macros/view">

2 <body>

3 <div metal:fill-slot="body">

4

5 <h1>Message Details</h1>

6

7 <div class="row">

8 <div class="label">Title</div>

9 <div class="field" tal:content="context/title" />

10 </div>

11

12 <div class="row">

CHAPTER 14 ADDING VIEWS

14.1. MESSAGE DETAILS VIEW
113

13 <div class="label">Author</div>

14 <div class="field" tal:content="view/author"/>

15 </div>

16

17 <div class="row">

18 <div class="label">Date/Time</div>

19 <div class="field" tal:content="view/modified"/>

20 </div>

21

22 <div class="row">

23 <div class="label">Parent</div>

24 <div class="field" tal:define="info view/parent_info">

25 <a href="../details.html"

26 tal:condition="info"

27 tal:content="info/title" />

28 </div>

29 </div>

30

31 <div class="row">

32 <div class="label">Body</div>

33 <div class="field" tal:content="context/body"/>

34 </div>

35

36 </div>

37 </body>

38 </html>

. Line 1–3 & 36–38: This is some standard boilerplate for a Zope page template that
will embed the displayed data inside the common Zope 3 UI. This will ensure that
all of the pages have a consistent look and feel to them and it allows the developer
to concentrate on the functional parts of the view.

. Line 9: The title can be directly retrieved from the content object (the Message

instance), which is available as context.

. Line 14 & 19: The author and the modification date/time are not directly available,
since they are part of the object’s meta data (Dublin Core). Therefore we need
to make them available via the Python-based view class, which is provided to the
template under the name view. A Python-based view class’ sole purpose is to
retrieve and prepare data to be in a displayable format.

. Line 24–27: While we probably could get to the parent via a relatively simple
TALES path expression, it is custom in Zope 3 to make this the responsibility of
the view class, so that the template contains as little logic as possible. In the next
step you will see how this information is collected.

14.1.2 (b) Create the Python-based View class

From part (a) we know that we need the following methods (or attributes/properties)
in our view class: author(), modified(), and parent info(). First, create a

114
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

new file called message.py in the browser package. Note that we will place all
browser-related Python code for IMessage in this module.

Here is the listing of my implementation:
1 ������� zope.app

�
� � ���
 zapi

2 ������� zope.app.dublincore.interfaces
�
�������� ICMFDublinCore

3

4 ������� book.messageboard.interfaces
�
��� ���� IMessage

5

6

7
�
������� MessageDetails:

8

9 ��	�� author(� 	 � �):
10 """Get user who last modified the Message."""

11 creators = ICMFDublinCore(� 	 � � .context).creators
12

�
� � �� creators:

13 �
	������� ’unknown’

14 ��	������� creators[0]

15

16 ��	�� modified(� 	 � �):
17 """Get last modification date."""

18 date = ICMFDublinCore(� 	 � � .context).modified
19

�
� date

� � None:

20 date = ICMFDublinCore(� 	 � � .context).created
21

�
� date

� � None:

22 �
	������� ’’

23 ��	������� date.strftime(’%d/%m/%Y %H:%M:%S’)

24

25 ��	�� parent_info(� 	 � �):
26 """Get the parent of the message"""

27 parent = zapi.getParent(� 	 � � .context)
28

�
� � �� IMessage.providedBy(parent):

29 �
	������� None

30 ��	������� {’name’: zapi.name(parent), ’title’: parent.title}

. Line 1: Many of the fundamental utilties that you need, are available via the zapi

module. The zapi module provides all crucial component architecture methods,
such as getParent(). All the core servicenames are also available. Furthermore
you can access traversal utilities as well. See ZOPE3/src/zope/app/interfaces/

zapi.py for a complete list of available methods via the zapi module.

. Line 2: The ICMFDublinCore interface is used to store the Dublin Core meta
data. Using this interface we can get to the desired information.

. Line 7: Note that the view class has no base class or specifies any implementing
interface. The reason for this is that the ZCML directive will take care of this
later on, by adding the BrowserView class as a base class of the view.

In some parts of Zope 3 you might still see the view class to inherit from
BrowserView.

. Line 12–16: The code tries to get a list of creators (which I refer to as authors)
from the Dublin Core meta data. If no creator is found, return the string

CHAPTER 14 ADDING VIEWS

14.1. MESSAGE DETAILS VIEW
115

“unknown”, otherwise the first creator in the list should be returned, which is
the owner or the original author of the object. Note that we should usually have
only one entry, since Messages are not edited (as of this stage of development).

. Line 20–28: Finding the modification date is a bit more tricky, since during the
creation only the created field is populated and not the modified field. Therefore
we try first to grab the modified field and if this fails we get the created field.
If the created date/time does not exist, we return an empty string.

Finally, if a date object was found, then we convert it to a string and return it.

. Line 30–33: Getting the parent is easy, just use the getParent() method. But
then we need to make sure that the parent is also an IMessage object; if it is not,
then we have a root message, and we return None. The name and the title of
the parent are stored in an information dictionary, so that the data can be easily
retrieved in a page template.

14.1.3 (c) Registering the View

The final task is to register the new view using ZCML. Open the configuration file
in the browser sub-package and add the following lines:

1 <page

2 name="details.html"

3 for="book.messageboard.interfaces.IMessage"

4 class=".message.MessageDetails"

5 template="details.pt"

6 permission="zope.Public"

7 menu="zmi_views" title="Preview"/>

. Line 1: The browser:page directive registers a single page view.

. Line 2: The name attribute specifies the name as which the view will be accessible
in the URL:
http://localhost:8080/board/message1/@@details.html

The name attribute is required.

. Line 3: The for attribute tells the system that this view is for IMessage objects.
If this attribute is not specified, the view will be registered for Interface, which
means for all objects.

. Line 4–5: Use the just created MessageDetails class and details.pt page
template for the view; for this page details.pt will be rendered and uses an
instance of MessageDetails as its view.

Note that not all views need a supporting view class; therefore the class attribute
is optional.

116
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

While you will usually specify a page template for regular pages, there are situa-
tions, where you would prefer a view on an attribute of the Python view class. In
these cases you can specify the attribute attribute instead of template. The
specified attribute/method should return a unicode string that is used as the final
output.

. Line 6: The permission attribute specifies the permission that is required to see
this page. At this stage we want to open up the details pages to any user of the
site, so we assign the zope.Public permission, which is special, since every user,
whether authenticated or not, has this permission.

. Line 7: In order to save ourselves from a separate menu entry directive, we can use
the menu and title attribute to tell the system under which menu the page will
be available. In this case, make it a tab (zmi views menu) which will be called
“Preview”.

All you need to do now is to restart Zope, add a Message content object (if you
have not done so yet) and click on it. The “Preview” tab should be available now.
Note that you will have no “Parent” entry, since the message is not inside another
one.

To see a “Parent” entry, add another message inside the current message by using
the “Contents” view. Once you added the new message, click on it and go to the
Details view. You should now see a “Parent” entry with a link back to the parent
message.

14.1.4 (d) Testing the View

Before moving to the next item on the list, we should develop some functional tests
to ensure that the view works correctly. Functional tests are usually straight forward,
since they resemble the steps a user would take with the UI. The only possibly tricky
part is to get all the form variables set correctly.

To run the functional tests the entire Zope 3 system is brought up, so that all
side-effects and behavoir of an object inside its natural environment can be tested.
Oftentimes very simple tests will suffice to determine bugs in the UI and also in
ZCML, since all of it will be executed during the functional test startup.

The following functional tests will ensure that messages can be properly added
and that the all the message details information are displayed in the “Preview”. By
convention all functional tests are stored in a sub-module called ftests. Since we
plan to write many of these tests, let’s make this module a package by creating the
directory and adding an init .py file.

Now create a file called test message.py and add the following testing code:

CHAPTER 14 ADDING VIEWS

14.1. MESSAGE DETAILS VIEW
117

1

�
�������� unittest

2 �
����� zope.app.tests.functional
�
�������
 BrowserTestCase

3

4
��������� MessageTest(BrowserTestCase):

5

6 ��	�� testAddMessage(� 	 � �):
7 response = � 	 � � .publish(
8 ’/+/AddMessageBoard.html=board’,

9 basic=’mgr:mgrpw’,

10 form={’field.description’: u’Message Board’,

11 ’UPDATE_SUBMIT’: ’Add’})

12
� 	 � � .assertEqual(response.getStatus(), 302)

13
� 	 � � .assertEqual(response.getHeader(’Location’),

14 ’http://localhost/@@contents.html’)

15 response = � 	 � � .publish(
16 ’/board/+/AddMessage.html=msg1’,

17 basic=’mgr:mgrpw’,

18 form={’field.title’: u’Message 1’,

19 ’field.body’: u’Body’,

20 ’UPDATE_SUBMIT’: ’Add’})

21
� 	 � � .assertEqual(response.getStatus(), 302)

22
� 	 � � .assertEqual(response.getHeader(’Location’),

23 ’http://localhost/board/@@contents.html’)

24

25 ��	�� testMessageDetails(� 	 � �):
26

� 	 � � .testAddMessage()
27 response = � 	 � � .publish(’/board/msg1/@@details.html’,
28 basic=’mgr:mgrpw’)

29 body = response.getBody()

30
� 	 � � .checkForBrokenLinks(body, ’/board/msg1/@@details.html’,

31 basic=’mgr:mgrpw’)

32

33
� 	 � � .assert_(body.find(’Message Details’) > 0)

34
� 	 � � .assert_(body.find(’Message 1’) > 0)

35
� 	 � � .assert_(body.find(’Body’) > 0)

36

37

38 ��	�� test_suite():

39 ��	������� unittest.TestSuite((

40 unittest.makeSuite(MessageTest),

41))

42

43

�
� __name__ == ’__main__’:

44 unittest.main(defaultTest=’test_suite’)

. Line 2: In order to simplify writing browser-based functional tests, the BrowserTestCase

can be used as a test case base class. The most important convenience methods
are used in the code below.

. Line 6–23: Before we are able to test views on a message, we have to create one.
While it is possible to create a message using a lower-level API, this is a perfect
chance to write tests for the adding views as well.

1. Line 7–11: The publish() method is used to publish a request with the
publisher. The first arguments is the URL (excluding the server and port) to

118
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

be published. Commonly we also include the basic argument, which specifies
the username and password. The system knows only about the user zope.mgr

with username “mgr” and password “mgrpw”. The role zope.Manager has
been granted for this user, so that all possible screens should be availale.

In the form you specify a dictionary of all variables that are submitted via the
HTTP form mechanism. The values of the entries can be already formatted
Python objects and do not have to be just raw unicode strings. Note that
the adding view requires a field named UPDATE SUBMIT for the object to be
added. Otherwise it just thinks this is a form reload.

2. Line 12–14: The adding view always returns a redirect (HTTP code 302). We
can also verify the destination by looking at the “Location” HTTP header.

3. Line 15–23: Here we repeat the same procedure; this time by adding a message
named “msg1” to the message board.

. Line 25–35: After creating the message object (line 26), the details view is simply
requested and the HTML result stored in body (line 27–29).

One of the nice features of the BrowserTestCase is a method called checkForBrokenLinks()

that parses the HTML looking for local URLs and then tries to verify that they
are good links. The second argument of the method is the URL of the page that
generated the body. This is needed to determine the location correctly. We should
also specify the same authentication parameters, as used during the publication
process, since certain links are only available if the user has the permission to ac-
cess the linked page.

In the last the tests (line 33–35) we simply check that some of the expected infor-
mation is somewhere in the HTML, which is usally efficient, since a faulty view
usually causes a failure during the publishing process.

. Line 38–44: As always, we have to have the usual boilerplate.

Now that the tests have been developed, we can run them like the unit tests,
except that for using the -u option (unit tests only), we now specify the -f option
(functional tests only).

python2.3 test.py -vpf --dir src/book/messageboard

Since you already looked at the pages before, all tests should pass easily, unless
you have a typo in your test case. Once the tests pass, feel free to go on to the next
task.

CHAPTER 14 ADDING VIEWS

14.2. SPECIFYING THE DEFAULT VIEW
119

14.2 Step II: Specifying the Default View

If you try to view a message using http://localhost:8080/board/msg1 at this
point, you will get the standard container index.html view. This is rather unde-
sirable, since you default view should really show the contents of the message.

There is a special directive for declaring a default view. All you need to add are
the following lines to your browser package configuration file:

1 <defaultView

2 for="book.messageboard.interfaces.IMessage"

3 name="details.html"/>

. Line 2: Here we tell the system that we are adding a default view for the compo-
nents implementing IMessage.

. Line 3: We make the “Preview” screen the default view. However, you can choose
whatever view you like. Naturally, these views are usually views that display data
instead of asking for input. It is also advisable to make the least restrictive and
most general view the default, so that users with only a few permissions can see
something about the object.

14.3 Step III: Threaded Sub-Tree View

Creating a nice and extensible thread view is difficult, since the problem is recursive
in nature. We would also like to have all HTML generation in Page Templates, since
it allows us to enhance the functionality of the view later; however, Page Templates
do not like recursion.

14.3.1 (a) Main Thread Page Template

So let’s tackle the problem by starting to create the main view template for thread.

html, which we call thread.pt:
1 <html metal:use-macro="views/standard_macros/view">

2 <body>

3 <div metal:fill-slot="body">

4

5 <h1>Discussion Thread</h1>

6

7 <div tal:replace="structure view/subthread" />

8

9 </div>

10 </body>

11 </html>

Almost everything is boiler plate really, but there is enough opportunity here to
add some more functionality later, if we desire to do so.

120
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

. Line 7: Being blind about implementation, we simply assume that the Python-
based view class will have a subthread() that can magically generate the desired
sub-thread for this message or even the message board.

14.3.2 (b) Thread Python View Class

Next we have to build our Python view class. We start by editing a file called
thread.py and insert the following code:

1 ������� zope.app.pagetemplate.viewpagetemplatefile
�
� � ���� ViewPageTemplateFile

2 ������� book.messageboard.interfaces
�
��� ���� IMessage

3

4
�
������� Thread:

5

6 ��	�� __init__(� 	 � � , context, request, base_url=’’):

7
� 	 � � .context = context

8
� 	 � � .request = request

9
� 	 � � .base_url = base_url

10

11 ��	�� listContentInfo(� 	 � �):
12 children = []

13 � ��� name, child
�
� � 	 � � .context.items():

14

�
� IMessage.providedBy(child):

15 info = {}

16 info[’title’] = child.title

17 url = � 	 � � .base_url + name + ’/’

18 info[’url’] = url + ’@@thread.html’

19 thread = Thread(child, � 	 � � .request, url)

20 info[’thread’] = thread.subthread()

21 children.append(info)

22 ��	������� children

23

24 subthread = ViewPageTemplateFile(’subthread.pt’)

. Line 1: The ViewPageTemplateFile class is used to allow page templates to be
attributes/methods of a Python class. Very handy.

. Line 2: Import the IMessage interface, since we need it for object identification
later.

. Line 25: Here is our promised subthread() method, which is simply a page
template that knows how to render the thread. Note: You might want to read
part (c) first, before proceeding.

. Line 12–23: This method provides all the necessary information to the subthread
page template to do its work. For each child it generates an info dictionary. The
interesting elements of the dictionary include the url and the thread values.
The URL is built up in every iteration of the recursive process. We could also use
the zope.app.traversing framework to generate the URL, but I think this is a
much simpler this way.

CHAPTER 14 ADDING VIEWS

14.3. THREADED SUB-TREE VIEW
121

The second interesting component of the info, the thread value, should contain a
string with the HTML describing the subthread. This is were the recursion comes
in. First we create a Thread instance (view) for each child. Then we are asking
the view to return the subthread of the child, which is certainly one level deeper,
which in return creates deeper levels and so on. Therefore the thread value will
contain a threaded HTML representation of the branch.

14.3.3 (c) Sub-Thread Page Template

This template, named subthread.pt as required by the view class, is only respon-
sible of creating an HTML presentation of the nested Message children using the in-
formation provided; therefore the template is very simple (since it contains no logic):

1

2 <li tal:repeat="item view/listContentInfo">

3 <a href=""

4 tal:attributes="href item/url"

5 tal:content="item/title">Message 1

6 <div tal:replace="structure item/thread"/>

7

8

. Line 1 & 8: Unordered lists are always good to create threads or trees.

. Line 2: Thanks to the Thread view class, we simply need to iterate over the
children information.

. Line 3–5: Make sure we show the title of the message and link it to the actual
object.

. Line 6: Insert the subthread for the message.

14.3.4 (d) Register the Thread View

Registering the thread view works like before:

1 <page

2 name="thread.html"

3 for="book.messageboard.interfaces.IMessage"

4 class=".thread.Thread"

5 template="thread.pt"

6 permission="zope.View"

7 menu="zmi_views" title="Thread"/>

You should be familiar with the page directive already, so the above code should
be easy to understand.

You also have to register the same view for IMessageBoard, so that you can get
the full thread of the entire messageboard as well.

122
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

14.3.5 (e) Message Board Default View

Since the message board does not have a default view yet, let’s make the thread view
the default:

1 <defaultView

2 for="book.messageboard.interfaces.IMessageBoard"

3 name="thread.html"/>

This is, of course, very similar to the default view we registered for IMessage

before.

14.4 Step IV: Adding Icons

Now that we have some text-based views, let’s look into registering custom icons for
the message board and message. Icons are also just views on objects, in this case our
content components. However, to make life easier the browser namespace provides
a convenience directive called icon to register icons.

Simply add the following directive for each content type in the browser package
configuration file:

1 <icon

2 name="zmi_icon"

3 for="book.messageboard.interfaces.IMessage"

4 file="message.png" />

The code should be self-explanatory at this point. Instead of a template, we are
specifying a file here as the view, which is expected to be binary image data and not
just ASCII text.

Now you should be all set. Restart Zope 3 and see whether the new features are
working as expected.

The code is available in the Zope SVN under http://svn.zope.org/book/

trunk/messageboard/step02.

CHAPTER 14 ADDING VIEWS

14.4. ADDING ICONS
123

Exercises

1. For the message details screen it might be also useful to display the author of the
parent message. Expand the returned information dictionary of parent info

to include the author of the parent and display it properly using the template.

2. It would be great if there was a Reply, Modify, and Delete link (maybe as
an image) behind each message title and make the actions work. Note that you
should be able to reuse a lot of existing code for this.

124
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

CHAPTER 15

CUSTOM SCHEMA FIELDS AND FORM

WIDGETS

Difficulty

Sprinter

Skills

• Be familiar with the results achieved in the previous two chapters.

• You should be comfortable with presentation components (views) as introduced
in the previous chapter.

Problem/Task

So far we have created fairly respectable content components and some nice views
for them. Let’s now look at the fine print; currently it is possible that anything
can be written into the message fields, including malicious HTML and Javascript.
Therefore it would be useful to develop a special field (and corresponding widget)
that strips out disallowed HTML tags.

Solution

Creating custom fields and widgets is a common task for end-user applications,
since these systems have often very specific requirements. It was a design goal of
the schema/form sub-system to be as customizable as possible, so it should be no
surprise that it is very easy to write your own field and widget.

125

126
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

15.1 Step I: Creating the Field

The goal of the special field should be to verify input based on allowed or forbidden
HTML tags. If the message body contains HTML tags other than the ones allowed
or contains any forbidden tags, then the validation of the value should fail. Note
that only one of the two attributes can be specified at once.

It is often not necessary to write a field from scratch, since Zope 3 ships with a
respectable collection already. These serve commonly also as base classes for custom
fields. For our HTML field the Text field seems to be the most appropriate base,
since it provides most of the functionality for us already.

We will extend the Text field by two new attributes called allowed tags and
forbidden tags. Then we are going to modify the validate() method to reflect
the constraint made by the two new attributes.

15.1.1 (a) Interface

As always, the first step is to define the interface. In the messageboard’s
interfaces module, add the following lines:

1 ������� zope.schema
�
��� ���� Tuple

2 ������� zope.schema.interfaces
�
�������� IText

3

4
�
������� IHTML(IText):

5 """A text field that handles HTML input."""

6

7 allowed_tags = Tuple(

8 title=u"Allowed HTML Tags",

9 description=u"""\

10 Only listed tags can be used in the value of the field.

11 """,

12 required=False)

13

14 forbidden_tags = Tuple(

15 title=u"Forbidden HTML Tags",

16 description=u"""\

17 Listed tags cannot be used in the value of the field.

18 """,

19 required=False)

. Line 1: The Tuple field simply requires a value to be a Python tuple.

. Line 2 & 4: We simple extend the IText interface and schema.

. Line 7–12 & 14–19: Define the two additional attributes using the field Tuple.

CHAPTER 15 CUSTOM SCHEMA FIELDS AND FORM WIDGETS

15.1. CREATING THE FIELD
127

15.1.2 (b) Implementation

As previously mentioned, we will use the Text field as base class, since it provides
most of the functionality we need. The main task of the implementation is to rewrite
the validation method.

Let’s start by editing a file called fields.py in the messageboard package and
inserting the following code:

1

�
�������� re

2

3 �
����� zope.schema
�
� � ���� Text

4 �
����� zope.schema.interfaces
�
��� ���� ValidationError

5

6 forbidden_regex = r’</?(?:%s).*?/?>’

7 allowed_regex = r’</??(?!%s[/>])[a-zA-Z0-9]*? ?(?:[a-z0-9]*?=?".*?")*/??>’

8

9
��������� ForbiddenTags(ValidationError):

10 __doc__ = u"""Forbidden HTML Tags used."""

11

12

13
��������� HTML(Text):

14

15 allowed_tags = ()

16 forbidden_tags = ()

17

18 ��	�� __init__(� 	 � � , allowed_tags=(), forbidden_tags=(), **kw):

19
� 	 � � .allowed_tags = allowed_tags

20
� 	 � � .forbidden_tags = forbidden_tags

21 super(HTML, � 	 � �).__init__(**kw)
22

23 ��	�� _validate(� 	 � � , value):

24 super(HTML, � 	 � �)._validate(value)
25

26

�
� � 	 � � .forbidden_tags:

27 regex = forbidden_regex %’|’.join(� 	 � � .forbidden_tags)
28

�
� re.findall(regex, value):

29 � �
� � 	 ForbiddenTags(value, � 	 � � .forbidden_tags)

30

31

�
� � 	 � � .allowed_tags:

32 regex = allowed_regex %’[/>]|’.join(� 	 � � .allowed_tags)
33

�
� re.findall(regex, value):

34 � �
� � 	 ForbiddenTags(value, � 	 � � .allowed_tags)

. Line 1: Import the Regular Expression module (re); we will use regular expres-
sions to do the validation of the HTML.

. Line 3: Import the Text field that we will use as base class for the HTML field.

. Line 4 & 10–11: The validation method of the new HTML field will be able to
throw a new type of validation error when an illegal HTML tag is found.

Usually errors are defined in the interfaces module, but since it would cause a
recursive import between the interfaces and fields module, we define it here.

128
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

. Line 7–9: These strings define the regular expression templates for detecting for-
bidden or allowed HTML tags, respectively. Note that these regular expressions
are quiet more restrictive than what the HTML 4.01 standard requires, but it is
good enough as demonstration. See exercise 1 at the end of the chapter to see how
it should be done correctly.

. Line 16–19: In the constructor we are extracting the two new arguments and send
the rest to the constructor of the Text field (line 21).

. Line 22: First we delegate validation to the Text field. The validation process
might already fail at this point, so that further validation becomes unnecessary.

. Line 24–27: If forbidden tags were specified, then we try to detect them. If one is
found, a ForbiddenTags error is raised attaching the faulty value and the tuple
of forbidden tags to the exception.

. Line 29–32: Similarly to the previous block, this block checks that all used tags
are in the collection of allowed tags otherwise a ForbiddenTags error is raised.

We have an HTML field, but it does not implement IHTML interface. Why not?
It is due to the fact that it would cause a recursive import once we use the HTML
field in our content objects. To make the interface assertion, add the following lines
to the interfaces.py module:

1 ������� zope.interface
�
�������� classImplements

2 ������� fields
�
�������
 HTML

3 classImplements(HTML, IHTML)

At this point we should have a working field, but let’s write some unit tests to
verify the implementation.

15.1.3 (c) Unit Tests

Since we will use the Text field as a base class, we can also reuse the Text field’s
tests. Other than that, we simply have to test the new validation behavior.

In messageboard/tests add a file test fields.py and add the following base
tests. Note that the code is not complete (abbreviated sections are marked by ...).
You can find it in the source repository though.

1

�
�������
 unittest

2 ������� zope.schema.tests.test_strfield
�
�������
 TextTest

3

4 ������� book.messageboard.fields
�
� � ���
 HTML, ForbiddenTags

5

6
�
������� HTMLTest(TextTest):

7

8 _Field_Factory = HTML

9

CHAPTER 15 CUSTOM SCHEMA FIELDS AND FORM WIDGETS

15.2. CREATING THE WIDGET
129

10 ��	�� test_AllowedTagsHTMLValidate(� 	 � �):
11 html = � 	 � � ._Field_Factory(allowed_tags=(’h1’,’pre’))
12 html.validate(u’<h1>Blah</h1>’)

13 ...

14
� 	 � � .assertRaises(ForbiddenTags, html.validate,

15 u’<h2>Foo</h2>’)

16 ...

17

18 ��	�� test_ForbiddenTagsHTMLValidate(� 	 � �):
19 html = � 	 � � ._Field_Factory(forbidden_tags=(’h2’,’pre’))
20 html.validate(u’<h1>Blah</h1>’)

21 ...

22
� 	 � � .assertRaises(ForbiddenTags, html.validate,

23 u’<h2>Foo</h2>’)

24 ...

25

26 ��	�� test_suite():

27 ��	������� unittest.TestSuite((

28 unittest.makeSuite(HTMLTest),

29))

30

31

�
� __name__ == ’__main__’:

32 unittest.main(defaultTest=’test_suite’)

. Line 2: Since we use the Text field as base class, we can also use it’s test case as
base, getting some freebie tests in return.

. Line 8: However, the TextTest base comes with some rules we have to abide to.
Specifying this Field Factory attribute is required, so that the correct field is
tested.

. Line 10–16: These are tests of the validation method using the allowed tags

attribute. Some text was removed some to conserve space. You can look at the
code for the full test suite.

. Line 18–24: Here we are testing the validation method using the forbidden tags

attribute.

15.2 Step II: Creating the Widget

Widgets are simply views of a field. Therefore we place the widget code in the
browser sub-package.

Our HTMLSourceWidget will use the TextAreaWidget as a base and only the
converter method convert(value) has to be reimplemented, so that it will remove
any undesired tags from the input value (yes, this means that the validation of values
coming through these widgets will always pass.)

130
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

15.2.1 (a) Implementation

Since there is no need to create a new interface, we can start right away with the
implementation. We get started by adding a file called widgets.py and inserting
the following content:

1

�
�������
 re

2 ������� zope.app.form.browser
�
�������� TextAreaWidget

3 ������� book.messageboard.fields
�
� � ���
 forbidden_regex, allowed_regex

4

5
�
������� HTMLSourceWidget(TextAreaWidget):

6

7 �
	�� _toFieldValue(� 	 � � , input):

8 input = super(HTMLSourceWidget, � 	 � �)._toFieldValue(input)
9

10

�
� � 	 � � .context.forbidden_tags:

11 regex = forbidden_regex %’|’.join(

12
� 	 � � .context.forbidden_tags)

13 input = re.sub(regex, ’’, input)

14

15

�
� � 	 � � .context.allowed_tags:

16 regex = allowed_regex %’[/>]|’.join(

17
� 	 � � .context.allowed_tags)

18 input = re.sub(regex, ’’, input)

19

20 �
	������� input

. Line 2: As mentioned above, we are going to use the TextAreaWidget as a base
class.

. Line 3: There is no need to redefine the regular expressions for finding forbidden
and non-allowed tags again, so we use the field’s definitions. This will also avoid
that the widget converter and field validator get out of sync.

. Line 8: We still want to use the original conversion, since it takes care of weird
line endings and some other routine cleanups.

. Line 10–13: If we find a forbidden tag, simply remove it by replacing it with an
empty string. Notice how we get the forbidden tags attribute from the context
(which is the field itself) of the widget.

. Line 15–18: If we find a tag that is not in the allowed tags tuple, then remove it
as well.

Overall, this a very nice and compact way of converting the input value.

15.2.2 (b) Unit Tests

While we usually do not write unit tests for high-level view code, widget code should
be tested, particularly the converter. Open test widgets.py in browser/tests

and insert:

CHAPTER 15 CUSTOM SCHEMA FIELDS AND FORM WIDGETS

15.2. CREATING THE WIDGET
131

1

�
�������� unittest

2 �
����� zope.app.form.browser.tests.test_textareawidget
�
��� ���� TextAreaWidgetTest

3 �
����� book.messageboard.browser.widgets
�
�������
 HTMLSourceWidget

4 �
����� book.messageboard.fields
�
�������
 HTML

5

6
��������� HTMLSourceWidgetTest(TextAreaWidgetTest):

7

8 _FieldFactory = HTML

9 _WidgetFactory = HTMLSourceWidget

10

11

12 ��	�� test_AllowedTagsConvert(� 	 � �):
13 widget = � 	 � � ._widget
14 widget.context.allowed_tags=(’h1’,’pre’)

15
� 	 � � .assertEqual(u’<h1>Blah</h1>’,

16 widget._toFieldValue(u’<h1>Blah</h1>’))

17 ...

18
� 	 � � .assertEqual(u’Blah’,

19 widget._toFieldValue(u’<h2>Blah</h2>’))

20 ...

21

22 ��	�� test_ForbiddenTagsConvert(� 	 � �):
23 widget = � 	 � � ._widget
24 widget.context.forbidden_tags=(’h2’,’pre’)

25

26
� 	 � � .assertEqual(u’<h1>Blah</h1>’,

27 widget._toFieldValue(u’<h1>Blah</h1>’))

28 ...

29
� 	 � � .assertEqual(u’Blah’,

30 widget._toFieldValue(u’<h2>Blah</h2>’))

31 ...

32

33 ��	�� test_suite():

34 ��	������� unittest.TestSuite((

35 unittest.makeSuite(HTMLSourceWidgetTest),

36))

37

38

�
� __name__ == ’__main__’:

39 unittest.main(defaultTest=’test_suite’)

. Line 2: Of course we are reusing the TextAreaWidgetTest to get some freebie
tests.

. Line 8–9: Fulfilling the requirements of the TextAreaWidgetTest, we need to
specify the field and widget we are using, which makes sense, since the widget
must have the field (context) in order to fulfill all its duties.

. Line 12–31: Similar in nature to the field tests, the converter is tested. In this
case however, we compare the output, since it can differ from the input based on
whether forbidden tags were found or not.

132
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

15.3 Step III: Using the HTML Field

Now we have all the pieces we need. All that’s left is to integrate them with the
rest of the package. There are a couple of steps involved. First we register the
HTMLSourceWidget as a widget for the HTML field. Next we need to change the
IMessage interface declaration to use the HTML field.

15.3.1 (a) Registering the Widget

To register the new widget as a view for the HTML field we use the zope namespace
view directive. Therefore you have to add the zope namespace to the configuration
file’s namespace list by adding the following line int he opening configure element:

1 xmlns:zope="http://namespaces.zope.org/zope"

Now add the following directive:

1 <zope:view

2 type="zope.publisher.interfaces.browser.IBrowserRequest"

3 for="book.messageboard.interfaces.IHTML"

4 provides="zope.app.form.interfaces.IInputWidget"

5 factory=".widgets.HTMLSourceWidget"

6 permission="zope.Public"

7 />

. Line 2: Since the zope:view directive can be used for any presentation type (for
example: HTTP, WebDAV and FTP), it is necessary to state that the registered
widget is for browsers (i.e. HTML).

. Line 3: This widget will work for all fields implementing IHTML.

. Line 4: In general presentation component, like adapters, can have a specific output
interface. Usually this interface is just zope.interface.Interface, but here we
specifically want to say that this is a widget that is accepting input for the field.
The other type of widget is the DisplayWidget.

. Line 5: Specifies the factory or class that will be used to generate the widget.

. Line 6: We make this widget publically available, meaning that everyone using the
system can use the widget as well.

15.3.2 (b) Adjusting the IMessage interface

The final step is to use the field in the IMessage interface. Let’s go to the
interfaces module to decide which property is going to become an HTML field.
The field is already imported.

CHAPTER 15 CUSTOM SCHEMA FIELDS AND FORM WIDGETS

15.3. USING THE HTML FIELD
133

Now, we definitely want to make the body property of IMessage an HTML field.
We could also do this for description of IMessageBoard, but let’s not to do that
for reasons of keeping it simple. So here are the changes that need to be done to the
body property declaration (starting at line 24):

1 body = HTML(

2 title=u"Message Body",

3 description=u"This is the actual message. Type whatever!",

4 default=u"",

5 allowed_tags=(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’img’, ’a’,

6 ’br’, ’b’, ’i’, ’u’, ’em’, ’sub’, ’sup’,

7 ’table’, ’tr’, ’td’, ’th’, ’code’, ’pre’,

8 ’center’, ’div’, ’span’, ’p’, ’font’, ’ol’,

9 ’ul’, ’li’, ’q’, ’s’, ’strong’),

10 required=False)

. Line 5–9: Here is our new attribute that was added in the IHTML interface. This
is my choice of valid tags, so feel free to add or remove whatever tags you like.

And that’s it! You are done. To try the result of your work, restart Zope 3, start
editing a new message and see if it will accept tags like html or body. You should
notice that these tags will be silently removed from the message body upon saving
it.

134
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

Exercises

1. Instead of using our own premature HTML cleanup facilities, we really should
make use of Chris Wither’s HTML Strip-o-Gram package which can be found at
http://www.zope.org/Members/chrisw/StripOGram. Implement a version of
the HTML field and HTMLSourceWidget widget using this package.

2. Sometimes it might be nice to also allow HTML for the title of the messages,
therefore you will also need an HTML version for the TextLine field and the
TextWidget. Abstract the current converter and validation implementation, so
that it is usable for both, message title and body.

3. Using only HTML as input can be boring and tedious for some message board
applications. In the zwiki for Zope 3 packge we make use of a system (zope.

app.renderer) that let’s you select the type of input and then knows how
to render each type of input for the browser. Insert this type of system into
the message board application and merge it with the HTML validation and
conversion code.

CHAPTER 16

SECURING COMPONENTS

Difficulty

Sprinter

Skills

• Be Knowledgable about topics covered in the previous chapters of the “Content
Components” section.

• Be familiar with interfaces, ZCML and some of the security concepts, such as
permissions, roles and principals.

Problem/Task

While we had to make basic security assertions in order to get our message board
to work, it does not really represent a secure system at this point. Some end-user
views require the zope.ManageContent permission and there are no granular roles
defined.

Solution

Zope 3 comes with a flexible security mechanism. The two fundamental concepts
are permissions and principals. Permissions are like keys to doors that open to a
particular functionality. For example, we might need the permission zope.View to
look at a message’s detail screen. Principals, on the other hand, are agents of the
system that execute actions. The most common example of a principal is a user of
the system. The goal is now to grant permissions to principals, which is the duty of
another sub-system known as the securitypolicy.

135

136
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

Zope 3 does not enforce any particular security policy. In contrary, it encourages
site administrators to carefully choose the security policy and use one that fits their
needs best. The default Zope 3 distribution comes with a default security policy (
zope.app.securitypolicy) that supports the concept of roles. Roles are like hats
people wear, as Jim Fulton would say, and can be seen as a collection of permissions.
A single user can have several hats, but only wear one at a time. Prominent examples
of roles include “editor” and “administrator”. Therefore, the default security policy
supports mappings from permissions to principals, permissions to roles, and roles to
principals. This chapter will use the default security policy to setup the security, but
will clearly mark the sections that are security policy specific.

The first task will be to define a sensible set of permissions and change the existing
directives to use these new permissions. This is a bit tedious, but it is important that
you do this carefully, since the quality of your security depends on this task. While
doing this, you usually discover that you missed a permission and even a role, so do
not hesitate to add some. That is everything the programmer should ever do. The
site administrator, who uses the default security policy, will then define roles and
grant permissions to them. Finally the roles are granted to some users for testing.

Securing an object does not require any modification to the existing Python code
as you will see going through the chapter, since everything is configured via ZCML.
Therefore security can be completely configured using ZCML, leaving the Python
code untouched, which is another advantage of using Zope 3 (in comparison to Zope
2, for example).

16.1 Step I: Delcarations of Permissions

Other than in Zope 2, permissions have to be explicitly defined. For our message
board it will suffice to define the following four basic permissions:

• View – Allow users to access the data for message boards and messages. Every
regular message board User is going to have this permission.

• Add – Allows someone to create (i.e. post) a message and add it to the message
board or another message. Note that every regular User is allowed to do this,
since posting and replying must be possible.

• Edit – Editing content (after it is created) is only a permission the message
board Editor possesses (for moderation), since we would not want a regular
user to be able to manipulate posts after creation.

• Delete – The Editor must be able to get rid of messages, of course. Therefore
the Delete permission is assigned to her. Note that this permission does not
allow the editor to delete MessageBoard objects from folders or other containers.

CHAPTER 16 SECURING COMPONENTS

16.2. USING THE PERMISSIONS
137

Let’s define the permissions now. Note that they must appear at the very be-
ginning of the configuration file, so that they will de defined by the time the other
directives (that will use the permissions) are executed. Here are the four directives
you should add to your main configure.zcml file:

1 <permission

2 id="book.messageboard.View"

3 title="View Message Board and Messages"

4 description="View the Message Board and all its content."

5 />

6 <permission

7 id="book.messageboard.Add"

8 title="Add Message"

9 description="Add Message."

10 />

11 <permission

12 id="book.messageboard.Edit"

13 title="Edit Messages"

14 description="Edit Messages."

15 />

16 <permission

17 id="book.messageboard.Delete"

18 title="Delete Message"

19 description="Delete Message."

20 />

The zope:permission directive defines and creates a new permission in the
global permission registry. The id should be a unique name for the permission,
so it is a good idea to give the name a dotted prefix, like book.messageboard. in
this case. Note that the id must be a valid URI or a dotted name – if there is
no dot in the dotted version, a ValidationError will be raised. The id is used
as identifier in the following configuration steps. The title of the permissions is
a short description that will be used in GUIs to identify the permission, while the
description is a longer explanation that serves more or less as documentation. Both
the id and title are required attributes.

16.2 Step II: Using the Permissions

Now that we have defined these permissions, we also have to use them; let’s start
with the main message board configuration file (messageboard/configure.zcml).
In the following walk-through we are only going to use the last part of the permission
name to refer to the permission, leaving off book.messageboard. However, the full
id has to be specified for the configuration to execute.

• Change the first require statement of in the MessageBoard content directive to
use the View permission (line 42). This makes the description and the items
accessible to all board users. Similarly, change line 64 for the Message.

138
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

• Change the permission of line 46 to Edit, since only the message board admin-
istrator should be able to change any of the properties of the MessageBoard

object.

• All the container functionality will only require the view permission, so change
the permission on line 68 to View. This is unsecure, since this includes read
and write methods, but it will suffice for this demonstration.

• For the Message we need to be able to set the attributes with the Add permis-
sion, so change line 72 to specify this permission.

Now let’s go to the browser configuration file (messageboard/browser/

configure.zcml) and fix the permissions there.

• The permissions for the message board’s add form (line 11), add menu item
(line 18), and its edit form (line 27) stay unchanged, since only an administrator
should be able manage the board.

• Since we want every user to see the messages in a messageboard, the permis-
sion on line 33 should become View. Since the contents view is meant for
management, only principals with the Edit permission should be able to see it
(line 34). Finally, you need the Add permission to actually add new messages
to the message board (line 35). The same is true for the message’s container
views permissions (line 84–86).

• Since all user should be able to see the message thread and the message details,
the permissions on line 43, 94, and 106 should become View.

• On line 61 you should change the permission to Add, because you only allow
messages to be added to the message board, if the user has this permission. The
same is true for the message’s add menu item on line 68.

• On line 78 make sure that a user can only access the edit screen if he has the
Edit permission.

That’s it. If you would restart Zope 3 at this point, you could not even access the
MessageBoard and/or Message instances. Therefore we need to create some roles
next and assign permissions to them.

16.3 Step III: Declaration of Roles

The declaration of roles is specific to Zope 3’s default security policy. Another
security policy might not even have the concept of roles at all. Therefore, the role

CHAPTER 16 SECURING COMPONENTS

16.3. DECLARATION OF ROLES
139

declaration and grants to the permissions should not even be part of your package.
For simplicity and keeping it all at one place, we are going to store the policy-specific
security configuration in security.zcml. For our message board package we really
only need two roles, “User” and “Editor”, which are declared as follows:

1 <role

2 id="book.messageboard.User"

3 title="Message Board User"

4 description="Users that actually use the Message Board."/>

5

6 <role

7 id="book.messageboard.Editor"

8 title="Message Board Editor"

9 description="The Editor can edit and delete Messages."/>

Equivalently to the zope:permission directive, the zope:role directive creates
and registers a new role with the global role registry. Again, the id must be a
unique identifier that is used throughout the configuration process to identify the
role. Both, the id and the title are required.

Next we grant the new permissions to the new roles, i.e. create a permission-role
map. The user should be only to add and view messages, while the editor is allowed
to execute all permission.

1 <grant

2 permission="book.messageboard.View"

3 role="book.messageboard.User"

4 />

5 <grant

6 permission="book.messageboard.Add"

7 role="book.messageboard.User"

8 />

9 <grant

10 permission="book.messageboard.Edit"

11 role="book.messageboard.Editor"

12 />

13 <grant

14 permission="book.messageboard.Delete"

15 role="book.messageboard.Editor"

16 />

The zope:grant directive is fairly complex, since it permits all three different
types of security mappings. It allows you to assign a permission to a principal, a
role to a principal, and a permission to a role. Therefore the directive has three
optional arguments: permission, role, and principal. Exactly two of the three
arguments have to be specified to make it a valid directive. All three security objects
are specified by their id.

Finally, you have to include the security.zcml file into your other config-
uration. This is simply done by adding the following inclusion directive in the
ZOPE3/principals.zcml file:

1 <include package="book.messageboard" file="security.zcml" />

140
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

The reason we put it here is to make it obvious that this file depends on the security
policy. Also, when assigning permissions to roles we want all possible permissions
the system can have to be defined. Since the principals.zcml file is the last ZCML
to be evaluated, this is the best place to put the declarations.

16.4 Step IV: Assigning Roles to Principals

To make our package work again, we now have to connect the roles to some principals.
We are going to create two new principals called boarduser and boardeditor. To
do that, go to the Zope 3 root directory and add the following lines to principals.

zcml:

1 <principal

2 id="book.messageboard.boarduser"

3 title="Message Board User"

4 login="boarduser" password="book"

5 />

6 <grant

7 role="book.messageboard.User"

8 principal="book.messageboard.boarduser"

9 />

10

11 <principal

12 id="book.messageboard.boardeditor"

13 title="Message Board Editor"

14 login="boardeditor" password="book"

15 />

16 <grant

17 role="book.messageboard.User"

18 principal="book.messageboard.boardeditor"

19 />

20 <grant

21 role="book.messageboard.Editor"

22 principal="book.messageboard.boardeditor"

23 />

The zope:principal directive creates and registers a new principal/user in the
system. Like for all security object directives, the id and title attributes are
required. We could also specify a description as well. In addition to these three
attributes, the developer must specify a login and password (plain text) for the user,
which is used for authentication of course.

Note that you might want to grant the book.messageboard.User role to the
zope.anybody principal, so that everyone can view and add messages.

The zope.anybody principal is an unauthenticated principal, which is defined
using the zope:unauthenticatedPrincipal directive, which has the same three
basic attributes the zope:principal directive had, but does not accept the login

and password attribute.

CHAPTER 16 SECURING COMPONENTS

16.4. ASSIGNING ROLES TO PRINCIPALS
141

Now your system should be secure and usable. If you restart Zope 3 now, you
will see that only the message board’s Editor can freely manipulate objects. (Of
course you have to log in as one.)

142
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

Exercises

1. In retrospect it was a bad idea to give the book.messageboard.User role
the book.messageboard.View and book.messageboard.Add permission, since
you cannot differentiate between an anonymous user reading the board and a
user being able to add messages anymore. Add yet another role called book.

messageboard.Viewer and make the details.html and thread.html view
available to this role. Then grant this role to the unauthenticated principal (
anybody) and verify that this principal can indeed access these views.

2. (Referring to the previous problem) On the other hand, instead of creating an-
other role, we could just grant the View permission to the anonymous principal
directly. Do that and ensure that the unauthenticated principal can see these
views.

CHAPTER 17

CHANGING SIZE INFORMATION

Difficulty

Newcomer

Skills

• You should be familiar with the previous chapters of the “Content Components”
section.

Problem/Task

Currently, when looking at the contents view of a message, it will show you the
amount of items in the message, which includes reply-messages and attachments (files
and images). It would be nice if the size field would say “x replies, y attachments”.

Solution

The size output is handled by a very simple adapter, which will adapt from
IMessage to ISized.

17.1 Step I: Implementation of the Adapter

An adapter is usually a simple class, which is marked by the fact that it takes one
object as constructor argument. This object must provide the “from” interface that
is often also listed in the used for attribute of the class. Add the following code
in your message.py file:

143

144
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

1 ������� zope.app.size.interfaces
�
� � ���
 ISized

2

3
�
������� MessageSized(object):

4

5 implements(ISized)

6 __used_for__ = IMessage

7

8 ��	�� __init__(� 	 � � , message):

9
� 	 � � ._message = message

10

11 ��	�� sizeForSorting(� 	 � �):
12 """See ISized"""

13 ��	������� (’item’, len(� 	 � � ._message))
14

15 ��	�� sizeForDisplay(� 	 � �):
16 """See ISized"""

17 messages = 0

18 � ��� obj
�
� � 	 � � ._message.values():

19

�
� IMessage.providedBy(obj):

20 messages += 1

21

22 attachments = len(� 	 � � ._message)-messages
23

24

�
� messages == 1: size = u’1 reply’

25 	 ��� 	 : size = u’%i replies’ %messages

26

27

�
� attachments == 1: size += u’, 1 attachment’

28 	 ��� 	 : size += u’, %i attachments’ %attachments

29

30 ��	������� size

The ISized interface specifies two methods:

. Line 10–12: sizeForString() must return a tuple with the first element being
a unit and the second the value. This format was chosen to provide a generic
comparable representation of the size.

. Line 14–29: sizeForDisplay() can return any sort of unicode string that rep-
resents the size of the object in a meaningful way. The output should not be too
long (mine is already very long). As promised it displays both responses and at-
tachments separately.

17.2 Step II: Unit tests

Now let’s write some doc tests for the adapter. Add the following tests In the doc
string of the sizeForSorting() method:

1 Create the adapter first.

2

3 >>> size = MessageSized(Message())

4

5 Here are some examples of the expected output.

CHAPTER 17 CHANGING SIZE INFORMATION

17.2. UNIT TESTS
145

6

7 >>> size.sizeForSorting()

8 (’item’, 0)

9 >>> size._message[’msg1’] = Message()

10 >>> size.sizeForSorting()

11 (’item’, 1)

12 >>> size._message[’att1’] = object()

13 >>> size.sizeForSorting()

14 (’item’, 2)

The test is straight forward, since we add an object and check whether it increased
the size of items by one. In the sizeForDisplay() doc string add:

1 Create the adapter first.

2

3 >>> size = MessageSized(Message())

4

5 Here are some examples of the expected output.

6

7 >>> size.sizeForDisplay()

8 u’0 replies, 0 attachments’

9 >>> size._message[’msg1’] = Message()

10 >>> size.sizeForDisplay()

11 u’1 reply, 0 attachments’

12 >>> size._message[’msg2’] = Message()

13 >>> size.sizeForDisplay()

14 u’2 replies, 0 attachments’

15 >>> size._message[’att1’] = object()

16 >>> size.sizeForDisplay()

17 u’2 replies, 1 attachment’

18 >>> size._message[’att2’] = object()

19 >>> size.sizeForDisplay()

20 u’2 replies, 2 attachments’

The doc tests are already registered, since the message.py file already contains
some doc tests. However, adding an object to a container requires some of the com-
ponent architecture to be up and running. There exists a testing convenience module
called zope.app.tests.placelesssetup, which contains two functions setUp()

and tearDown() that can be passed in the doc test suite as positional arguments.
therefore the test suite declaration changes from

1 DocTestSuite(’book.messageboard.message’)

to

1 DocTestSuite(’book.messageboard.message’,

2 setUp=setUp, tearDown=tearDown)

You can now run the tests the usual way.

python2.3 test.py -vpu --dir src/book/messageboard

146
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

17.3 Step III: Registration

Now we register the adapter in messageboard/configure.zcml using the following
ZCML directive:

1 <adapter

2 factory=".message.MessageSized"

3 provides="zope.app.size.interfaces.ISized"

4 for=".interfaces.IMessage"

5 />

The zope:adapter is the way to register global adapters via ZCML. The factory

attribute allows you to specify a list of factories (usually only one is specified) that
are responsible for creating an adapter instance that takes an object implementing
the interface specified in the for attribute and providing the interface specified in
provides. All of these three attributes are mandatory.

For our case, we basically say that an instance of the MessageSized class provides
an ISized interface for objects implementing IMessage.

The directive also supports two optional arguments. We can also specify a
permission. The adapter will be only available to the principal, if the principal
has the specified permission. If no permission is specified, everyone can access the
adapter. The other optional argument of the directive is the name attribute that
specifies the name of the adapter. Using names, we can specify multiple adapters
from one interface to another.

That’s it! Restart Zope 3 and see for yourself. Note how we did not need to touch
any existing Python code to provide this functionality.

CHAPTER 17 CHANGING SIZE INFORMATION

17.3. REGISTRATION
147

Exercises

1. Write an ISized adapter for IMessageBoard that outputs xmessages as the
displayable size.

148
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

CHAPTER 18

INTERNATIONALIZING A PACKAGE

Difficulty

Sprinter

Skills

• You should be familiar with the previous chapters of the “Content Components”
section.

• Familiarity with Page Templates is desired.

• Basic knowledge of the gettext format and tools is also a plus. Optional.

Problem/Task

Now that we have a working message board package, it is time to think about
our friends overseas and the fact that not everyone can speak English. Therefore it
is our task now to internationalize and localize the code to . . . let’s say German.

Solution

Before we can start coding, it is important to cover some of the basics. You might
already have wondered about the difference between the terms internationalization
and localization.

• Internationalization (I18n) is the process of making a package translatable, ba-
sically the programmer’s task of inserting the necessary code so that human-
readable strings can be translated and dates/times be formatted, respecting the
users “locale” settings.

149

150
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

• Localization (L10n) is the process of actually creating a translation for a partic-
ular language. Often translations are not done by programmers but by transla-
tors (or formally, localization vendors).

But what is a so-called “locale”? Locales are objects that contain information
about a particular physical/abstract region in the world, such as language, dialect,
monetary unit, date/time/number formats and so on. An example of a locale would
be “de DE PREEURO” (language, country/region, variant), which describes Ger-
many before the Euro was introduced. However, “de” is also a valid locale, refer-
ring to all German speaking regions. So you can imagine that there is a locale hi-
erarchy. “de DE PREEURO” is more specific than “de DE”, which is in turn more
specific than “de”. So if the user’s locale setting is “de DE PREEURO” and we
want to look for the date format template, the system will look up the path in
“de DE PREEURO”, then “de DE” and finally in “de”, where it will find it.

Note that this chapter has little to do with Python development, but is still useful
to know, since all Zope 3 core components are required to be internationalized.

18.1 Step I: Internationalizing Python code

There should be only a few spots where internationalizing is necessary, since trans-
latable strings are used for views, which are usually coded in Page Templates. One
of the big exceptions are schemas, since we always define human readable titles, de-
scriptions and default text values for the declared fields.

Zope uses message ids to mark strings as translatable. Translatable strings must
always carry a domain, so that we know to which translation domain to pick.

We use message id factories to create message ids:

1 ������� zope.i18n
�
� � ���
 MessageIDFactory

2 _ = MessageIDFactory(’messageboard’)

. Line 1–2: Every Python file containing translatable strings must contain this small
boiler plate. Note that for Zope 3 core code we have a short cut:

1 �
��� � zope.app.i18n
�
� � ���
 ZopeMessageIDFactory as _

This import creates a message id factory that uses the “zope” domain.

. Line 2: The underscore character is commonly used to represent the “translation
function” (from gettext). In our case it is used as message id constructor/factory.
The argument of the MessageIDFactory is the domain, which is in our case
messageboard.

CHAPTER 18 INTERNATIONALIZING A PACKAGE

18.1. INTERNATIONALIZING PYTHON CODE
151

But why do we need domains in the first place? My favorite example for the need
of domains is the word Sun. This word really represents three different meanings in
English: (1) our star the Sun, (2) an abbreviation for Sunday and (3) the company
Sun Microsystems. All of these meanings have different translations in German
for example. So you can distinguish between them by specifying domains, such as
“astronomy”, “calendar” and “companies”, respectively. Domains also allow us to
organize and reuse translations; they are almost like libraries. For example, not every
single package needs to collect its own “calendar” translations, but all packages could
benefit from one cohesive domain.

Another way of categorizing translations is by creating somewhat abstract message
strings. So for example the value of an add button becomes add-button instead of
the usual Add and translations for this string would then insert the human readable
string, such as Add for English or Hinzufgen for German. We will see this usage
specifically in Page Templates (see next section). These “abstract message strings”
are known as “explicit message ids”.

You might also wonder why we have to use the message id concept, instead of
using a translation function directly, like other desktop applications do. Here we
should recall that Zope is an Application Server and has multiple users that are
served over the network. So at the time a piece of code is called, we often do not
know anything about the user or the desired language. Only views (be it Python
code or Page Templates) have information about the user and therefore the desired
locale, which contains the language, so that the translation has to be prolonged as
long as possible. As a rule of thumb, I always say that translating is the last task
the application should do before providing the final end-user output. Zope 3 honors
this rule in every aspect.

But let’s get back to translating Python code. Since the interfaces have the most
translatable strings, we start with them. Open the interfaces.py module and add
the above mentioned boiler plate. Now, we internationalize each field. For example,
the IMessageBoard schema’s description field is changed from

1 description = Text(

2 title=u"Description",

3 description=u"A detailed description of the content of the board.",

4 default=u"",

5 required=False)

to
1 description = Text(

2 title=_("Description"),

3 description=_("A detailed description of the content of the board."),

4 default=u"",

5 required=False)

Note how the underscore message id factory simply functions like a translating
message. Do the same transformation for all schemas in the interfaces module. Also,

152
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

note that while title and description require unicode strings, we can simply
pass a regular string into the message id factory, since the message id uses unicode

as its base class, making the message id look like a unicode object. Another minor
translation is the doc attribute of the ForbiddenTags class in the fields

module. Make sure to internationalize this one as well in the same manner.

One more interesting case of marking message strings is found in message.py in
the MessageSized class, sizeForDisplay() method. The original code was

1

�
� messages == 1: size = u’1 reply’

2 	 ��� 	 : size = u’%i replies’ %messages

3

4

�
� attachments == 1: size += u’, 1 attachment’

5 	 ��� 	 : size += u’, %i attachments’ %attachments

This usage causes a problem to our simplistic usage of message ids, since we now
have variables in our string and something like ‘messages‘+ ("replies") will not
work contrary to gettext applications, since the underscore object will not actually
do the translation. The lookup for the translation would simply fail, since the system
would look for translations like “2 replies”, “3 replies” and so on. All this means is
that the actual variable values need to be inserted into the text after the translation.
For exactly this case, the MessageId object has a mapping attribute that can store
all variables and will insert them after the translation is completed. This means of
course that we also have to markup our text string in a different way, so that the
new code becomes:

1

�
� messages == 1 � ��� attachments == 1:

2 size = _(’1 reply, 1 attachment’)

3 	 �
�
� messages == 1 � ��� attachments != 1:

4 size = _(’1 reply, ${attachments} attachments’)

5 	 �
�
� messages != 1 � ��� attachments == 1:

6 size = _(’${messages} replies, 1 attachment’)

7 	 ��� 	 :
8 size = _(’${messages} replies, ${attachments} attachments’)

9

10 size.mapping = {’messages’: ‘messages‘, ’attachments’: ‘attachments‘}

. 1–8: Here we handle the four different cases we could possibly have. While this
might not be the most efficient way of doing it, it allows us to list all four combi-
nations separately, so that the message string extraction tool will be able to find
it. This tool looks for strings that are enclosed by ().

Note how the %i occurrences were replaced by ${messages} and ${attachments},
which is the translation domain way of marking a later to be inserted variable.

. Line 10: Once the message id is constructed, we add the mapping with the two
required variable values.

CHAPTER 18 INTERNATIONALIZING A PACKAGE

18.1. INTERNATIONALIZING PYTHON CODE
153

Since we have tests written for the size adapter, we need to correct them at this
point as well. You might try to fix the tests yourself, before reading on. Change the
doc string of the sizeForDisplay() method to

1 Creater the adapter first.

2

3 >>> size = MessageSized(Message())

4

5 Here are some examples of the expected output.

6

7 >>> str = size.sizeForDisplay()

8 >>> str

9 u’${messages} replies, ${attachments} attachments’

10 >>> ’msgs: %(messages)s, atts: %(attachments)s’ %str.mapping

11 ’msgs: 0, atts: 0’

12 >>> size._message[’msg1’] = Message()

13 >>> str = size.sizeForDisplay()

14 >>> str

15 u’1 reply, ${attachments} attachments’

16 >>> ’msgs: %(messages)s, atts: %(attachments)s’ %str.mapping

17 ’msgs: 1, atts: 0’

18 >>> size._message[’att1’] = object()

19 >>> str = size.sizeForDisplay()

20 >>> str

21 u’1 reply, 1 attachment’

22 >>> ’msgs: %(messages)s, atts: %(attachments)s’ %str.mapping

23 ’msgs: 1, atts: 1’

24 >>> size._message[’msg2’] = Message()

25 >>> str = size.sizeForDisplay()

26 >>> str

27 u’${messages} replies, 1 attachment’

28 >>> ’msgs: %(messages)s, atts: %(attachments)s’ %str.mapping

29 ’msgs: 2, atts: 1’

30 >>> size._message[’att2’] = object()

31 >>> str = size.sizeForDisplay()

32 >>> str

33 u’${messages} replies, ${attachments} attachments’

34 >>> ’msgs: %(messages)s, atts: %(attachments)s’ %str.mapping

35 ’msgs: 2, atts: 2’

. Line 7–11: The sizeForDisplay() method now returns a message id object. The
message id uses simply its text part for representation. In the following lines it is
checked that the mapping exists and contains the correct values.

. Line 12–35: Repetion of the test as before using different amounts of replies and
attachments.

One last location where we have to internationalize some Python code output
is in browser/message.py. The string ’unknown’ must be wrapped in a mes-
sage id factory call. Also, the string returned by the modified() method of the
MessageDetails view class must be adapted to use the user’s locale information,
since it returns a formatted date/time string. Since MessageDetails is a view

class, we have the user’s locale available, so that we can change the old version

154
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

1 �
	������� date.strftime(’%d/%m/%Y %H:%M:%S’)

easily to the internationalized version

1 formatter = � 	 � � .request.locale.dates.getFormatter(’dateTime’, ’short’)

2 �
	������� formatter.format(date)

Every BrowserRequest instance has a locale object, which represents the user’s
regional settings. The getFormatter() method returns a formatter instance that
can format a datetime object to a string based on the locale. Refer to the API
reference to see all of the locale’s functionality.

This is already everything that has to be done in the Python code. If you do not
believe me, feel free to check the other Python modules for translatable strings – you
will not find any. As promised, Python code contains only a few places of human
readable strings and this is a good thing.

18.2 Step II: Internationalizing Page Templates

Internationalizing Page Templates is more interesting in many ways. We do not only
have to worry about finding the correct tags to internationalize, but since we also
can have heavy nesting, the complexity can become overwhelming. My suggestion:
Keep the content of translatable tags as flat as possible, i.e. try to have translatable
text that does not contain much HTML and TAL code.

To achieve internationalization support in Zope 3’s Page Templates, we designed
a new i18n namespace. It is well documented at http://dev.zope.org/Zope3/

ZPTInternationalizationSupport. The three most common attributes are i18n:

domain, i18n:translate and i18n:attributes. Note that the i18n namespace
has been back-ported to Zope 2 as well, so you might be familiar with it already.

The cleanest Page Template in the browser package is details.pt, so let’s
internationalize it first:

1 <html metal:use-macro="views/standard_macros/page">

2 <body>

3 <div metal:fill-slot="body" i18n:domain="messageboard">

4

5 <h1 i18n:translate="">Message Details</h1>

6

7 <div class="row">

8 <div class="label" i18n:translate="">Title</div>

9 <div class="field" tal:content="context/title" />

10 </div>

11

12 <div class="row">

13 <div class="label" i18n:translate="">Author</div>

14 <div class="field" tal:content="view/author"/>

15 </div>

16

17 <div class="row">

CHAPTER 18 INTERNATIONALIZING A PACKAGE

18.3. INTERNATIONALIZING ZCML
155

18 <div class="label" i18n:translate="">Date/Time</div>

19 <div class="field" tal:content="view/modified"/>

20 </div>

21

22 <div class="row">

23 <div class="label" i18n:translate="">Parent</div>

24 <div class="field" tal:define="info view/parent_info">

25 <a href="../"

26 tal:condition="info"

27 tal:content="info/title" />

28 </div>

29 </div>

30

31 <div class="row">

32 <div class="label" i18n:translate="">Body</div>

33 <div class="field" tal:content="structure context/body"/>

34 </div>

35

36 </div>

37 </body>

38 </html>

. Line 3: The best place for the domain specification is this div tag, since it is
inside a specific slot and will not influence other template files’ domain settings.

. Line 8, 13, 18, 23 & 32: The i18n:translate="" just causes the content of the
div tag to be translated.

Note that there was no need here to use i18n:attributes. However, when we
deal with buttons, we use this instruction quite often. Here an example:

1 <input type="submit" value="Add" i18n:attributes="value add-button" />

Similar to tal:attributes the value-attribute value will be replaced by the
translation of add-button or remains as the default string (Add), if no translation
was found.

This is really everything that is needed for Page Templates. As exercise 1 and 2
state, you should finish the other templates yourself. (Hint: If you do exercise 1 at
this point, you can skip exercise 2.)

18.3 Step III: Internationalizing ZCML

Internationalizing ZCML is a one time, one step process. All you need to do here is
to add a i18n domain="messageboard" attribute assignment in your configure

tag of the main configure.zcml file. It is the responsibility of the directive author
to specify which attribute values should be converted to message ids, so that you
have to worry about nothing else. All of this might seem a bit magical, but it is

156
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

explicit and an incredibly powerful feature of Zope 3’s translation system, since it
minimizes the overhead of internationalizing ZCML code.

Setting this attribute will get rid of all the warnings you experienced until now
when starting up Zope 3.

18.4 Step IV: Creating Language Directories

The directory structure of the translations has to follow a strict format, since we
tried to keep it gettext compatible. By convention we keep all message catalogs and
message catalog templates in a directory called locales (so create it now). This
directory typically contains the message catalog template file (extension pot) and
the various language directories, such as en. Since we want to create a translation
for English and German, create the directories en and de, respectivily.

Now comes the part that might not make sense at first. The language direc-
tories do not contain the message catalog directly, but another directory called
LC MESSAGES. Create them in each language directory.

Since English is our default language, we always want it to use the default value.
Therefore the message catalog can be totally empty (or just contain the meta-data).
Create a file called messageboard.po in the locales/en/LC MESSAGES directory
and add the following comment and meta data.

1 # This file contains no message ids because the messageboard’s default

2 # language is English

3 msgid ""

4 msgstr ""

5 "Project-Id-Version: messageboard\n"

6 "MIME-Version: 1.0\n"

7 "Content-Type: text/plain; charset=UTF-8\n"

8 "Content-Transfer-Encoding: 8bit\n"

Now you are done with the preparations. Before we can localize the message
board, we need to create the message catalogs as it will be described in the next
section.

18.5 Step V: Extracting Translatable Strings

Zope provides a very powerful extraction tool to grab all translatable text strings
from Python, Page Template and ZCML files. With each translatable string, the
file and line number is recorded and later added as comment in the message catalog
template file.

After all strings were collected and duplicates merged into single entries, the tool
saves the strings in a message catalog template file called 〈domain〉.pot. This is

CHAPTER 18 INTERNATIONALIZING A PACKAGE

18.6. TRANSLATING MESSAGE STRINGS
157

the beginning of localization. From now on we are only concerned about using the
template to create translations.

The extraction tool, called i18nextract.py, can be found in ZOPE3/utilities.
Before executing the tool, add your Zope 3 source directory to the PYTHONPATH, so
that all necessary modules are found. In bash the PYTHONPATH can be set using

export PYTHONPATH=$PYTHONOATH:ZOPE3/src

To execute the tool, go to the messageboard directory and enter the following
command. Make sure that you entered the absolute path for ZOPE3, since the tool
does not work well with symlinks.

python ZOPE3/utilities/i18nextract.py -d messageboard -p ./ -o ./locales

This will extract all translatable strings from the message board package and store
the template file as messageboard/locales/messageboard.pot.

As you can see, the tool supports three options plus an help option:

• -h/--help – Print the help of the i18nextract.py tool on the screen and exit.

• -d/--domain〈domain〉 – This option specifies the domain, in our case messageboard,
that is supposed to be extracted.

• -p/--path〈path〉 – The path specifies the package by path that is searched for
translatable strings. In our case we just used ./, since we already were in the
package.

• -odir – This option specifies a directory, relative to the package in which to
put the output translation template, which is commonly ./locales in add-on
packages.

If you wish to update the Zope 3 core message catalog template file, you simply
run the extraction tool without specifying any options.

18.6 Step VI: Translating Message Strings

Now that we have a Message Catalog Template file, we can finally create a transla-
tion. Since we do not have existing message catalogs, you can simply copy the POT
template file to the language you want to localize. In Unix you can just do the fol-
lowing from the locales directory:

cp messageboard.pot de/LC_MESSAGES/messageboard.po

Open de/LC MESSAGES/messageboard.po in you favorite translation tool or a
text editor. However, it is strongly recommended to use a gettext-specific translation

158
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

tool, since it will guarantee format integrity. Some of the choices include KBabel
and the Vim/Emacs gettext modes.

KBabel seems to be the most advanced tool and develops to become a standard
application for localization. It has many functions that make it easy for translators to
do their job efficiently. My wife and I have translated many files using KBabel and it
is a fantastic tool. It allows you, for example, to walk only through all untranslated or
fuzzy strings and helps managing the message strings by providing message numbers
and statistics.

After you are done with the translations, save the changes and you should be all
set.

Great, we have a translation, but what happens if you develop new code and you
need to update the template and catalog files? For creating the template you have
to do nothing different, since a template can be created over and over from scratch.
But this is not so easy with the actual catalogs, since you do not want to loose
existing translations. The gettext utilities, that come with every Linux system, have
a nice command line tool called msgmerge (for Windows you can just use Cygwin’s
version of the gettext packages). msgemerge merges all changes of the POT file into
the message catalog, keeping all comments and existing translations intact and even
marking changed translations as “fuzzy”.

Here is how you can use the tool from the locales directory:

msgmerge -U de/LC_MESSAGES/messageboard.po ./messageboard.pot

18.7 Step VII: Compiling and Registering Message Catalogs

Before we can use our new translations, we need to compile the message catalogs into
a more efficient binary format and then register the locales directory as a message
catalog container.

To compile the catalogs, go to the directory and type:

msgfmt messageboard.po -o messageboard.mo

The msgfmt program is part of the gettext tools, which you must have installed
(like for the msgmerge tool) to successfully execute the above command.

If you have troubles keeping the extensions po and mo in mind, here is a crib:
The “p” of the “.po” extension stands for “people comprehensible” and the “m” in
“.mo” for “machine comprehensible”.

To register the locales directory as a translation container, open the main
configure.zcml for the message board, and register the i18n namespace as follows
in the configure tag:

1 xmlns:i18n="http://namespaces.zope.org/i18n"

CHAPTER 18 INTERNATIONALIZING A PACKAGE

18.8. TRYING THE TRANSLATIONS
159

Now you register the directory using

1 <i18n:registerTranslations directory="locales" />

The i18n:registerTranslations directive is smart enough to detect the direc-
tory structure and extract all the message catalogs for all the available languages.

An important note: During the last few steps it was quietly asserted that the file-
name of the message catalog must be the domain name! The registerTranslations

directive uses the filename to determine the domain, which is completely in line with
the gettext standard.

18.8 Step VIII: Trying the Translations

To test the translations, restart Zope 3. Different languages are best tested with
Mozilla, since it allows you to quickly change the accepted languages of the browser
itself. You can change the language in the preferences under Navigator→ Languages.
Put German[de] at the top of the list. The best view to test is the Preview, which
you can reach with a URL similar to:
http://localhost:8080/board/msg/@@details.html

You should now see all the attribute names (such as Title, which became Titel)
in German. You should also notice that the date is formatted in the German standard
way using “day.month.year” and a 24-hour time.

Figure 18.1: The Message Details view in German

160
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

18.9 Step IX: Updating Translations on the Fly

While translating a package, it might be very cumbersome to restart Zope 3 just to
update translations. For this reason, a process control called “Translation Domain
Control” (http://localhost:8080/++etc++process/@@TranslationDomain.html)
was created that allows you to update message catalogs at runtime without needing
to restart the server. You should see the new messageboard domain for German (
de).

Figure 18.2: Translation Domain Control

CHAPTER 18 INTERNATIONALIZING A PACKAGE

18.9. UPDATING TRANSLATIONS ON THE FLY
161

Exercises

1. Complete the internationalization of all of the Page Templates.

2. Extract the new message strings (due to exercise 1) and merge them with the
existing translations and update the English message catalog.

162
Zope 3 Developer’s Book

PART III CONTENT COMPONENTS – THE BASICS

PART IV
Content Components – Advanced Techniques

Having a well-working basic message board is great, but it is certainly not blowing
away anyone. In this section some more advanced APIs are presented.

Chapter 19: Events and Subscribers

Events et al are a very powerful idea. This chapter will explain how to write your own event
subscribers by implementing a mail subscription feature for messages.

Chapter 20: Approval Workflow for Messages

This chapter will show how to integrate an editorial workflow for a content component.

Chapter 21: Providing Online Help Screens

Every good application should have Online Help screens, which is outlined in this chapter.

Chapter 22: Object to File System mapping using FTP as example

While there are standard hooks for content objects to be handled by FTP, it is often useful
to write your own FTP handlers, so that the file-to-object conversion (and the other way around)
seems more natural.

Chapter 23: Availability via XML-RPC

If you want to make XML-RPC calls on your content objects, you must write a view declaring
the methods and define how their output is mapped to a type that XML-RPC understands.

Chapter 24: Developing new Skins

This chapter gives instructions on how to implement a new skin, so that sites can be developed
that do not look like the Zope Management Interface, but still allows us to make use of all the
auto-generation of forms.

CHAPTER 19

EVENTS AND SUBSCRIBERS

Difficulty

Contributor

Skills

• You should be comfortable with the topics covered in the “Content Components
– The Basics” part.

• Feel comfortable with the Component Architecture.

• Be familiar with annotations. Read the appropriate chapters in this book, if
necessary.

Problem/Task

Events are a powerful programming tool and are primary citizens in Zope 3. This
chapter will concentrate on the subscription of existing events by implementing a
mail subscription system for messages – whenever a message is modified, subscribers
receive an E-mail about the change. This will also demonstrate again how annota-
tions can be added to an object. In the last part of the chapter we will talk theoret-
ically about triggering events.

Solution

There are two main components that need to be developed. The first is the mail
subscription adapter for the message, which manages the subscription E-mails. The
second component is the Event Subscriber , which listens for incoming events and
starts the mailing process, if appropriate.

165

166
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

19.1 Step I: Mail Subscription Interface

We need to have an interface for managing the subscriptions for a particular message,
i.e. add, delete and getting E-mail addresses. So add the following interface to the
interfaces module:

1
�
������� IMailSubscriptions(Interface):

2 """This interface allows you to retrieve a list of E-mails for

3 mailings. In our context these are messages."""

4

5 ��	�� getSubscriptions():

6 """Return a list of E-mails."""

7

8 ��	�� addSubscriptions(emails):

9 """Add a bunch of subscriptions; one would be okay too."""

10

11 ��	�� removeSubscriptions(emails):

12 """Remove a set of subscriptions."""

This code is simple enough, so that no further explanation is needed at this point.

19.2 Step II: Implementing the Mail Subscription Adapter

The implementation should be straightforward. The subscriptions are implemented
as a simple tuple data structure, which are accessible via the annotation adapter.
Note that the implementation makes no assumption about the type of annotation
that is going to be used, i.e. we might have used the AttributeAnnotations out of
pure convenience, but the data could just as well be stored in LDAP without having
any effect on the MailSubscriptions implementation.

Since there is no need to create a new module, add the following code to the
message.py file:

1 ������� zope.app.annotation.interfaces
�
�������� IAnnotations

2 ������� book.messageboard.interfaces
�
��� ���� IMailSubscriptions

3

4 SubscriberKey=’http://www.zope.org/messageboard#1.0/MailSubscriptions/emails’

5

6

7
�
������� MailSubscriptions:

8 """Message Mail Subscriptions."""

9

10 implements(IMailSubscriptions)

11 __used_for__ = IMessage

12

13 ��	�� __init__(� 	 � � , context):

14
� 	 � � .context = � 	 � � .__parent__ = context

15
� 	 � � ._annotations = IAnnotations(context)

16

�
� � �� � 	 � � ._annotations.get(SubscriberKey):

17
� 	 � � ._annotations[SubscriberKey] = ()

18

19 ��	�� getSubscriptions(� 	 � �):

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.2. IMPLEMENTING THE MAIL SUBSCRIPTION ADAPTER
167

20 "See book.messageboard.interfaces.IMailSubscriptions"

21 �
	������� � 	 � � ._annotations[SubscriberKey]
22

23 ��	�� addSubscriptions(� 	 � � , emails):

24 "See book.messageboard.interfaces.IMailSubscriptions"

25 subscribers = list(� 	 � � ._annotations[SubscriberKey])
26 ����� email

�
� emails:

27

�
� email ����

�
� subscribers:

28 subscribers.append(email.strip())

29
� 	 � � ._annotations[SubscriberKey] = tuple(subscribers)

30

31 ��	�� removeSubscriptions(� 	 � � , emails):

32 "See book.messageboard.interfaces.IMailSubscriptions"

33 subscribers = list(� 	 � � ._annotations[SubscriberKey])
34 ����� email

�
� emails:

35

�
� email

�
� subscribers:

36 subscribers.remove(email)

37
� 	 � � ._annotations[SubscriberKey] = tuple(subscribers)

. Line 4: This is the fully qualified subscriber annotation key that will uniquely
identify this annotation data. Here a URL is used, but dotted names are also
common.

. Line 11: While this declaration is not needed, it clearly signifies that this imple-
mentation is an adapter for IMessage objects.

. Line 14: Since this adapter will use annotations, it will be a trusted adapter,
meaning that it will be a proxied object. All proxied objects must provide a
location (at least through a parent attribute) so that permission declarations
can be found. Otherwise only global permission settings would be available.

. Line 15: Here we are getting the Annotations adapter that will provide us with
a mapping object in which we will store the annotations. Note that this statement
says nothing about the type of annotation we are about to get.

. Line 16–17: Make sure an entry for our subscriber key exists. If not, create an
empty one.

. Line 19–37: There is nothing interesting going on here. The only fact worth
mentioning is the use of tuples instead of lists, which make the code a bit more
complex, but tuples are not mutable, so that they are automatically saved in the
ZODB, if we have AttributeAnnotations.

This is pretty much everything that is to the subscription part of this step. We
can now register the new component via ZCML using the adapter directive:

1 <adapter

2 factory=".message.MailSubscriptions"

3 provides=".interfaces.IMailSubscriptions"

168
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

4 for=".interfaces.IMessage"

5 permission="book.messageboard.Add"

6 trusted="true" />

. Line 2–4: Like for the ISized adapter, we specify the necessary adapter registra-
tion information.

. Line 6: If an adapter is declared trusted then its context (the object being passed
into the adapter constructor) will not be security proxied. This is necessary so
that the annotations adapter can use the annotations attribute to store the
annotations. If the adapter is not trusted and the context is security proxied,
then a ForbiddenAttribute error will be raised whenever we try to access the
annotations.

. Line 5: Once an adapter is trusted, the adapter itself is security proxied. Therefore
we need to define a permission that is required to use the adapter.

19.3 Step III: Test the Adapter

The tests are as straightforward as the implementation. In the doc string of the
MailSubscriptions class add the following documented testing code.

1 Verify the interface implementation

2

3 >>> from zope.interface.verify import verifyClass

4 >>> verifyClass(IMailSubscriptions, MailSubscriptions)

5 True

6

7 Create a subscription instance of a message

8

9 >>> msg = Message()

10 >>> sub = MailSubscriptions(msg)

11

12 Verify that we have initially no subscriptions and then add some.

13

14 >>> sub.getSubscriptions()

15 ()

16 >>> sub.addSubscriptions((’foo@bar.com’,))

17 >>> sub.getSubscriptions()

18 (’foo@bar.com’,)

19 >>> sub.addSubscriptions((’blah@bar.com’,))

20 >>> sub.getSubscriptions()

21 (’foo@bar.com’, ’blah@bar.com’)

22 >>> sub.addSubscriptions((’doh@bar.com’,))

23 >>> sub.getSubscriptions()

24 (’foo@bar.com’, ’blah@bar.com’, ’doh@bar.com’)

25

26 Now let’s also check that we can remove entries.

27

28 >>> sub.removeSubscriptions((’foo@bar.com’,))

29 >>> sub.getSubscriptions()

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.3. TEST THE ADAPTER
169

30 (’blah@bar.com’, ’doh@bar.com’)

31

32 When we construct a new mail subscription adapter instance, the values

33 should still be there.

34

35 >>> sub1 = MailSubscriptions(msg)

36 >>> sub1.getSubscriptions()

37 (’blah@bar.com’, ’doh@bar.com’)

. Line 3–5: Do a very detailed analysis to ensure that the MailSubscriptions class
implements the IMailSubscriptions interface.

. Line 7–10: In doc tests it helps very much if you emphasize how you setup your
test case. Here we make that very explicit by creating a separate section and add
some explanation to it.

. Line 12–24: Check that we can retrieve the list of subscribers and add new ones
as well.

. Line 26–30: Make sure deleting subscriptions works as well.

. Line 32–37: When we create a new adapter using the same message, the subscrip-
tions should still be available. This ensures that the data is not lost when the
adapter is destroyed. An even stronger test would be that the persistence also
works.

Note that there is no check for the case the annotation is not there. This is due to
the fact that the MailSubscriptions constructor should make sure the annotation
is available, even though this means to simply create an empty storage, so we have
definitely covered this case in the implementation.

Since the adapter uses annotations, it requires some setup of the component ar-
chitecture to run the tests. We already bring the services up for the tests, but
now we also have to register an adapter to provide the annotations. Therefore
we have to write a custom setUp() method and use it. The testing code in
tests/test message.py changes to:

1 �
����� zope.interface
�
��� ���� classImplements

2

3 �
����� zope.app.annotation.attribute
�
��� ���� AttributeAnnotations

4 �
����� zope.app.interfaces.annotation
�
��� ���� IAnnotations

5 �
����� zope.app.interfaces.annotation
�
��� ���� IAttributeAnnotatable

6 �
����� zope.app.tests
�
��� ���� placelesssetup

7 �
����� zope.app.tests
�
��� ���� ztapi

8

9 ��	�� setUp(test):

10 placelesssetup.setUp()

11 classImplements(Message, IAttributeAnnotatable)

12 ztapi.provideAdapter(IAttributeAnnotatable, IAnnotations,

13 AttributeAnnotations)

170
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

14

15 �
	�� test_suite():

16 ��	������� unittest.TestSuite((

17 DocTestSuite(’book.messageboard.message’,

18 setUp=setUp, tearDown=placelesssetup.tearDown),

19 unittest.makeSuite(Test),

20))

. Line 7: The ztapi module contains some very useful convenience functions to set
up the component architecture for a test, such as view and adapter registration.

. Line 9: Note that the setUp() expects a test argument which is an instance of
DocTest. You can use this object to provide global test variables.

. Line 11: We usually use ZCML to declare that Message implements IAttributeAnnotatable.
Since ZCML is not executed for unit tests, we have to do it manually here.

. Line 12–13: Setup the adapter that allows us to look up an annotations adapter
for any object claiming it is IAttributeAnnotatable.

You should now run the tests and ensure they pass.

19.4 Step IV: Providing a View for the Mail Subscription

The last piece we have to provide is a view to manage the subscriptions via the Web.
The page template (subscriptions.pt) could look like this:

1 <html metal:use-macro="views/standard_macros/view">

2 <body>

3 <div metal:fill-slot="body" i18n:domain="messageboard">

4

5 <form action="changeSubscriptions.html" method="post">

6

7 <div class="row">

8 <div class="label"

9 i18n:translate="">Current Subscriptions</div>

10 <div class="field">

11 <div tal:repeat="email view/subscriptions">

12 <input type="checkbox" name="remails:list"

13 value="" tal:attributes="value email">

14 <div tal:replace="email">zope3@zope3.org</div>

15 </div>

16 <input type="submit" name="REMOVE" value="Remove"

17 i18n:attributes="value remove-button">

18 </div>

19 </div>

20

21 <div class="row">

22 <div class="label" i18n:translate="">

23 Enter new Users (separate by ’Return’)

24 </div>

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.4. PROVIDING A VIEW FOR THE MAIL SUBSCRIPTION
171

25 <div class="field">

26 <textarea name="emails" cols="40" rows="10"></textarea>

27 </div>

28 </div>

29

30 <div class="row">

31 <div class="controls">

32 <input type="submit" value="Refresh"

33 i18n:attributes="value refresh-button" />

34 <input type="submit" name="ADD" value="Add"

35 i18n:attributes="value add-button" />

36 </div>

37 </div>

38

39 </form>

40

41 </div>

42 </body>

43 </html>

. Line 7–19: The first part lists the existing subscriptions and let’s you select them
for removal.

. Line 20–38: The second part provides a textarea for adding new subscriptions.
Each E-mail address should be separated by a newline (one E-mail per line).

The supporting View Python class then simply needs to provide a subscriptions()

method (see line 11 above) and a form action. Place the following code into
browser/message.py:

1 �
����� book.messageboard.interfaces
�
� � ���� IMailSubscriptions

2

3
��������� MailSubscriptions:

4

5 ��	�� subscriptions(� 	 � �):
6 �
	������� IMailSubscriptions(� 	 � � .context).getSubscriptions()
7

8 ��	�� change(� 	 � �):
9

�
� ’ADD’

�
� � 	 � � .request:

10 emails = � 	 � � .request[’emails’].split(’\n’)
11 IMailSubscriptions(� 	 � � .context).addSubscriptions(emails)
12 	 �

�
� ’REMOVE’

�
� � 	 � � .request:

13 emails = � 	 � � .request[’remails’]
14

�
� isinstance(emails, (str, unicode)):

15 emails = [emails]

16 IMailSubscriptions(� 	 � � .context).removeSubscriptions(emails)
17

18
� 	 � � .request.response.redirect(’./@@subscriptions.html’)

. Line 9 & 12: We simply use the name of the submit button to decide which action
the user intended.

The rest of the code should be pretty forward. The view can be registered as
follows:

172
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

1 <pages

2 for="book.messageboard.interfaces.IMessage"

3 class=".message.MailSubscriptions"

4 permission="book.messageboard.Edit"

5 >

6 <page

7 name="subscriptions.html"

8 template="subscriptions.pt"

9 menu="zmi_views" title="Subscriptions"

10 />

11 <page

12 name="changeSubscriptions.html"

13 attribute="change"

14 />

15 </pages>

. Line 1: The browser:pages directive allows us to register several pages for an
interface using the same view class and permission at once. This is particularly
useful for views that provide a lot of functionality.

. Line 6–10: This page uses a template for creating the HTML.

. Line 11–14: This view on the other hand, uses an attribute of the view class.
Usually methods on the view class do not return HTML but redirect the browser
to another page.

. Line 9: Make sure the Subscriptions view becomes a tab for the Message

object.

It is amazing how compact the browser:pages and browser:page directives
make the registration. In the early development stages we did not have this directive
and everything had to be registered via browser:view, which required a lot of
repetitive boilerplate in the ZCML and Python code.

19.5 Step V: Message Mailer – Writing an Event Subscriber

Until now we have not even said one word about events. But this is about to change,
since the next task is to implement the subscriber object. The generic event system is
very simple: It consists of a list of subscribers and a notify() function. Subscribers
can be subscribed to the event system by appending them to the list. To unsubscribe
an object it must be removed from the list. Subscribers do not have to be any special
type of objects; they merely have to be callable. The notify() function takes an
object (the event) as a parameter; it then iterates though the list and calls each
subscriber passing through the event.

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.5. MESSAGE MAILER – WRITING AN EVENT SUBSCRIBER
173

This means that we have to implement a call () method as part of our
message mailer API in order to make it a subscriber. The entire MessageMailer

class should look like this (put it in the message module):
1 �
����� zope.app

�
�������
 zapi

2 �
����� zope.app.container.interfaces
�
��� ���� IObjectAddedEvent

3 �
����� zope.app.container.interfaces
�
��� ���� IObjectRemovedEvent

4 �
����� zope.app.event.interfaces
�
�������
 IObjectModifiedEvent

5 �
����� zope.app.mail.interfaces
�
�������
 IMailDelivery

6

7
��������� MessageMailer:

8 """Class to handle all outgoing mail."""

9

10 ��	�� __call__(� 	 � � , event):

11 """Called by the event system."""

12

�
� IMessage.providedBy(event.object):

13

�
� IObjectAddedEvent.providedBy(event):

14
� 	 � � .handleAdded(event.object)

15 	 �
�
� IObjectModifiedEvent.providedBy(event):

16
� 	 � � .handleModified(event.object)

17 	 �
�
� IObjectRemovedEvent.providedBy(event):

18
� 	 � � .handleRemoved(event.object)

19

20 ��	�� handleAdded(� 	 � � , object):

21 subject = ’Added: ’+zapi.getName(object)

22 emails = � 	 � � .getAllSubscribers(object)
23 body = object.body

24
� 	 � � .mail(emails, subject, body)

25

26 ��	�� handleModified(� 	 � � , object):

27 subject = ’Modified: ’+zapi.getName(object)

28 emails = � 	 � � .getAllSubscribers(object)
29 body = object.body

30
� 	 � � .mail(emails, subject, body)

31

32 ��	�� handleRemoved(� 	 � � , object):

33 subject = ’Removed: ’+zapi.getName(object)

34 emails = � 	 � � .getAllSubscribers(object)
35 body = subject

36
� 	 � � .mail(emails, subject, body)

37

38 ��	�� getAllSubscribers(� 	 � � , object):

39 """Retrieves all email subscribers."""

40 emails = ()

41 msg = object

42 �
� � � 	 IMessage.providedBy(msg):

43 emails += tuple(IMailSubscriptions(msg).getSubscriptions())

44 msg = zapi.getParent(msg)

45 �
	������� emails

46

47 ��	�� mail(� 	 � � , toaddrs, subject, body):

48 """Mail out the Message Board change message."""

49

�
� � �� toaddrs:

50 �
	�������
51 msg = ’Subject: %s\n\n\n%s’ %(subject, body)

52 mail_utility = zapi.getUtility(IMailDelivery, ’msgboard-delivery’)

53 mail_utility.send(’mailer@messageboard.org’ , toaddrs, msg)

54

174
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

55 mailer = MessageMailer()

. Line 2–4: We want our subscriber to handle add, edit and delete events. We
import the interfaces of these events, so that we can differentiate among them.

. Line 10–18: This is the heart of the subscriber and this chapter. When an event
occurs the call () method is called. First we need to check whether the event
was caused by a change of an IMessage object; if so, let’s check which event was
triggered. Based on the event that occurred, a corresponding handler method is
called.

. Line 20–36: These are the three handler methods that handle the various events.
Note that the modified event handler should really generate a nice diff, instead of
sending the entire message again.

. Line 38–45: This method retrieves all the subscriptions of the current message and
all its ancestors. This way someone who subscribed to message HelloEveryone

will also get e-mailed about all responses to HelloEveryone.

. Line 47–53: This method is a quick introduction to the Mail Delivery utility. Note
how simple the send() method of the Mail Delivery utility is; it is the same API
as for smtplib. The policy and configuration on how the mail is sent is fully
configured via ZCML. See the configuration part later in this chapter.

. Line 60: We can only subscribe callable objects to the event system, so we need
to instantiate the MessageMailer component.

Lastly, we need to register the message mailer component to the event service
and setup the mail utility correctly. Go to your configuration file and register the
following two namespaces in the configure element:

1 xmlns:mail="http://namespaces.zope.org/mail"

Next we setup the mail utility:

1 <mail:smtpMailer name="msgboard-smtp" hostname="localhost" port="25" />

2

3 <mail:queuedDelivery

4 name="msgboard-delivery"

5 permission="zope.SendMail"

6 queuePath="./mail-queue"

7 mailer="msgboard-smtp" />

. Line 1: Here we decided to send the mail via an SMTP server from localhost

on the standard port 25. We could also have chosen to send the mail via the
command line tool sendmail.

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.6. TESTING THE MESSAGE MAILER
175

. Line 3–7: The Queued Mail Delivery utility does not send mails out directly
but schedules them to be sent out independent of the current transaction. This
has huge advantages, since the request does not have to wait until the mails are
sent. However, this version of the Mail Utility requires a directory to store E-
mail messages until they are sent. Here we specify the mail-queue directory
inside the message board package. The value of the attribute name is used by
the MessageMailer to retrieve the Queued Mail Delivery utility. Another Mail
utility is the Direct Mail Delivery utility, which blocks the request until the mails
are sent.

Now we register our message mailer object for the events we want to observe:

1 <subscriber

2 factory=".message.mailer"

3 for="zope.app.event.interfaces.IObjectModifiedEvent" />

4

5 <subscriber

6 factory=".message.mailer"

7 for="zope.app.container.interfaces.IObjectAddedEvent" />

8

9 <subscriber

10 factory=".message.mailer"

11 for="zope.app.container.interfaces.IObjectRemovedEvent" />

The subscriber directive adds a new subscriber (specified via the factory

attribute) to the subscriber list. The for attribute specifies the interface the event
must implement for this subscriber to be called. You might be wondering at this
point why such strange attribute names were chosen. In the Zope application server,
subscriptions are realized via adapters. So internally, we registered an adapter from
IObjectModifiedEvent to None, for example.

Now you might think: “Oh let’s try the new code!”, but you should be careful.
We should write some unit tests before testing the code for real.

19.6 Step VI: Testing the Message Mailer

So far we have not written any complicated tests in the previous chapters of the
“Content Components – The Basics” part. This changes now. First of all, we have
to bring up quite a bit more of the framework to do the tests. The test message.py

module’s setUp() function needs to register the location adapters and the message
mail subscription adapter. So it should look like that:

1 �
����� zope.app.location.traversing
�
� � ���� LocationPhysicallyLocatable

2 �
����� zope.app.location.interfaces
�
� � ���� ILocation

3 �
����� zope.app.traversing.interfaces
�
��� ���� IPhysicallyLocatable

4

5 �
����� book.messageboard.interfaces
�
� � ���� IMailSubscriptions

6 �
����� book.messageboard.interfaces
�
� � ���� IMessage

176
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

7 ������� book.messageboard.message
�
� � ���
 MailSubscriptions

8

9 �
	�� setUp():

10 ...

11 ztapi.provideAdapter(ILocation, IPhysicallyLocatable,

12 LocationPhysicallyLocatable)

13 ztapi.provideAdapter(IMessage, IMailSubscriptions, MailSubscriptions)

. Line 1–3 & 11–12: This adapter allows us to use the API to access parents of
objects or even the entire object path.

. Line 5–7 & 13: We simply register the mail subscription adapter that we just
developed, so that the mailer can find the subscribers in the messages.

. Line 10: The three dots stand for the existing content of the function.

Now all the preparations are made and we can start writing the doctests. Let’s
look at the getAllSubscribers() method tests. We basically want to produce a
message and add a reply to it. Both messages will have a subscriber. When the
getAllSubscribers() method is called using the reply message, the subscribers for
the original message and the reply should be returned. Here is the test code, which
you should simply place in the getAllSubscribers() docstring:

1 Here a small demonstration of retrieving all subscribers.

2

3 >>> from zope.interface import directlyProvides

4 >>> from zope.app.traversing.interfaces import IContainmentRoot

5

6 Create a parent message as it would be located in the message

7 board. Also add a subscriber to the message.

8

9 >>> msg1 = Message()

10 >>> directlyProvides(msg1, IContainmentRoot)

11 >>> msg1.__name__ = ’msg1’

12 >>> msg1.__parent__ = None

13 >>> msg1_sub = MailSubscriptions(msg1)

14 >>> msg1_sub.context.__annotations__[SubscriberKey] = (’foo@bar.com’,)

15

16 Create a reply to the first message and also give it a subscriber.

17

18 >>> msg2 = Message()

19 >>> msg2_sub = MailSubscriptions(msg2)

20 >>> msg2_sub.context.__annotations__[SubscriberKey] = (’blah@bar.com’,)

21 >>> msg1[’msg2’] = msg2

22

23 When asking for all subscriptions of message 2, we should get the

24 subscriber from message 1 as well.

25

26 >>> mailer.getAllSubscribers(msg2)

27 (’blah@bar.com’, ’foo@bar.com’)

. Line 3–4: Import some of the general functions and interfaces we are going to use
for the test.

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.6. TESTING THE MESSAGE MAILER
177

. Line 6–14: Here the first message is created. Note how the message must be a
IContainmentRoot (line 10). This signalizes the traversal lookup to stop looking
any further once this message is found. Using the mail subscription adapter (line
13–14), we now register a subscriber for the message.

. Line 16–21: Here we create the reply to the first message. The parent and name
of the second message will be automatically added during the setitem call.

. Line 23–27: The mailer should now be able to retrieve both subscriptions. If the
test passes, it does.

Finally we test the call () method directly, which is the heart of this object
and the only public method. For the notification to work properly, we have to
create and register an IMailDelivery utility with the name “msgboard-delivery”.
Since we do not want to actually send out mail during a test, it is wise to write a
stub implementation of the utility. Therefore, start your doctests for the notify()

method by adding the following mail delivery implementation to the docstring of the
method:

1 >>> mail_result = []

2

3 >>> from zope.interface import implements

4 >>> from zope.app.mail.interfaces import IMailDelivery

5

6 >>> class MailDeliveryStub(object):

7 ... implements(IMailDelivery)

8 ...

9 ... def send(self, fromaddr, toaddrs, message):

10 ... mail_result.append((fromaddr, toaddrs, message))

11

12 >>> from zope.app.tests import ztapi

13 >>> ztapi.provideUtility(IMailDelivery, MailDeliveryStub(),

14 ... name=’msgboard-delivery’)

. Line 1: The mail requests are stored in this global variable, so that we can make
test assertions about the supposedly sent mail.

. Line 6–10: Luckily the Mail utility requires only the send() method to be imple-
mented and there we simply store the data.

. 12–14: Using the ztapi API, we can quickly register the utility. Be careful that
you get the name right, otherwise the test will not work.

So far so good. Like for the previous test, we now have to create a message and
add a subscriber.

1 Create a message.

2

3 >>> from zope.interface import directlyProvides

178
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

4 >>> from zope.app.traversing.interfaces import IContainmentRoot

5

6 >>> msg = Message()

7 >>> directlyProvides(msg, IContainmentRoot)

8 >>> msg.__name__ = ’msg’

9 >>> msg.__parent__ = None

10 >>> msg.title = ’Hello’

11 >>> msg.body = ’Hello World!’

12

13 Add a subscription to message.

14

15 >>> msg_sub = MailSubscriptions(msg)

16 >>> msg_sub.context.__annotations__[SubscriberKey] = (’foo@bar.com’,)

This is equivalent to what we did before, so nothing new here. Finally, we create
an modification event using the message and send it to the notify() method. We
then problem the global mail result variable for the correct functioning of the
method.

1 Now, create an event and send it to the message mailer object.

2

3 >>> from zope.app.event.objectevent import ObjectModifiedEvent

4 >>> event = ObjectModifiedEvent(msg)

5 >>> mailer(event)

6

7 >>> from pprint import pprint

8 >>> pprint(mail_result)

9 [(’mailer@messageboard.org’,

10 (’foo@bar.com’,),

11 ’Subject: Modified: msg\n\n\nHello World!’)]

. Line 3–4: In this particular test, we use the object modification event. Any
IObjectEvent can be initiated by passing the affected object as argument to the
constructor of the event.

. Line 5: Here we notify the mailer that an object has been modified. Note that the
mailer is an instance of the MessageMailer class and is initialized at the end of
the module.

. Line 7–11: The pretty print (pprint) module comes in very handy when out-
putting complex data structures.

We are finally done now. You should run the tests to verify your implementation
and then head over to the next section to see how we can give this code a real swirl.

19.7 Step VII: Using the new Mail Subscription

First of all, we have to restart Zope and make sure in boots up properly. Then you
can go to the management interface and view a particular message. You might notice
now that you have a new tab called Subscriptions, so click on it.

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.8. THE THEORY
179

In the Subscriptions view, you will see a text area in which you can enter
subscription E-mail addresses, which will receive E-mails when the message or any
children are changed. When adding a test E-mail address, make sure this E-mail
address exists and is your own, so you can verify its arrival. Click on the Add submit
button to add the E-mail to the subscriber list. Once the screen returns, you will
see this E-mail appear under “Current Subscriptions” with a checkbox before it, so
you can delete it later, if you wish.

Next, switch to the Edit view and modify the MessageBody a bit and submit
the change. You should notice that the screen returns almost immediately, but that
your mail has not necessarily arrived yet. This is thanks to the Queued Mail Delivery
Utility, which sends the mails on a separate thread. However, depending on the speed
of your E-mail server, a few moments later you should receive an appropriate E-mail.

19.8 Step VIII: The Theory

While this chapter demonstrates a classical use of events from an application devel-
oper point of view, it is not quite the whole story. So far we have discovered the use
of the basic event system.

We did not explain how Zope uses this system. As mentioned before, the
subscriber directive does not append the message mailer instance to the subscrip-
tion list directly, as one may expect. Instead, it registers the message mailer as a
“subscription adapter” that adapts the an event providing some event interface, i.e.
IObjectModifiedEvent, to None, since it explicitly does not provide any special in-
terface. The difference between regular and subscription adapters is that one can
register several subscription adapters having the same required and provided pro-
vided interfaces. When requested, all matching adapters are returned. This allows
us to have multiple subscribers for an event.

The Zope application server adds a special dispatch subscriber (zope.app.event.
dispatching) that forwards the notification to all adapter-based subscriptions. In
the following diagram you can see how an event flows through the various parts of
the system to the subscriber that will make use of the event. The example is based
on the code developed in this chapter.

A special kind of subscribers are event channels, which change an event and
redistribute it or serve as event filters. You could think of them as middle men. We
could have written this chapter using event channels by implementing a subscriber
that forwards an event only, if the object provides IMessage. An implementation
could look as follows:

1 ��	�� filterEvents(event):

2

�
� IMessage.providedBy(event.object):

3 zope.event.notify(event.object, event)

180
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Figure 19.1: Demonstration of an event being distributed to its subscribers.

The actual mailer would then be a multi-adapter that adapts from both the mes-
sage and the event:

1
�
������� MessageMailer:

2

3 __call__(� 	 � � , message, event):

4 ...

Multi-subscriptions-adapters are registered in ZCML as follows:

1 <subscriber

2 factory = ".message.mailer"

3 for = ".interface.IMessage

4 zope.app.event.interface.IObjectEvent" />

The modified sequence diagram can be seen below in figure 19.8.
A final tip: Sometimes events are hard to debug. In these cases it is extremely

helpful to write a small subscriber that somehow logs all events. In the simplest
case this can be a one-line function that prints the string representation of the event
in console. To subscribe a subscriber to all events, simply specify for="*" in the
zope:subscriber directive.

CHAPTER 19 EVENTS AND SUBSCRIBERS

19.8. THE THEORY
181

Figure 19.2: Modification of the even publication using an event channel.

Exercises

1. Finish the outlined implementation of the event channel above and rewrite the
message mailer to be a multi-adapter.

2. Implement a subscriber that subscribes to all events and prints a line to the
console for received event. Then extend this subscriber to use the common
logging mechanism.

182
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

CHAPTER 20

APPROVAL WORKFLOW FOR

MESSAGES

Difficulty

Contributor

Skills

• A good understanding of the Component Architecture and ZCML is required.

• Familiarity with the messageboard package is necessary, so that you can easily
follow the new extensions.

• Some familiarity with workflows and various solutions is desired. Optional.

Problem/Task

Workflows are important in any company. Therefore it is not surprising that
software-based workflows became a primary requirement for many computer systems,
especially for content management systems (CMS). This chapter will add publication
workflow to the messageboard.

Solution

While this chapter does not deal with every aspect of the zope.app.workflow

package – for example it does not explain how to create Process Definitions – it
demonstrates the most common use cases by integrating a workflow in an existing
content object package. And the realization is amazingly simple. Behind the simple

183

184
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

frontend, however, there is a maze of interfaces, their implementation and their
presentation. The goal of the last section of the chapter is then to explain the
framework from an architectural point of view.

20.1 Step I: Making your Message Workflow aware

In order to make a content object workflow-aware, you simply have to tell the system
that it can store workflow data. The simplest way is to add the following interface
declaration to the Message content directive in the main configuration file:

1 <implements interface=

2 "zope.app.workflow.interfaces.IProcessInstanceContainerAdaptable"/>

Appropriate adapters for storing workflow data are already defined for objects also
implementing IAnnotable. Our message object does this already by implementing
IAttributeAnnotable as you can see in the same content directive.

Now the object can contain workflows and when you restart your browser, you
should notice that Message instances now also have a “Workflow” tab, which is still
totally empty.

20.2 Step II: Create a Workflow and its Supporting Compo-
nents via the Browser

Next we have to create the workflow components themselves. For this first attempt
we are going to create all the components by hand, since this process provides some
enlightenment on how the entire workflow mechanism works.

After you started Zope 3, go to the folder you want to add (or have already) your
messageboard. Go to the Site Manager by clicking on “Manage Site”; if the Folder
is not yet a site, click on “Make a site”. Now click on the “Tools” tab.

If you you just created the site, you now have to create a “Local Utility Service”.
This can be accomplished by clicking on the “Service Tool” link. Click on the “Add”
button, select the “Utility Service” on the next screen, enter a name (like “utilities”
for example) and confirm all this by pressing “Add”. Now you have a fully configured
and activated local utility service. Go back to the tools overview screen now.

The next step is to define an actual workflow in terms of a process, which contains
states and transitions. Therefore, click on the “Workflows” link. Next add a work-
flow by click on the “Add” button. For this workflow we want a “Stateful Process
Definition” (which is likely to be you only choice) and name it “publish-message”.
Clicking on the “Add” button will create the workflow and activate it.

Since the stateful process defintion component supports a nice XML Import and
Export filter, it is best to define the process in XML. For later reference, we are going

CHAPTER 20 APPROVAL WORKFLOW FOR MESSAGES

20.2. CREATE A WORKFLOW VIA THE BROWSER
185

to store the workflow XML in a file and make it part of our product. Therefore, open
a new file called workflow.xml in the messageboard package and add the following
process definitions:

1 <? � � ��� 	�� �
�
� � ="1.0"?>

2 <workflow type="StatefulWorkflow" title="Message Publication Review">

3 <schema name=""/>

4 <states>

5 <state name="INITIAL" title="initial" />

6 <state name="private" title="Private" />

7 <state name="pending" title="Pending Publication" />

8 <state name="published" title="Public" />

9 </states>

10 <transitions>

11

12 <transition

13 sourceState="published"

14 destinationState="private"

15 name="published_private"

16 title="Unpublish Message"

17 permission="book.messageboard.PublishContent"

18 triggerMode="Manual" />

19

20 <transition

21 sourceState="private"

22 destinationState="pending"

23 name="private_pending"

24 title="Submit Message"

25 permission="book.messageboard.Edit"

26 triggerMode="Manual" />

27

28 <transition

29 sourceState="INITIAL"

30 destinationState="private"

31 name="initial_private"

32 title="Make Private"

33 triggerMode="Automatic" />

34

35 <transition

36 sourceState="pending"

37 destinationState="published"

38 name="pending_published"

39 title="Publish Message"

40 permission="book.messageboard.PublishContent"

41 triggerMode="Manual" />

42

43 <transition

44 sourceState="pending"

45 destinationState="private"

46 name="pending_private"

47 title="Retract Message"

48 permission="book.messageboard.Edit"

49 triggerMode="Manual" />

50

51 <transition

52 sourceState="pending"

53 destinationState="private"

54 name="pending_private_reject"

186
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

55 title="Reject Message"

56 permission="book.messageboard.PublishContent"

57 triggerMode="Manual" />

58

59 </transitions>

60

61 </workflow>

. Line 2: Define the workflow to be a stateful workflow, the only type that is cur-
rently implemented. The “title” is the string under which the workflow will be
known.

. Line 3: We do not have a particular data schema, so let’s skip that. These schemas
are used to allow the developer to add additional workflow-relevant data (object-
specific) to the workflow instances.

. Line 4–9: Define the states a Message can be into. The title, again, serves as a
human readable presentation of the state.

. Line 10–59: This is a list of all possible transitions the object can undergo. I think
the attributes of the transition directive are self explanatory and do not need any
further explanation.

Once you saved the XML file, click on the newly created workflow (in the “Work-
flows” tool overview) and then on the “Import/Export” tab. Copy the XML from
the file and paste it into the textarea of the screen. Then press the “Import” button.
The same screen will return with a message saying “Import was successfull!”. You
will also see the XML (probably differently formatted) at the botton of the screen.
If you now click on ManageStates, you should see the fours states you just added
via the XML import. The same is true for the ManageTransitions view.

You might have already noticed that the workflow requires a new permission
named “book.messageboard.PublishContent” to be defined. Therefore go to the
messageboard’s configuration file and add the permission:

1 <permission

2 id="book.messageboard.PublishContent"

3 title="Publish Message"

4 description="Publish Message."/>

In the security.zcml configuration file grant the “Editor” the permission to
publish content.

1 <grant

2 permission="book.messageboard.PublishContent"

3 role="book.messageboard.Editor"/>

Now restart Zope 3. That should be everything that’s to it! Now let’s see whether
everything works.

CHAPTER 20 APPROVAL WORKFLOW FOR MESSAGES

20.3. ASSIGNING THE WORKFLOW
187

20.3 Step III: Assigning the Workflow

Now that our message is workflow-aware and a workflow has been created, we have
to assign the workflow to IMessage objects. This is done via the “Content Workflow
Manager”, which maps workflows to content objects.

Go to the site’s “tools” Site Management Folder. To do that go to the site’s
overview and select the “Software” tab. You can now enter the “tools” folder. Once
there, add a “Content Workflow Manager” named “ContentWorkflows”. When com-
pleted, you are automatically forwarded to the “Registration” view, since the man-
ager is just another utility. Click on the “Register” button, register the utility as
“ContentWorkflows” and press the “Add” button. You have now successfully regis-
tered and activated the utility.

The next step is to declare the workflow to interface mapping. To do so, go to the
“Content/Process Registry” tab of the workflow manager. On this page you should
now see a list of interfaces (many of them) and a list of process definition names,
which only contains one entry, the name of our previously created workflow. Select
the book.messageboard.interface.IMessage interface and the “publish-message”
and click on “Add Mappings”. The previous page should return, but this time with
an entry below “Available Mappings”.

But how does the workflow gets appended to a message object? The content
workflow manager is a subscriber to IObjectCreated events. If the created object
implements an interface for which we have a workflow, then a process instance of this
workflow is added to the object as an annotation. Note that one can assign many
different workflows to an object. The workflow manager is subscribed as soon as you
make it active as utility, which we already did when we registered it.

20.4 Step IV: Testing the Workflow

The workflow will only work with new Messages, of course. So, in the folder you cre-
ated the workflow components, create a new Message Board and add a new Message
to it. If you now click on the Workflows tab you will see that it is not empty any-
more. In the selection box you can see all available workflows; currently there should
be only one called “Message Publication Review” (remember the workflow title in
the XML?). You can choose it.

Below the selection box you can see the current status of the Message, which
is private at this point; remember, the transition from initial to private is
automatic based on our workflow definition. In the last entry you now see the
possible transitions you can execute from this state. Currently we can only “Submit

188
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Message” to submit the message for review. So select this transition and click “Make
Transition”.

The status will switch to “Pending Publication” (pending) and now you have
three transition choices. You might have noticed already that this workflow is not
very safe or useful, since every Editor (and only editors) can cause a transitions. See
exercise 1 to solve this problem. Feel free to play with the transitions some more.

20.5 Step V: Writing a nice “Review Messages” View for Mes-
sage Boards

Now that we have the basic workflow working, we should look at an example on how
we can make use of the workflow mechanism. So the first task will be to provide
the Editor with a nice overview over all pending messages from the message board
object.

So we basically need a view class that recursively walks through the tree and
and picks out the pending messages. To do this, it is extremely helpful to write a
convenience function that simply checks whether a message has a certain status. The
implementation could be something line the following, which we simply place into
browser/messageboard.py:

1 ������� zope.app
�
� � ���
 zapi

2 ������� zope.app.workflow.interfaces
�
��� ���� IProcessInstanceContainer

3

4 �
	�� hasMessageStatus(msg, status, workflow=’publish-message’):

5 """Check whether a particular message matches a given status"""

6 adapter = IProcessInstanceContainer(msg)

7

�
� adapter:

8 # No workflow is defined, so the message is always shown.

9

�
� � �� adapter.keys():

10 �
	������� True

11 � ��� item
�
� adapter.values():

12

�
� item.processDefinitionName != workflow:

13
� � ��

�
����	

14

�
� item.status == status:

15 �
	������� True

16

17 ��	������� False

. Line 2 & 6: The returned adapter will provide us access to the message’s workflows
(process instances). in our case we only expect to find one workflow.

. Line 8–10: This is some backward compatibility for the messages that were created
before we added the workflow feature.

. Line 11–15: Look through all the workflows (process instances) and try to find the
one we are looking for. If the status matches the state we are checking for, then
we can return a positive result. If not, we will eventually return False (Line 16).

CHAPTER 20 APPROVAL WORKFLOW FOR MESSAGES

20.5. THE “REVIEW MESSAGES” VIEW
189

Next we are going to implement the view class, which will provide the method
getPendingMessagesInfo() which will return a list of information structures for
pending messages, where each info contains the title and the URL to the workflow
view of the message. Place the following view in brower/messageboard.py:

1 �
����� book.messageboard.interfaces
�
� � ���� IMessage

2

3
��������� ReviewMessages:

4 """Workflow: Review all pending messages"""

5

6 ��	�� getPendingMessages(� 	 � � , pmsg):

7 """Get all pending messages recursively."""

8 msgs = []

9 ����� name, msg
�
� pmsg.items():

10

�
� IMessage.providedBy(msg):

11

�
� hasMessageStatus(msg, ’pending’):

12 msgs.append(msg)

13 msgs += � 	 � � .getPendingMessages(msg)
14 �
	������� msgs

15

16 ��	�� getPendingMessagesInfo(� 	 � �):
17 """Get all the display info for pending messages"""

18 msg_infos = []

19 ����� msg
�
� � 	 � � .getPendingMessages(� 	 � � .context):

20 info = {}

21 info[’title’] = msg.title

22 info[’url’] = zapi.getView(

23 msg, ’absolute_url’, � 	 � � .request)() + ’/@@workflows.html’

24 msg_infos.append(info)

25 �
	������� msg_infos

. Line 6–14: This is the actual recursive method that searches for all the pending
messages.

• Line 8: This will be the resulting flat list of pending messages.

• Line 10: Since we can find replies (messages) and attachments (files) in a
message, we have to make sure that we deal with an IMessage object.

• Line 11–12: If the message is pending, then add it to the list of pending
messages.

• Line 13: Whatever message it is, we definitely want to look at its replies to
see whether there are pending messages lying around.

. Line 16–25: This method creates a list of infos about the messages using the list
of pending messages (line 20). This is actually the method that will be called from
the page template.

Next we create the template named review.pt that will display the pending
messages:

190
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

1 <html metal:use-macro="views/standard_macros/view">

2 <body>

3 <div metal:fill-slot="body" i18n:domain="messageboard">

4

5 <h1 i18n:translate="">Pending Messages</h1>

6

7 <div class="row" tal:repeat="msg view/getPendingMessagesInfo">

8 <div class="field">

9 <a href="" tal:attributes="href msg/url"

10 tal:content="msg/title" />

11 </div>

12 </div>

13

14 </div>

15 </body>

16 </html>

. Line 7–12: Iterate over all message entries and create links to each pending mes-
sage, displaying its title.

Finally, we just have to register the new view using simply:

1 <page

2 name="review.html"

3 for="book.messageboard.interfaces.IMessageBoard"

4 class=".messageboard.ReviewMessages"

5 permission="book.messageboard.PublishContent"

6 template="review.pt"

7 menu="zmi_views" title="Review Messages"/>

Now restart your Zope 3 server and enjoy the new view. You could do much more
with this view, but this should give you an idea of the framework’s functionality.

20.6 Step VI: Adjusting the Message Thread

Okay, now we have a working workflow, a way for the message writer to request
publication and a view for the editor to approve or reject messages. But the workflow
does not impinge on the interaction of the user with the message board at all yet.
Therefore, let’s modify the message thread view to only show published messages.

The change requires only two more lines in browser/thread.py. First import
the hasMessageStatus() function.

1 ������� messageboard
�
��� ���� hasMessageStatus

Second, extend the condition that checks that an object implements IMessage

to also make sure it is published.

1

�
� IMessage.providedBy(child) � ��� \

2 hasMessageStatus(child, ’published’):

And that’s it! Restart Zope and check that it works!

CHAPTER 20 APPROVAL WORKFLOW FOR MESSAGES

20.7. AUTOMATION OF WORKFLOW AND FRIENDS CREATION
191

20.7 Step VII: Automation of Workflow and Friends creation

Now that we have our workflow support completed, we should direct our attention
to one last quirk. Remember when we created the workflow by hand in several steps.
You certainly do not want to require your users to add all these objects by hand.
It would be neat, if the workflow code would be added after the message board was
created and added. And this is actually not hard to do. We only have to create a
custom template and an add-view and insert it in the browser:addform directive.

So let’s start with the template, which should provide an option for the user to
choose whether the workflow objects should be generated or not. Create a new file
called messageboard add.pt and insert the following content:

1 <html metal:use-macro="views/standard_macros/page">

2 <body>

3 <div metal:fill-slot="body" i18n:domain="messageboard">

4

5 <div metal:use-macro="views/form_macros/addform">

6

7 <div metal:fill-slot="extra_bottom" class="row">

8 <div class="field">

9 <h3><input type="checkbox" name="workflow:int"

10 value="1" checked=""/>

11 Create Workflow

12 </h3>

13 Without the workflow you will

14 not be able to review messages before they are

15 published. Note that you can always modify the

16 messageboard workflow later to make all transitions

17 automatically.

18 </div>

19 </div>

20

21 </div>

22

23 </div>

24 </body>

25 </html>

Nothing surprising; if we find the workflow attribute in the request, we now the
option was set. Next we write the custom create and add view for the messageboard,
which I simply placed into browser/messageboard.py:

1

�
�������� os

2 �
����� zope.proxy
�
� � ���
 removeAllProxies

3

4 �
����� zope.app.registration.interfaces
�
�������� ActiveStatus

5 �
����� zope.app.site.interfaces
�
�������
 ISite

6 �
����� zope.app.site.service
�
��� ���� SiteManager, ServiceRegistration

7 �
����� zope.app.utility.utility
�
�������
 LocalUtilityService, UtilityRegistration

8 �
����� zope.app.workflow.interfaces
�
� � ���� IProcessDefinitionImportHandler

9 �
����� zope.app.workflow.stateful.contentworkflow
�
� � ���
 ContentWorkflowsManager

10 �
����� zope.app.workflow.stateful.definition
�
� � ���� StatefulProcessDefinition

11 �
����� zope.app.workflow.stateful.interfaces
�
� � ���� IContentWorkflowsManager

192
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

12 ������� zope.app.workflow.stateful.interfaces
�
��� ���� IStatefulProcessDefinition

13

14

�
�������
 book.messageboard

15

16

17
�
������� AddMessageBoard(object):

18 """Add a message board."""

19

20 ��	�� createAndAdd(� 	 � � , data):

21 content = super(AddMessageBoard, � 	 � �).createAndAdd(data)
22

23

�
� � 	 � � .request.get(’workflow’):

24 folder = removeAllProxies(zapi.getParent(content))

25

�
� � �� ISite.providedBy(folder):

26 sm = SiteManager(folder)

27 folder.setSiteManager(sm)

28 default = zapi.traverse(folder.getSiteManager(), ’default’)

29

30 # Create Local Utility Service

31 default[’Utilities’] = LocalUtilityService()

32 rm = default.getRegistrationManager()

33 registration = ServiceRegistration(zapi.servicenames.Utilities,

34 ’Utilities’, rm)

35 key = rm.addRegistration(registration)

36 zapi.traverse(rm, key).status = ActiveStatus

37

38 # Create the process definition

39 default[’publish-message’] = StatefulProcessDefinition()

40 pd_path = zapi.getPath(default[’publish-message’])

41 registration = UtilityRegistration(

42 ’publish-message’, IStatefulProcessDefinition, pd_path)

43 pd_id = rm.addRegistration(registration)

44 zapi.traverse(rm, pd_id).status = ActiveStatus

45

46 import_util = IProcessDefinitionImportHandler(

47 default[’publish-message’])

48

49 xml = os.path.join(

50 os.path.dirname(book.messageboard.__file__), ’workflow.xml’)

51

52 import_util.doImport(open(xml, mode=’r’).read())

53

54 # Create Content Workflows Manager

55 default[’ContentWorkflows’] = ContentWorkflowsManager()

56 cm_path = zapi.getPath(default[’ContentWorkflows’])

57 registration = UtilityRegistration(

58 ’wfcontentmgr’, IContentWorkflowsManager, cm_path)

59 cm_id = rm.addRegistration(registration)

60 zapi.traverse(rm, cm_id).status = ActiveStatus

61

62 contentmgr = default[’ContentWorkflows’]

63 contentmgr.register(IMessage, ’publish-message’)

64

65 ��	������� content

CHAPTER 20 APPROVAL WORKFLOW FOR MESSAGES

20.7. AUTOMATION OF WORKFLOW AND FRIENDS CREATION
193

. Line 1–14: A huge amount of imports, so that all components are available. I think
this alone shows what a mess simple configuration objects and ZCML usually save
us from.

. Line 20–21: The createAndAdd method is the only one we have to override and
extend. The good part is that the original method returns the added message
board instance itself, so that we store it and make use of it. After this line, the
message board is already created and added.

. Line 23: If the user wants us to autogenerate the workflow objects, then let’s do
it.

. Line 24: Grab the folder that contains the message board.

. Line 25–27: Make sure that the folder is a site. If not make it one.

. Line 28: Now we just get the default site management folder, into which we will
place all the local component.

. Line 30–36: Create a new local utility service, so that we can register our local
utilities we are about to create. Note that both the “Content Workflow Manager”
and the “Stateful Process Definition” are local utilites.

. Line 38–44: Add the a new process definition and register it to be usable (active).

. Line 46–52: Here comes the tricky part. We have to create the workflow states
and transitions from our saved workflow.xml file. But where to get the directory
from? The easiest way is to import the package itself, get the path, then truncate
the init .py part and we should be left with the directory path. You then
simply add the workflow XML filename at the end and open it for import. The
reason we want to use the os module everywhere is that we want to keep Zope
packages platform-independent.

. Line 54–63: Create the content workflows manager, which gets notified when
IObjectCreatedEvent events occurr, so it can add process instances to it. On
line 63 we tell the system that the “publish-message” workflow (created above)
should be used only for IMessage components.

Now we need to register the add view class and template with the addform in
ZCML. The addform directive for the message board therefore becomes:

1 <addform

2 label="Add Message Board"

3 name="AddMessageBoard.html"

4 template="messageboard_add.pt"

5 class=".messageboard.AddMessageBoard"

194
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

6 schema="book.messageboard.interfaces.IMessageBoard"

7 content_factory="book.messageboard.messageboard.MessageBoard"

8 fields="description"

9 permission="zope.ManageContent"

10 />

. Line 3–4: See how easy it is to incorporate custom templates and classes for an
add form (the same is true for edit forms).

After restarting Zope, you should be able to enjoy the changes. Create a new
Folder and in it a new Message Board. You should now see the new option and
after the message board was successfully created, the workflow components should
be available in the parent folder.

20.8 The Theory

Now that we have completed the practical part of the chapter, we should look a bit
more carefully at the framework supporting all this functionality. The framework
was designed to support any type of generic workflow implementation. The Zope
community itself has produced two, the “activity” and “entity” model.

Activity-based workflows implement workflow in a transition-centric fashion,
where an object is moved in a graph of workflow states and transitions outside of its
physical hierarchy. This type of model was developed by the Workflow Management
Coalition (WfMC) and is implemented in the Zope 2 OpenFlow/CMFFlow product.
The advantage of this model is a high degree of flexibility and scalability, which is
well established thanks to the WfMC.

Entity-based workflows, on the other hand, store the current workflow state of the
object as meta data in the object itself, so that no real workflow graph exists, but
is only defined by a set of states and transitions. This model was implemented by
DCWorkflow in Zope 2 and is known as “stateful” in Zope 3. One of its advantages
is simplicity of implementation and a flatter learning curve. It is the workflow type
we used in this chapter.

Some terms:

• Process Definition: This component defines in what states a content object can
be and what the possible transitions between them are. It is basically a blue
print of the actual workflow.

• Process Instance: If the Process Definition is the blueprint, then the Process
Instance is the workflow itself; it is the realization of the Process Definition,
which is used to actually manage the workflow for one particular object, i.e.

CHAPTER 20 APPROVAL WORKFLOW FOR MESSAGES

20.8. THE THEORY
195

there is one Process Instance per workflow per content component instance.
Note that one object can have several workflows associated with itself.

• Process Instance Container: This object is used to store actual Process Instances
and is usually the component that is tagged to an object via an annotation.

• Content Workflows Manager (stateful): This utility is responsible to add the
correct workflows to a content object upon creation.

One of the powerful features of the “stateful” workflow implementation is that ev-
ery process instance can have workflow-relevant data associated with it. The specifics
of this data are specified via a schema in the process definition. When an instance
of a process is appended to an object, placeholders for this data are created as well.
The workflow-relevant data can be useful for transition conditions, comments and
the like.

196
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Exercises

1. The current workflow is not very secure. Any message board Editor can cause
all transitions. Therefore create a different permission for the “Submit Message”
(private to pending) and the “Retract Message” (pending to private) transition
and assign it to the Message Board user. Make sure that now users can only
cause these two transitions and editors still can cause them all.

2. The ReviewMessages view is in some respects pretty boring and not very user-
friendly. It would be nice to be able to mass-approve messages or reject them,
in case of spamming. Extend the ReviewMessages to support this feature.

CHAPTER 21

PROVIDING ONLINE HELP SCREENS

Difficulty

Newcomer

Skills

• While this chapter has almost no direct prerequisites, the developer should still
be familiar with at least the first two chapters of this section.

• Some ZCML knowledge is of advantage.

Problem/Task

Offering help to the user at any point of a GUI is an important feature for all
applications. Our message board package does a really bad job with providing help
up to this point. This chapter will change that by using Zope 3’s online help package.
This has not much to do with Python programming, but is part of the development
process.

Solution

This should be a very quick chapter, since there are only two tasks. First you
need to write the actual help screens (can be either pain text, STX, ReST or HTML)
and then you simply register them. So let’s dive right into it. Since the help will
be for browser views, I prefer to place the help files in a help directory inside
messageboard/browser.

First create a file called package intro.rst and enter the following content:

197

198
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

1 ==========================

2 Message Board Demo Package

3 ==========================

4

5 This package demos various features of the Zope 3 Framework. If you

6 have questions or concerns, please let me know.

Then a file called board review.rst containing

1 This view lists all messages in the board that are pending for

2 publication. Each listed method is a link that brings you to the

3 message’s "Workflow" view where you can initiate a transition.

Finally add msg edit.rst with the following text:

1 This screen allows you to edit the data (i.e. the subject and body) of

2 the Message object.

3

4 title - A one line unicode text string that briefly describes the

5 purpose/subject of the message.

6

7 body - A multiple line unicode text string that is the actual content of

8 the message. It is accepting HTML, but restricts the user to a

9 couple of selected tags. Feel free to type anything you wish.

Notice how I do not have titles for the text itself. We will define titles in the
configuration, which is displayed as header on the Web site, so that there is no need
for another title.

All that’s left to do is to register the new help screens. Help Topics can be
organized in a hierarchical manner. In order to keep all of the message board package
screens together in one sub-tree, we make the package info.rst help topic the
parent of all the other help screens. Open your configuration file (messageboard/

browser/configure.zcml). Then we need to add the help namespace in the zope:

configure element using the following declaration:

1 xmlns:help="http://namespaces.zope.org/help"

Now you can add the following directives:

1 <help:register

2 id="messageboard"

3 title="Message Board Help"

4 parent="ui"

5 for="book.messageboard.interfaces.IMessageBoard"

6 doc_path="./help/package_intro.rst"/>

7

8 <help:register

9 id="board.review"

10 title="Publication Review"

11 parent="ui/messageboard"

12 for="book.messageboard.interfaces.IMessageBoard"

13 view="review.html"

14 doc_path="./help/board_review.rst"/>

15

16 <help:register

17 id="message.edit"

CHAPTER 21 PROVIDING ONLINE HELP SCREENS
199

18 title="Change Message"

19 parent="ui/messageboard"

20 for="book.messageboard.interfaces.IMessage"

21 view="edit.html"

22 doc_path="./help/msg_edit.rst"/>

. Line 2: This is the id of the Help Topic as it will be available in the URL.

. Line 3: The title of the Help Topic that is displayed above the topics content.

. Line 4: The path of the parent help topic. The ui Help Topic comes by default
with Zope 3, and you should attach all your “screen help” to it.

. Line 5: This registers the Help Topic as the default context help for message board
objects. This is an optional attribute.

. Line 6: The relative path to the help file. Zope 3 will recognize file endings and
create the appropriate filters for the output. Possible endings include txt, rst,
and html and stx.

. Line 12–13: Here we register a topic specifically for the review.html view of a
message in the messageboard.

. Line 11 & 19: Be careful to use URI-like syntax to specify the parent.

Now all you need to do is to restart Zope and go to a message board’s message
review view. Like all management pages, there a “Help” link on the very right side
below the tabs. Usually this link just brings you to the generic online help screen,
but if you click on it from the message board’s review screen, you will see the help
for this particular view. Another possibility would be to create special Message

and MessageBoard object introduction screens, but I found this to be overkill in
this situation.

200
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Figure 21.1: The help screen for the message board’s “Review Messages” tab.

Exercises

1. Implement online help screens for all other views.

CHAPTER 22

OBJECT TO FILE SYSTEM MAPPING

USING FTP AS EXAMPLE

Difficulty

Newcomer

Skills

• Be familiar with the Message Board Demo package up to this point.

• Good understanding of the Component Architecture, especially Adapters.

• Feel comfortable with writing ZCML-based configuration.

• Basic knowledge of the filesystem interfaces. Optional.

Problem/Task

Zope provides by default an FTP server , which is a filesystem based protocol.
This immediately raises the question about the way objects are mapped to the filesys-
tem representation and back. To accomplish the mapping in a flexible and exchange-
able way, there exists a set of interfaces that can be implemented as adapters to pro-
vide a representation that the FTP Publisher understands. This chapter shows how
to implement some of the interfaces for a custom filesystem representation.

Solution

At this point you might wonder: “Why in the world would we have to write our
own filesystem support? Is Zope not providing any implementations by default?”

201

202
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Well, to answer the latter question: Yes and no. There is an adapter registered for
IContainer to IReadDirectory and IWriteDirectory. However, they are not
very useful, since our Message Board and Message objects are not only containers
but also contain content that is not displayed anywhere. Just start Zope 3 and check
it out yourself. Thus it will be the goal of this chapter to create a representation
that handles the containment and the content at the same time.

Since the core has already a lot of code presenting IContainer implementations
as directories, we should reuse this part of the framework. The content of an object
could be simply represented by a virtual file called contents, which contains all
relevant data normalized as simple plain text. Note also that we will not need
to have a complete mapping between the object and the filesystem representation,
since we do not need or want to expose annotations for example. I suggest that the
contents of the MessageBoard object simply contains the data of the description

attribute and for the Message I propose the following format:

1 Title: <message title>

2

3 <message body>

This way we can also parse easily the title when new contents is submitted, since
we want to implement the read and write interfaces of the filesystem representation.
One of the main goals is to keep the VirtualContentsFile class as generic as
possible, so that we can use it for both message boards and messages. To do that
the virtual file must delegate the request to create the plain text representation to
a component that knows about the specifics of the respective content object. For
this task, we will have a simple IPlainText adapter that provides the plain text
representation of each content component’s contents.

22.1 Step I: Plain Text Adapters

As said above, IPlainText adapters are responsible to return and accept the plain
text representation of the object’s content and just do the right thing with the data.
They are very simple objects, having two methods, one for providing and one for
processing the text.

22.1.1 (a) The Interface

The interface is simple, it defines a getText() and a setText() method:

1
�
������� IPlainText(Interface):

2 """This interface allows you to represent an object’s content in plain

3 text."""

4

5 ��	�� getText():

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.1. PLAIN TEXT ADAPTERS
203

6 """Get a pure text representation of the object’s content."""

7

8 ��	�� setText(text):

9 """Write the text to the object."""

This interface should be placed in the interfaces module of the messageboard.
In the doc strings I refer to the object’s “content” without further qualifying it. With
content I mean all data (property values) that should be represented via the plain
text representation.

The setText() method could in theory become quite complex, depending on
how many properties you want to map and how you represent them. You will see
that in our two cases it will be still fairly simple.

22.1.2 (b) The Implementation

We need two implementations, one for the Message and one for the MessageBoard

class. Note that I skipped writing tests at this point, since the functionality of these
adapters are carefully tested in the following code.

First, we write the message board adapter, so open the messageboard.py file
and add the following code:

1 �
����� book.messageboard.interfaces
�
� � ���� IPlainText

2

3
��������� PlainText:

4

5 implements(IPlainText)

6

7 ��	�� __init__(� 	 � � , context):

8
� 	 � � .context = context

9

10 ��	�� getText(� 	 � �):
11 �
	������� � 	 � � .context.description
12

13 ��	�� setText(� 	 � � , text):

14
� 	 � � .context.description = unicode(text)

This is an extremely simple implementation of the IPlainText interface, since
we map only one attribute.

. Line 14: Make sure that the incoming text is unicode, which is very important for
the system’s integrity.

The implementation for the Message (put it in message.py) looks like this:

1 �
����� book.messageboard.interfaces
�
� � ���� IPlainText

2

3
��������� PlainText:

4

5 implements(IPlainText)

6

7 ��	�� __init__(� 	 � � , context):

204
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

8
� 	 � � .context = context

9

10 ��	�� getText(� 	 � �):
11 ��	������� ’Title: %s\n\n%s’ %(� 	 � � .context.title,
12

� 	 � � .context.body)
13

14 ��	�� setText(� 	 � � , text):

15

�
� text.startswith(’Title: ’):

16 title, text = text.split(’\n’, 1)

17
� 	 � � .context.title = title[7:]

18

19
� 	 � � .context.body = text.strip()

This implementation is more interesting, since we map two properties to the plain
text.

. Line 11-12: In typical MIME-header style, define a field with the pattern 〈name〉:
〈value〉 for the title and place the body as content. Note that the standard requires
an empty line after the headers too.

. Line 15-17: Check whether a title was specified in this upload. If so, extract the
title from the data and store the title; if not just ignore the title altogether. Finally
store the rest of the text as the body.

22.1.3 (c) The Configuration

The last step is to register the two adapters with the Component Architecture. Just
add the following two adapter directives to configure.zcml:

1 <adapter

2 factory=".messageboard.PlainText"

3 provides=".interfaces.IPlainText"

4 for=".interfaces.IMessageBoard" />

5

6 <adapter

7 factory=".message.PlainText"

8 provides=".interfaces.IPlainText"

9 for=".interfaces.IMessage" />

We are now done. Even though we have two new fully-functional components
at this point, we gained no new functionality yet, since these adapters are not used
anywhere. We have to complete the next two sections to see any results.

22.2 Step II: The “Virtual Contents File” Adapter

How we implement the virtual contents file is fully up to us. However, there
are benefits of choosing one way over another, since it will save us some work.

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.2. THE “VIRTUAL CONTENTS FILE” ADAPTER
205

The best method is to create a new interface IVirtualContentsFile, which ex-
tends zope.app.file.interfaces.IFile. The advantage is that there are al-
ready filesystem-specific adapters (implementing zope.app.filerepresentation.

interfaces.IReadFile and zope.app.filerepresentation.interfaces.IWriteFile)
for the above mentioned interface. IFile might not be the best and most concise
interface for our needs, but the advantages of using it are very convincing.

22.2.1 (a) The Interface

When you look through the Zope 3 source code, you will notice that the IFile and
IFileContent interfaces go hand in hand with each. Thus, our virtual contents file
interface will extend both of these interfaces.

1 �
����� zope.app.file.interfaces
�
�������
 IFile, IFileContent

2

3
��������� IVirtualContentsFile(IFile, IFileContent):

4 """Marker Interface to mark special Message and Message Board

5 Contents files in FS representations."""

22.2.2 (b) The Implementation

Now the fun begins. First we note that IFile requires three properties,
contentType, data, and size. While data and size are obvious, we need to think
a bit about contentType. Since we really just want to return always text/plain,
the accessor should statically return text/plain and the mutator should just ig-
nore the input.

To make a long story short, here is the code, which you should place in a new file
called filerepresentation.py:

1 �
����� zope.interface
�
��� ���� implements

2 �
����� interfaces
�
� � ���
 IVirtualContentsFile, IPlainText

3

4
��������� VirtualContentsFile(object):

5

6 implements(IVirtualContentsFile)

7

8 ��	�� __init__(� 	 � � , context):

9
� 	 � � .context = context

10

11 ��	�� setContentType(� 	 � � , contentType):

12 ’’’See interface IFile’’’

13 � �����

14

15 ��	�� getContentType(� 	 � �):
16 ’’’See interface IFile’’’

17 �
	������� u’text/plain’

18

19 contentType = property(getContentType, setContentType)

20

206
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

21 ��	�� edit(� 	 � � , data, contentType=None):

22 ’’’See interface IFile’’’

23
� 	 � � .setData(data)

24

25 ��	�� getData(� 	 � �):
26 ’’’See interface IFile’’’

27 adapter = IPlainText(� 	 � � .context)
28 ��	������� adapter.getText() ��� u’’

29

30 ��	�� setData(� 	 � � , data):

31 ’’’See interface IFile’’’

32 adapter = IPlainText(� 	 � � .context)
33 ��	������� adapter.setText(data)

34

35 data = property(getData, setData)

36

37 ��	�� getSize(� 	 � �):
38 ’’’See interface IFile’’’

39 ��	������� len(� 	 � � .getData())
40

41 size = property(getSize)

. Line 11–13: As promised, the mutator ignores the input totally and is really just
an empty method.

. Line 15–17: Make sure we always return “text/plain”.

. Line 25–28 & 30–33: Now we are making use of our previously created PlainText

adapters. We simply use the two available API methods.

This was pretty straightforward. There are really no surprises here.

22.2.3 (c) The Tests

Since even the last coding step did not provide a functional piece of code, it becomes
so much more important to write some careful tests for the VirtualContentsFile

component. Another requirement of the tests are that this adapter is being tested
with both MessageBoard and Message instances. To realize this, we write an a base
test and then realize this test for each component. So in the tests folder, create a
new file called test filerepresentation.py and add the following content:

1

�
�������
 unittest

2 ������� zope.interface.verify
�
�������� verifyObject

3 ������� zope.app
�
� � ���
 zapi

4 ������� zope.app.tests
�
�������� ztapi

5 ������� zope.app.tests.placelesssetup
�
�������� PlacelessSetup

6

7 ������� book.messageboard.interfaces
�
��� ���� \

8 IVirtualContentsFile, IPlainText, IMessage, IMessageBoard

9 ��� � � book.messageboard.message
�
��� ���� \

10 Message, PlainText as MessagePlainText

11 ������� book.messageboard.messageboard
�
�������� \

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.2. THE “VIRTUAL CONTENTS FILE” ADAPTER
207

12 MessageBoard, PlainText as MessageBoardPlainText

13 �
����� book.messageboard.filerepresentation
�
� � ���� VirtualContentsFile

14

15
��������� VirtualContentsFileTestBase(PlacelessSetup):

16

17 ��	�� _makeFile(� 	 � �):
18 � �

� � 	 NotImplemented

19

20 ��	�� _registerPlainTextAdapter(� 	 � �):
21 � �

� � 	 NotImplemented

22

23 ��	�� setUp(� 	 � �):
24 PlacelessSetup.setUp(� 	 � �)
25

� 	 � � ._registerPlainTextAdapter()
26

27 ��	�� testContentType(� 	 � �):
28 file = � 	 � � ._makeFile()
29

� 	 � � .assertEqual(file.getContentType(), ’text/plain’)

30 file.setContentType(’text/html’)

31
� 	 � � .assertEqual(file.getContentType(), ’text/plain’)

32
� 	 � � .assertEqual(file.contentType, ’text/plain’)

33

34 ��	�� testData(� 	 � �):
35 file = � 	 � � ._makeFile()
36

37 file.setData(’Foobar’)

38
� 	 � � .assert_(file.getData().find(’Foobar’) >= 0)

39
� 	 � � .assert_(file.data.find(’Foobar’) >= 0)

40

41 file.edit(’Blah’, ’text/html’)

42
� 	 � � .assertEqual(file.contentType, ’text/plain’)

43
� 	 � � .assert_(file.data.find(’Blah’) >= 0)

44

45 ��	�� testInterface(� 	 � �):
46 file = � 	 � � ._makeFile()
47

� 	 � � .failUnless(IVirtualContentsFile.providedBy(file))
48

� 	 � � .failUnless(verifyObject(IVirtualContentsFile, file))

49

50

51
��������� MessageVirtualContentsFileTest(VirtualContentsFileTestBase,

52 unittest.TestCase):

53

54 ��	�� _makeFile(� 	 � �):
55 �
	������� VirtualContentsFile(Message())

56

57 ��	�� _registerPlainTextAdapter(� 	 � �):
58 ztapi.provideAdapter(IMessage, IPlainText, MessagePlainText)

59

60 ��	�� testMessageSpecifics(� 	 � �):
61 file = � 	 � � ._makeFile()
62

� 	 � � .assertEqual(file.context.title, ’’)

63
� 	 � � .assertEqual(file.context.body, ’’)

64 file.data = ’Title: Hello\n\nWorld’

65
� 	 � � .assertEqual(file.context.title, ’Hello’)

66
� 	 � � .assertEqual(file.context.body, ’World’)

67 file.data = ’World 2’

68
� 	 � � .assertEqual(file.context.body, ’World 2’)

69

208
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

70

71
�
������� MessageBoardVirtualContentsFileTest(

72 VirtualContentsFileTestBase, unittest.TestCase):

73

74 ��	�� _makeFile(� 	 � �):
75 ��	������� VirtualContentsFile(MessageBoard())

76

77 ��	�� _registerPlainTextAdapter(� 	 � �):
78 ztapi.provideAdapter(IMessageBoard, IPlainText,

79 MessageBoardPlainText)

80

81 ��	�� testMessageBoardSpecifics(� 	 � �):
82 file = � 	 � � ._makeFile()
83

� 	 � � .assertEqual(file.context.description, ’’)

84 file.data = ’Title: Hello\n\nWorld’

85
� 	 � � .assertEqual(file.context.description,

86 ’Title: Hello\n\nWorld’)

87 file.data = ’World 2’

88
� 	 � � .assertEqual(file.context.description, ’World 2’)

89

90 �
	�� test_suite():

91 ��	������� unittest.TestSuite((

92 unittest.makeSuite(MessageVirtualContentsFileTest),

93 unittest.makeSuite(MessageBoardVirtualContentsFileTest),

94))

95

96

�
� __name__ == ’__main__’:

97 unittest.main(defaultTest=’test_suite’)

. Line 5: Since we are going to make use of adapters, we will need to bring up the
component architecture using the PlacelessSetup.

. Line 7–13: Imports all the relevant interfaces and components for this test. This
is always so much, since we have to register the components by hand (instead of
ZCML).

. Line 17–18: The implementation of this method should create a VirtualContentsFile

adapter having the correct object as context. Since the context varies, the spe-
cific test case class has to take of its implementation.

. Line 20–21: Since there is a specific adapter registration required for each case
(board and message), we will have to leave that up to the test case implementation
as well.

. Line 27–32: We need to make sure that the plain/text setting can never be
overwritten.

. Line 34–43: We can really just make some marginal tests here, since the storage
details really depend on the IPlainText implementation. There will be stronger
tests in the specific test cases for the message board and message (see below).

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.3. THE IReadDirectory IMPLEMENTATION
209

. Line 45–48: Always make sure that the interface is completely implemented by
the component.

. Line 51: This is the beginning of a concrete test case that implements the base
test. Note that you should only make the concrete implementation a TestCase.

. Line 54–55: Just stick a plain, empty Message instance in the adapter.

. Line 60–68: Here we test that the written contents of the virtual file is correctly
passed and the right properties are set.

. Line 71–88: Pretty much the same that was done for the Message test.

. Line 90–97: The usual test boilerplate.

You can now run the test and verify the functionality of the new tests.

22.2.4 (d) The Configuration

This section would not be complete without a registration. While we do not need
to register the file representation component, we are required to make some security
assertions about the object’s methods and properties. I simply copied the following
security assertions from the File content component’s configuration.

1 <content class=".filerepresentation.VirtualContentsFile">

2

3 <implements interface="

4 zope.app.annotation.interfaces.IAttributeAnnotatable" />

5

6 <require

7 permission="book.messageboard.View"

8 interface="zope.app.filerepresentation.interfaces.IReadFile" />

9

10 <require

11 permission="zope.messageboard.Edit"

12 interface="zope.app.filerepresentation.interfaces.IWriteFile"

13 set_schema="zope.app.filerepresentation.interfaces.IReadFile" />

14

15 </content>

. Line 3–4: We need the virtual file to be annotable, so it can reach the DublinCore
for dates/times and owner information.

22.3 Step III: The IReadDirectory implementation

After all the preparations are complete, we are finally ready to give our content
components, MessageBoard and Message, a cool filesystem representation.

210
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

22.3.1 (a) The Implementation

The first fact we should notice is that zope.app.filerepresentation.ReadDirectory

has already a nice implementation, except for the superfluous SiteManager and the
missing contents file. So we simply take this class (subclass it) and merely over-
write keys(), get(key,default=None), and len (). All other methods de-
pend on these three. So our code for the ReadDirectory looks something like that
(place in filerepresentation.py):

1 ������� zope.app.filerepresentation.interfaces
�
�������� IReadDirectory

2 ������� zope.app.folder.filerepresentation
�
� � ���� \

3 ReadDirectory as ReadDirectoryBase

4

5
�
������� ReadDirectory(ReadDirectoryBase):

6 """An special implementation of the directory."""

7

8 implements(IReadDirectory)

9

10 ��	�� keys(� 	 � �):
11 keys = � 	 � � .context.keys()
12 ��	������� list(keys) + [’contents’]

13

14 ��	�� get(� 	 � � , key, default=None):

15

�
� key == ’contents’:

16 �
	������� VirtualContentsFile(� 	 � � .context)
17 ��	������� � 	 � � .context.get(key, default)

18

19 ��	�� __len__(� 	 � �):
20 l = len(� 	 � � .context)
21 ��	������� l+1

. Line 10–12: When being asked for a list of names available for this container, we
get the list of keys plus our virtual contents file.

. Line 14–17: All objects are simply found in the context (MessageBoard or Message)
itself, except the contents. When the system asks for the contents, we simply
give it a VirtualContentsFile instance that we prepared in the previous section
and we do not have to worry about anything, since we know that the system knows
how to handle zope.app.file.interfaces.IFile objects.

. Line 19–21: Obviously, we pretend to have one more object than we actually have.

Now we are done with our implementation. Let’s write some unit tests to ensure
the functionality and then register the filesystem components.

22.3.2 (b) The Tests

For testing the ReadDirectory implementation, we again need to test it with the
MessageBoard and Message components. So similar to the previous tests, we have

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.3. THE IReadDirectory IMPLEMENTATION
211

a base test with specific implementations. Also note that it will not be necessary to
test all IReadDirectory methods, since they are already tested in the base class
tests. So we are just going to test the methods we have overridden:

1 �
����� book.messageboard.filerepresentation
�
� � ���� ReadDirectory

2

3
��������� ReadDirectoryTestBase(PlacelessSetup):

4

5 ��	�� _makeDirectoryObject(� 	 � �):
6 � �

� � 	 NotImplemented

7

8 ��	�� _makeTree(� 	 � �):
9 base = � 	 � � ._makeDirectoryObject()

10 msg1 = Message()

11 msg1.title = ’Message 1’

12 msg1.description = ’This is Message 1.’

13 msg11 = Message()

14 msg11.title = ’Message 1-1’

15 msg11.description = ’This is Message 1-1.’

16 msg2 = Message()

17 msg2.title = ’Message 1’

18 msg2.description = ’This is Message 1.’

19 msg1[’msg11’] = msg11

20 base[’msg1’] = msg1

21 base[’msg2’] = msg2

22 �
	������� ReadDirectory(base)

23

24 ��	�� testKeys(� 	 � �):
25 tree = � 	 � � ._makeTree()
26 keys = list(tree.keys())

27 keys.sort()

28
� 	 � � .assertEqual(keys, [’contents’, ’msg1’, ’msg2’])

29 keys = list(ReadDirectory(tree[’msg1’]).keys())

30 keys.sort()

31
� 	 � � .assertEqual(keys, [’contents’, ’msg11’])

32

33 ��	�� testGet(� 	 � �):
34 tree = � 	 � � ._makeTree()
35

� 	 � � .assertEqual(tree.get(’msg1’), tree.context[’msg1’])

36
� 	 � � .assertEqual(tree.get(’msg3’), None)

37 default = object()

38
� 	 � � .assertEqual(tree.get(’msg3’, default), default)

39
� 	 � � .assertEqual(tree.get(’contents’).__class__,

40 VirtualContentsFile)

41

42 ��	�� testLen(� 	 � �):
43 tree = � 	 � � ._makeTree()
44

� 	 � � .assertEqual(len(tree), 3)

45
� 	 � � .assertEqual(len(ReadDirectory(tree[’msg1’])), 2)

46
� 	 � � .assertEqual(len(ReadDirectory(tree[’msg2’])), 1)

47

48

49
��������� MessageReadDirectoryTest(ReadDirectoryTestBase,

50 unittest.TestCase):

51

52 ��	�� _makeDirectoryObject(� 	 � �):
53 �
	������� Message()

54

212
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

55

56
�
������� MessageBoardReadDirectoryTest(ReadDirectoryTestBase,

57 unittest.TestCase):

58

59 ��	�� _makeDirectoryObject(� 	 � �):
60 ��	������� MessageBoard()

. Line 5–6: Return an instance of the object to be tested.

. Line 8–22: Create an interesting message tree on top of the base. This will allow
some more detailed testing.

. Line 24–31: Make sure this contents file and the sub-messages are correctly
listed.

. Line 33–40: Now let’s also make sure that the objects we get are the right ones.

. Line 42–46: A simple test for the number of contained items (including the
contents).

. Line 49–60: The concrete implementations of the base test. Nothing special.

After you are done writing the tests, do not forget to add the two new TestCases

to the TestSuite.

22.3.3 (c) The Configuration

Finally we simply register our new components properly using the following ZCML
directives:

1 <adapter

2 for=".interfaces.IMessageBoard"

3 provides="zope.app.filerepresentation.interfaces.IReadDirectory"

4 factory=".filerepresentation.ReadDirectory"

5 permission="zope.View"/>

6

7 <adapter

8 for=".interfaces.IMessage"

9 provides="zope.app.filerepresentation.interfaces.IReadDirectory"

10 factory=".filerepresentation.ReadDirectory"

11 permission="zope.View"/>

That’s it. You can now restart Zope and test the filesystem representation with
an FTP client of your choice. In the following sequence diagram you can see how a
request is guided to find its information and return it properly.

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.4. A SPECIAL DIRECTORY FACTORY
213

Figure 22.1: Collaboration diagram of the inner working from requesting the contents “file” to
receiving the actual data.

22.4 Step IV: The Icing on the Cake – A special Directory Fac-
tory

While you were playing around with the new filesystem support, you might have
tried to create a directory to see what happened and it probably just caused a
system error, since no adapter was found from IMessage/ IMessageBoard to
IDirectoryFactory. Since such a behavior is undesirable, we should create a cus-
tom adapter that provides IDirectoryFactory. The IWriteDirectory adapter of
any container object then knows how to make use of this factory adapter. So we add
the following trivial factory to our filesystem code:

1 �
����� zope.app.filerepresentation.interfaces
�
��� ���� IDirectoryFactory

2 �
����� message
�
�������� Message

3

4
��������� MessageFactory(object):

5 """A simple message factory for file system representations."""

6

7 implements(IDirectoryFactory)

8

9 ��	�� __init__(� 	 � � , context):

10
� 	 � � .context = context

11

12 ��	�� __call__(� 	 � � , name):

13 """See IDirectoryFactory interface."""

214
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

14 ��	������� Message()

Registering the factory is just a matter of two adapter directives (one for each
content component):

1 <adapter

2 for=".interfaces.IMessageBoard"

3 provides="zope.app.filerepresentation.interfaces.IDirectoryFactory"

4 factory=".filerepresentation.MessageFactory"

5 permission="zope.View" />

6

7 <adapter

8 for=".interfaces.IMessage"

9 provides="zope.app.filerepresentation.interfaces.IDirectoryFactory"

10 factory=".filerepresentation.MessageFactory"

11 permission="zope.View" />

Now we have finally made it. The filesystem support should be very smooth and
usable at this point. You should be able to view all relevant content, upload new
contents data and create new messages. The only problem that might remain is
that some FTP clients (like KDE’s FTP support) try to upload the contents file
as contents.part and then rename it to contents. Since our filesystem code does
not support such a feature, this will cause an error; see exercise 2 for details.

CHAPTER 22 OBJECT TO FILE SYSTEM MAPPING USING FTP AS EXAMPLE

22.4. A SPECIAL DIRECTORY FACTORY
215

Exercises

1. Currently there is no creation/modification date/time or creator defined for the
virtual contents file. This is due to the fact that the respective Dublin Core
properties were not set. The virtual file should really receive the same Dublin
Core the MessageBoard or Message has. The easiest way would be simply to
copy the Dublin Core annotation. Do that and make sure the data and the user
are shown correctly.

2. In the final remarks of this chapter I stated that the current code will not work
very well with some clients, such as Konqueror. Fix the code to support this
behavior. The best would be to store the temporary file in an annotation and
delete it, once it was moved.

216
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

CHAPTER 23

AVAILABILITY VIA XML-RPC

Difficulty

Sprinter

Skills

• Be familiar with the Message Board demo package up to this point.

• Feel comfortable with writing ZCML-based configuration.

• Some insight in the publisher framework. Optional.

Problem/Task

A very common way to communicate with remote systems is via XML-RPC, a
very light-weight protocol on top of HTTP. Zope’s HTTP server comes by default
with a XML-RPC component. If we want to allow other systems to communicate
with our message board, then we need to declare the methods that will be available
via XML-RPC.

Solution

You might wonder at this point why we don’t simply map all the existing methods
to XML-RPC and be done with it. There are three reasons for not doing this. First,
XML-RPC handles only a limited amount of data types. In the following table you
see a mapping of Python types to XML-RPC data type elements:

• integer ←→ 〈int〉

217

218
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

• float ←→ 〈double〉

• string ←→ 〈string〉

• list ←→ 〈array〉

• dict/struct ←→ 〈dict〉

• bool ←→ 〈boolean〉

• xmlrpclib.Binary ←→ 〈binary〉

• xmlrpclib.DateTime ←→ 〈dateTime〉

As you can see, there is no support for None and unicode, which are huge draw-
backs for XML-RPC in general.

Second, another disadvantage is the lack of keyword arguments. XML-RPC only
understands regular positional arguments and arguments with default values. Third,
since Python returns None by default for methods, all methods that do not have a
return value are doomed.

Now that we have briefly discussed the shortcomings of XML-RPC, we should
look ahead and say that XML-RPC is still a very powerful tool that can be used
without much hassle.

23.1 Step I: Creating “Methods” XML-RPC Presentation Com-
ponents

Obviously we have to create a view component for both content objects, MessageBoard

and Message. However, both share the functionality that they can contain and man-
age sub-messages, so that it is desired to factor out this functionality into a com-
mon base class, MessageContainerMethods. Since we want to keep the XML-RPC
code separate, create a new module called xmlrpc.py in the messageboard direc-
tory and add the following content:

1 ������� zope.event
�
� � ���� notify

2 ������� zope.app.publisher.xmlrpc
�
� � ���
 MethodPublisher

3

4 ������� zope.app.event.objectevent
�
� � ���� ObjectCreatedEvent

5

6 ������� book.messageboard.message
�
� � ���
 Message

7

8
�
������� MessageContainerMethods(MethodPublisher):

9

10 �
	�� getMessageNames(� 	 � �):
11 """Get a list of all messages."""

12 �
	������� list(� 	 � � .context.keys())
13

CHAPTER 23 AVAILABILITY VIA XML-RPC
23.1. XML-RPC PRESENTATION COMPONENTS

219

14 �
	�� addMessage(� 	 � � , name, title, body):

15 """Add a message."""

16 msg = Message()

17 msg.title = title

18 msg.body = body

19 notify(ObjectCreatedEvent(msg))

20
� 	 � � .context[name] = msg

21 �
	������� name

22

23 �
	�� deleteMessage(� 	 � � , name):

24 """Delete a message. Return True, if successful."""

25
� 	 � � .context.__delitem__(name)

26 �
	������� True

. Line 8: Make the class a MethodPublisher, which is similar to a BrowserView

and its constructor will expect a context object and a XMLRPCRequest instance.

. Line 10–12: Return a list of all message names. But remember, we implemented
the containment with BTrees (see first chapter of this part), so that keys() will
not return a list or tuple as a result, but a btree-items object. Therefore we need
to implicitly cast the result to become a list, so that XML-RPC is able understand
it.

. Line 19: Since we want to play nice with the system, let it know that we created
a new content object.

. Line 21, 26: Make sure we return something, so that XML-RPC will not be upset
with us. As mentioned before, if no return value is specifed, None is implicitly
returned, which XML-RPC does nto understand.

The two actual views for our content objects are now also implementing accessor
and mutator methods for their properties. So here are the two views:

1 �
����� zope.app.event.objectevent
�
� � ���
 ObjectModifiedEvent

2

3
��������� MessageMethods(MessageContainerMethods):

4

5 ��	�� getTitle(� 	 � �):
6 �
	������� � 	 � � .context.title
7

8 ��	�� setTitle(� 	 � � , title):

9
� 	 � � .context.title = title

10 notify(ObjectModifiedEvent(� 	 � � .context))
11 �
	������� True

12

13 ��	�� getBody(� 	 � �):
14 �
	������� � 	 � � .context.body
15

16 ��	�� setBody(� 	 � � , body):

17
� 	 � � .context.body = body

18 notify(ObjectModifiedEvent(� 	 � � .context))

220
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

19 ��	������� True

20

21

22
�
������� MessageBoardMethods(MessageContainerMethods):

23

24 ��	�� getDescription(� 	 � �):
25 ��	������� � 	 � � .context.description
26

27 ��	�� setDescription(� 	 � � , description):

28
� 	 � � .context.description = description

29 notify(ObjectModifiedEvent(� 	 � � .context))
30 ��	������� True

. Line 10, 18 & 29: When modifying a message board or message, we have to
explicitly send out a modification notification event. We did not have to deal with
this until now, since for browser forms these events are created automatically by
the forms machinery.

. Line 11, 19 & 30: Again, we need to make sure we do not just return None from
a method.

That’s already everything from a coding point of perspective. But before we hook
up the code in the component architecture, we need to do some testing.

23.2 Step II: Testing

Of course, the testing code is multiples more complex than the actual implemen-
tation, since we have to bring up the component architecture and the event service
manually. Similar to the implementation, we can again separate the container-related
tests in a base class (the code should be located in tests/test xmlrpc.py):

1 ������� zope.app
�
� � ���
 zapi

2 ������� zope.app.tests.placelesssetup
�
�������� PlacelessSetup

3

4
�
������� MessageContainerTest(PlacelessSetup):

5

6 ��	�� _makeMethodObject(� 	 � �):
7 ��	������� NotImplemented

8

9 ��	�� _makeTree(� 	 � �):
10 methods = � 	 � � ._makeMethodObject()
11 msg1 = Message()

12 msg1.title = ’Message 1’

13 msg1.description = ’This is Message 1.’

14 msg2 = Message()

15 msg2.title = ’Message 1’

16 msg2.description = ’This is Message 1.’

17 methods.context[’msg1’] = msg1

18 methods.context[’msg2’] = msg2

19 ��	������� methods

CHAPTER 23 AVAILABILITY VIA XML-RPC
23.2. TESTING

221

20

21 ��	�� test_getMessageNames(� 	 � �):
22 methods = � 	 � � ._makeTree()
23

� 	 � � .assert_(isinstance(methods.getMessageNames(), list))

24
� 	 � � .assertEqual(list(methods.context.keys()),

25 methods.getMessageNames())

26

27 ��	�� test_addMessage(� 	 � �):
28 methods = � 	 � � ._makeTree()
29

� 	 � � .assertEqual(methods.addMessage(’msg3’, ’M3’, ’MB3’),

30 ’msg3’)

31
� 	 � � .assertEqual(methods.context[’msg3’].title, ’M3’)

32
� 	 � � .assertEqual(methods.context[’msg3’].body, ’MB3’)

33

34 ��	�� test_deleteMessage(� 	 � �):
35 methods = � 	 � � ._makeTree()
36

� 	 � � .assertEqual(methods.deleteMessage(’msg2’), True)

37
� 	 � � .assertEqual(list(methods.context.keys()), [’msg1’])

. Line 6–7: The implementation of this method should return a valid XML-RPC
method publisher.

. Line 9–19: Create an interesting message tree, so that we have something to test
with.

. Line 21–25: Make sure the names list is converted to a Python list and all elements
are contained in it.

. Line 27–32: This method obviously tests the adding capability. We just try to
make sure that the correct attributes are assigned to the message.

. Line 34–37: Simply checks that a message is really deleted.

Now that we have the base class, we can implement the real test cases and add
tests for the property accessors and mutators:

1

�
�������� unittest

2

3 �
����� zope.publisher.xmlrpc
�
��� ���� TestRequest

4

5 �
����� book.messageboard.message
�
�������
 Message

6 �
����� book.messageboard.messageboard
�
��� ���� MessageBoard

7 �
����� book.messageboard.xmlrpc
�
�������
 MessageBoardMethods, MessageMethods

8

9
��������� MessageBoardMethodsTest(MessageContainerTest, unittest.TestCase):

10

11 ��	�� _makeMethodObject(� 	 � �):
12 �
	������� MessageBoardMethods(MessageBoard(), TestRequest())

13

14 ��	�� test_description(� 	 � �):
15 methods = � 	 � � ._makeTree()
16

� 	 � � .assertEqual(methods.getDescription(), ’’)

17
� 	 � � .assertEqual(methods.setDescription(’Board 1’) , True)

18
� 	 � � .assertEqual(methods.getDescription(), ’Board 1’)

222
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

19

20
�
������� MessageMethodsTest(MessageContainerTest, unittest.TestCase):

21

22 ��	�� _makeMethodObject(� 	 � �):
23 ��	������� MessageMethods(Message(), TestRequest())

24

25 ��	�� test_title(� 	 � �):
26 methods = � 	 � � ._makeTree()
27

� 	 � � .assertEqual(methods.getTitle(), ’’)

28
� 	 � � .assertEqual(methods.setTitle(’Message 1’) , True)

29
� 	 � � .assertEqual(methods.getTitle(), ’Message 1’)

30

31 ��	�� test_body(� 	 � �):
32 methods = � 	 � � ._makeTree()
33

� 	 � � .assertEqual(methods.getBody(), ’’)

34
� 	 � � .assertEqual(methods.setBody(’Body 1’) , True)

35
� 	 � � .assertEqual(methods.getBody(), ’Body 1’)

36

37

38 �
	�� test_suite():

39 ��	������� unittest.TestSuite((

40 unittest.makeSuite(MessageBoardMethodsTest),

41 unittest.makeSuite(MessageMethodsTest),

42))

43

44

�
� __name__ == ’__main__’:

45 unittest.main(defaultTest=’test_suite’)

. Line 11–12 & 22–23: Create a XML-RPC method publisher for the message board
and the message, respectively. To do that we need an object instance (no problem)
and an XML-RPC request. Luckily, like for the browser publisher, the XML-RPC
publisher provides a TestRequest which was written for its easy usage in unit
tests like these.

. Line 38–45: And again the usual unit test boiler plate.

The rest of the code is not so interesting and should be obvious to the reader.
Please run these tests now and make sure that everything passes.

23.3 Step III: Configuring the new Views

To register the XML-RPC views, you need to import the xmlrpc namespace into
your main configuration file using

1 xmlns:xmlrpc="http://namespaces.zope.org/xmlrpc"

in the zopeConfigure element. Now you simply add the following two directives
to the configuration:

1 <xmlrpc:view

2 for=".interfaces.IMessageBoard"

CHAPTER 23 AVAILABILITY VIA XML-RPC
23.4. TESTING THE FEATURES IN ACTION

223

3 permission="book.messageboard.Edit"

4 methods="getMessageNames addMessage deleteMessage

5 getDescription setDescription"

6 class=".xmlrpc.MessageBoardMethods" />

7

8 <xmlrpc:view

9 for=".interfaces.IMessage"

10 permission="book.messageboard.Edit"

11 methods="getMessageNames addMessage deleteMessage

12 getTitle setTitle getBody setBody"

13 class=".xmlrpc.MessageMethods" />

. Line 2: This view is for IMessageBoard objects.

. Line 3: XML-RPC views require the book.messageboard.Edit permission, which
means that someone has to authenticate before using these methods.

. Line 4–5: This is the list of methods that will be available as XML-RPC methods
on the messageboard.

. Line 6: The method publisher class is .xmlrpc.MessageBoardMethods, which
provides the previously defined methods.

. Line 8–13: Repeat the previous precedure for IMessage components.

Now you can restart Zope 3 and give your XML-RPC methods a run. But oh no,
how do we test this? Certainly a browser will not get us very far.

23.4 Step IV: Testing the Features in Action

Python has a really nice XML-RPC module that can be used as XML-RPC client
and also provides some extra help with basic authentication. In order to save the
reader some typing, I have provided a module called xmlrpc client.py in the
messageboard package which you can call from the command line:

1 # ./xmlrpc_client.py

You will be asked for the URL to your messageboard object, your username and
password. Once this is done, you are presented with a normal Python prompt, except
that there is a local variable called board available, which represents your XML-
RPC connection. You can now use the available methods to manipulate the board
at your heart’s content.

224
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

./messageboard/xmlrpc_client.py

Message Board URL [http://localhost:8080/board/]:

Username: srichter

Password:

The message board is available as ’board’

Python 2.3 (#2, Aug 31 2003, 17:27:29)

[GCC 3.3.1 (Mandrake Linux 9.2 3.3.1-1mdk)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>> board.getDescription()

’First Message Board’

>>> board.getMessageNames()

[’msg1’, ’msg2’]

>>> board.msg1.getMessageNames()

[’msg11’]

>>> board.msg1.msg11.getTitle()

’Message 1-1’

>>> board.msg1.msg11.getBody()

’This is the first response to Message 1.’

>>> board.msg1.addMessage(’msg12’, ’Message 1-2’, ’Second response!’)

’msg12’

>>> board.msg1.getMessageNames()

[’msg11’, ’msg12’]

>>> board.msg1.msg12.getTitle()

’Message 1-2’

>>> board.msg1.deleteMessage(’msg12’)

True

>>> board.msg1.getMessageNames()

[’msg11’]

>>>

Figure 23.1: A sample XML-RPC session using the provided client.

Exercises

1. We only made a very limited amount of the message board’s functionality avail-
able via XML-RPC. Write a new XML-RPC method publisher to

(a) manage mail subscriptions for messages.

(b) manage the workflows of messages.

2. Due to the simple implementation of this chapter, message attachments are
treated like messages when displaying message names. Improve the implemen-
tation and the API to handle attachments properly. This includes writing a
method publisher for IFile components.

CHAPTER 24

DEVELOPING NEW SKINS

Difficulty

Newcomer

Skills

• Be familiar with the Message Board Demo package up to this point.

• Feel comfortable with writing ZCML-based view configuration. Optional.

Problem/Task

Until now we have only enhanced the messageboard by features, but have not
done much to improve the user interface. In fact, we are still using the ZMI to do
all our message board management, which is totally inappropriate to the end user.
Therefore, this chapter will concentrate on developing a skin specifically designed
for the message board that implements a user interface as it is typically seen in real
world message board applications. While this package has little to do with Python
development, I feel that it is a good final task for our two Content Component parts.

Solution

Skins (the equivalence of CMF Skins in Zope 2) are a method to implement a cus-
tom look and feel to existing views. This is very similar to HTML and CSS (Cascad-
ing Style Sheets), where the HTML code are equivalent to views (page templates,
view classes) and the style sheets (CSS) are the skin over the HTML structural ele-
ments. Skins however, have another abstraction layer beneath.

225

226
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

A skin is really just a stack of layers. Each layer can contain any amount of
views and resources. This allows particular views and resources to be overridden.
For example, our style sheet (CSS) might have been defined in the default layer.
However, this style sheet is really simplistic and inappropriate for our needs. We can
then create a new layer board and place a new style sheet in it. Once that is done,
we define a skin that places the board layer after the default layer, and all the new
style definitions will be adopted.

24.1 Step I: Preparation

Before we can create our new skin, we need to make some preparations. In order not
to confuse the original views and resources with the new ones, we create a package
called skin in the messageboard/browser directory; do not forget to make a
init .py file. Then create an empty configure.zcml file:

1 <configure

2 xmlns="http://namespaces.zope.org/browser">

3

4 </configure>

Now hook up this configuration file from the browser’s configure.zcml using:
1 <include package=".skin" />

24.2 Step II: Creating a New Skin

Creating a new skin is very easy and can be accomplished purely with ZCML con-
figuration directives. The browser namespace has a special directive called skin

that let’s us do this, so add the following directive to the configuration file of the
skin package:

1 <layer name="board"/>

2

3 <skin name="board" layers="board rotterdam default" />

The first directive creates a new layer, in which we will place all the new templates
and which will make the skin unique. The second directive creates a skin named
board that consists of a three element layer stack. The lowest layer is default

which is overridden by rotterdam, which is overridden by board. Every browser
presentation directive supports a layer attribute, which defines the layer in which
a view or resource is placed. If no layer was specified, the presentation component
is placed in the “default” skin.

You might also wonder why the rotterdam layer is placed here. The rotterdam

layer contains some nice definitions, like the favicon and some other view code that
is useful for us here as well. Other than that, we will not be using this layer actively.

CHAPTER 24 DEVELOPING NEW SKINS

24.3. CUSTOMIZING THE BASE TEMPLATES
227

24.3 Step III: Customizing the Base Templates

The first task is always to override the skin macros and the dialog macros.
Usually the skin macros are defined by a file called template.pt and the dialog
macros in dialog macros.pt. Our new template.pt file might look something
like this:

1 <metal:block define-macro="page">

2 <metal:block define-slot="doctype">

3 <!
���������	�	

html
����������

"-//W3C//DTD XHTML 1.0 Transitional//EN"

4 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

5 </metal:block>

6

7 <html xmlns="http://www.w3.org/1999/xhtml" � � ��� ��� �	� ="en" lang="en">

8

9 <head>

10 <title metal:define-slot="title">Message Board for Zope 3</title>

11

12 <style type="text/css" media="all"

13 tal:content=

14 "string: @import url(${context/++resource++board.css});">

15 @import url(board.css);

16 </style>

17

18 <meta http-equiv="Content-Type"

19 content="text/html;charset=utf-8" />

20

21 <link rel="icon" type="image/png"

22 tal:attributes="href context/++resource++favicon.png" />

23 </head>

24

25 <body>

26

27 <div id="board_header" i18n:domain="messageboard">

28 <img id="board_logo"

29 tal:attributes="src context/++resource++logo.png" />

30 <div id="board_greeting">

31 Zope 3 Message Board

32 </div>

33 </div>

34

35 <div id="workspace">

36

37 <div metal:define-slot="message" id="message"></div>

38

39 <div id="content">

40 <metal:block define-slot="body">

41 This is the content.

42 </metal:block>

43 </div>

44

45 </div>

46

47 <div id="footer">

48

49 <div id="actions">

228
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

50 <metal:block define-slot="actions" />

51 </div>

52 <div id="credits" i18n:domain="messageboard">

53 Powered by Zope 3.

54 Stephan Richter in 2003

55 </div>

56 </div>

57

58 </body>

59

60 </html>

61

62 </metal:block>

. Line 12–16: Instead of the standard zope3.css we going to use a new board.css

style sheet.

. Line 21–22: This favicon is provided by the rotterdam skin.

. Line 27–33: Do you see how simple the header is? A couple of styles, a logo, and
a simple title will do for us.

. Line 47–56: The footer consists simply of a placeholder (slot) where we can later
drop actions into and a tiny credits section.

There is not really much to this template. Notice how much simpler this is than for
example the Rotterdam equivalent that can be found at src/zope/app/rotterdam.
Similarly simple is the dialog macros.pt page template, which you can find in the
example code.

In the above template we referred to two new resources, the logo.png and the
board.css. Both are configured as follows:

1 <resource

2 name="board.css" file="board.css" layer="board" />

3

4 <resource

5 name="logo.png" file="logo.png" layer="board" />

Note how the resource directive has a layer attribute to specify the layer. The
initial CSS file (board.css) looks like this:

1 body {

2 font-family: Verdana, Arial, Helvetica, sans-serif;

3 background: white;

4 color: black;

5 margin: 0;

6 padding: 0pt;

7 }

8

9 h1, h2, h3, h4, h5, h6 {

10 font-weight: bold;

11 color: black;

CHAPTER 24 DEVELOPING NEW SKINS

24.3. CUSTOMIZING THE BASE TEMPLATES
229

12 }

13

14 /* Different headers are used for the same purpose,

15 so make them all equal. */

16

17 h1, h2, h3 {

18 font-size: 20pt;

19 margin-top: 0px;

20 margin-bottom: .8em;

21 border-bottom: solid 1px #1E5ADB;

22 }

23

24 ...

25

26 /* Header Stuff */

27

28 #board_header {

29 background: #EEEEEE;

30 border: solid 1px #AAAAAA;

31 padding: 3pt;

32 clear: both;

33 }

34

35 ...

36

37 /* Footer stuff */

38

39 #footer {

40 background: #EEEEEE;

41 border: solid 1px #AAAAAA;

42 padding: 0.5em;

43 font-size: 85%;

44 }

45

46 ...

For the full style sheet, see the example code. The templates are then registered
for the board layer as follows:

1 <page

2 for="*"

3 name="skin_macros"

4 permission="zope.View"

5 layer="board"

6 template="template.pt" />

7

8 <page

9 for="*"

10 name="dialog_macros"

11 permission="zope.View"

12 layer="board"

13 template="dialog_macros.pt" />

. Line 2 & 9: The star means that this page is available for all objects.

. Line 5 & 12: The additional layer attribute is enough to specify the layer.

230
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

24.4 Step IV: Adding a Message Board Intro Screen

The simplest view of the message board is some sort of introduction screen for the
message board, since it is just a simple page template. The template looks like this:

1 <html metal:use-macro="views/standard_macros/page">

2 <body>

3 <div id="content" metal:fill-slot="body"

4 i18n:domain="messageboard">

5

6 <h2 i18n:translate="">Welcome to the Message Board</h2>

7

8 <p class="board_description" tal:content="context/description">

9 Description of the Message Board goes here.

10 </p>

11

12 <div id="login_link">

13 Click here to enter the board.

14 </div>

15

16 </div>

17 </body>

18 </html>

Place the template in the skin directory having the name board intro.pt.
The view must be registered for the layer using:

1 <page

2 for="book.messageboard.interfaces.IMessageBoard"

3 name="intro.html"

4 permission="book.messageboard.View"

5 layer="board"

6 template="board_intro.pt" />

When you restart Zope 3 now, you should be able to reach this view using
http://localhost:8080/++skin++board/board/@@intro.html assuming that the
MessageBoard instance is called board and lives in the root folder.

24.5 Step V: Viewing a List of all Message Board Posts

Once the user enters the message board, s/he should be represented with a list of
all top-level messages. In the actions section, the user should have an option to
add a new message to the board and administrators can go to a review screen to
publish messages that are still pending. You can find the source of the template in
board posts.pt in the skin directory of the message board example code.

The view is configured with the following instruction:

1 <page

2 for="book.messageboard.interfaces.IMessageBoard"

3 name="posts.html"

4 permission="book.messageboard.View"

5 layer="board"

CHAPTER 24 DEVELOPING NEW SKINS

24.6. ADDING A POST TO THE MESSAGE BOARD
231

Figure 24.1: Message Board introduction screen of the “board” skin.

6 class=".views.Posts"

7 template="board_posts.pt" />

As you can see, the page uses a view class which is located in views.py. The
template board posts.pt uses a method of the view that returns a list containing
a dictionary with detailed information for each message. However, this does nothing
new. We have functionality like this in the existing views, so we will not explain it
here.

You should now be able to see a list of posts of the messageboard (but only those
who are in the “published” workflow state).

24.6 Step VI: Adding a Post to the Message Board

When looking at the posts screen, you might already have clicked already on the
“Create New Post” link and added a new message. You will have noticed that the
add form did not bring you back to the posts overview but some management screen.
To change that, we have to create a customized add form screen that specifies the
return URL. The implementation in the views.py module looks as like that:

1
��������� AddMessage:

2 """Add-Form supporting class."""

3

4 ��	�� nextURL(� 	 � �):
5 �
	������� ’../@@posts.html’

This was straightforward.

232
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Figure 24.2: Posted messages of the message board.

By default you can enter a message id for the message. This is undesirable for
our user-friendly skin. You may have noticed that you can leave the field empty, in
which case the message id will be something like “Message” or “Message-2”. That’s
because there is a mechanism that creates these generic names. The mechanism is
used by the add form, if no name was specified. You can tell the add form to always
use this mechanism for the MessageBoard and Message components by having them
implement the IContainerNamesContainer interface. You can do this by adding
the following directive to the zope:content directive of both objects in the main
configure.zcml file:

1 <implements

2 interface="zope.app.container.interfaces.IContainerNamesContainer"

3 />

Finally we have to configure the new add form using

1 <addform

2 label="Add Message"

3 name="AddMessage.html"

4 schema="book.messageboard.interfaces.IMessage"

5 content_factory="book.messageboard.message.Message"

6 permission="book.messageboard.Add"

7 class=".views.AddMessage"

8 layer="board"/>

This is not very hard either, right? After you restarted Zope, you can now admire
the correct functionality of the add form.

CHAPTER 24 DEVELOPING NEW SKINS

24.7. REVIEWING “PENDING” MESSAGES
233

24.7 Step VII: Reviewing “pending” Messages

Did you try to add a message? But where did it go? Well, remember that only
published messages are visible.

While we have a message review screen for the management interface, it is not
very usable. So we develop a much more simplified functionality in the board skin
that can only publish messages. The following template displays all the pending
messages and provides a checkbox for the moderator to select whether this message
is about to be published (board review.pt):

1 <html metal:use-macro="views/standard_macros/page">

2 <body>

3 <div metal:fill-slot="body" i18n:domain="messageboard">

4

5 <h2 i18n:translate="">Review Pending Posts</h2>

6

7 <form action="updateStatus.html" method="POST">

8

9 <div id="message_line"

10 tal:repeat="post view/getPendingMessagesInfo">

11 <input type="checkbox" name="messages" value=""

12 tal:attributes="value post/path" />

13 <a href="" tal:attributes="href post/url"

14 tal:content="post/title">Message Title

15 <div style="font-size: 70%">

16 (Posted by <b tal:content="post/creator">Creator

17 on <b tal:replace="post/created">2003/01/01)

18 </div>

19 </div>

20

21 <input type="submit" value="Publish"

22 i18n:attributes="value" />

23

24 </form>

25

26 </div>

27 <div id="actions" metal:fill-slot="actions">

28 View Posts

29 </div>

30 </body>

31 </html>

In the corresponding Python view class, we can simply reuse the code we developed
for the management version:

1 �
����� zope.app.
�
�������� zapi

2 �
����� zope.app.dublincore.interfaces
�
��� ���� ICMFDublinCore

3 �
����� zope.app.interfaces.workflow
�
� � ���� IProcessInstanceContainer

4

5 �
����� book.messageboard.browser.messageboard
�
��� ���� ReviewMessages

6

7
��������� Review(ReviewMessages):

8 """Review messages for publication."""

9

10 ��	�� getPendingMessagesInfo(� 	 � �):

234
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

11 """Get all the display info for pending messages"""

12 msg_infos = []

13 � ��� msg
�
� � 	 � � .getPendingMessages(� 	 � � .context):

14 dc = ICMFDublinCore(msg)

15 info = {}

16 info[’path’] = zapi.getPath(msg)

17 info[’title’] = msg.title

18 info[’creator’] = dc.creators[0]

19 formatter = � 	 � � .request.locale.dates.getFormatter(
20 ’dateTime’, ’medium’)

21 info[’created’] = formatter.format(dc.created)

22 info[’url’] = zapi.getView(

23 msg, ’absolute_url’, � 	 � � .request)() + \

24 ’/@@details.html’

25 msg_infos.append(info)

26 ��	������� msg_infos

27

28 ��	�� updateStatus(� 	 � � , messages):

29 """Upgrade the stati from ’pending’ to ’published’."""

30

�
� � �� isinstance(messages, (list, tuple)):

31 messages = [messages]

32

33 � ��� path
�
� messages:

34 msg = zapi.traverse(� 	 � � .context, path)

35

36 adapter = IProcessInstanceContainer(msg)

37 adapter[’publish-message’].fireTransition(’pending_published’)

38

39 ��	������� � 	 � � .request.response.redirect(’@@review.html’)

. Line 5, 7, & 13: We are going to reuse some code from the other implementation.

. Line 28–39: This is the interesting method, since it actually fires the transition
from “pending” to “published” status.

• Line 33–34: Since we were clever, we passed the path as checkbox value, so
that we can now simply traverse to it.

• Line 36–37: Once we have the message, we get its process container and fire
the transition.

The new review view can now be registered using the pages directive:

1 <pages

2 for="book.messageboard.interfaces.IMessageBoard"

3 class=".views.Review"

4 permission="book.messageboard.PublishContent"

5 layer="board">

6 <page name="review.html" template="board_review.pt"/>

7 <page name="updateStatus.html" attribute="updateStatus"/>

8 </pages>

Now restart Zope 3. Before we can enjoy publishing messages, we need to auto-
mate the transition from the “private” to “pending” status. To do that, go to the

CHAPTER 24 DEVELOPING NEW SKINS

24.8. VIEW MESSAGE DETAILS
235

“default” Site-Management folder, and from there to your “publish-message” work-
flow definition. There you will find an option called “Manage Transitions”. Click on
it and choose the transition named “private pending”. In the following edit form,
there is a “Trigger Mode” option that is set to “Manual”. Set it to “Automatic”.
This will cause the messages to move automatically from “initial” to “pending”. If
you now create a message, it will be automatically placed on the review list, from
which you can then publish it as messageboard moderator. If you do not want any
workflow at all, you can also set the “pending published” “Trigger Mode” to “Auto-
matic” and all newly created messages will automatically be published.

Figure 24.3: Review of all pending messages.

24.8 Step VIII: View Message Details

While the ZMI-based Message Details screen was very clear and detailed, it is not
suitable for the end user. This view implements a better version of that screen and
also adds the replies thread at the end. One of the available actions is to reply to
the message. This is the screen we will look at next.

Since there is nothing new or very interesting going on in the code, I am going
to skip over it and move directly to the next one. You will find the code in the
accompanying package as usual.

236
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Figure 24.4: Display of all details of a message.

24.9 Step IX: Replies to Messages

Wow, another add form; can we do this? Yes, of course. The “Reply to Message”
add form is a bit special though, since it should contain dynamic default values. For
example, if the original message had a title called “My Title”, then the suggested
title for the new reply message should be “Re: My Title”. Similarly, every text line
of the original message body should be prefixed with “¿ ”.

The best place I found to insert the dynamic default values is in the private
setUpWidgets() methods, which creates a data dictionary that is passed to the

widget instantiater. The code for the entire add form view class looks like that:

1 ������� zope.app.form.interfaces
�
� � ���
 IInputWidget

2 ������� zope.app.form.utility
�
�������� setUpWidgets

3

4
�
������� ReplyMessage:

5 """Add-Form supporting class."""

6

7 ��	�� nextURL(� 	 � �):
8 ��	������� ’../@@details.html’

9

10 ��	�� _setUpWidgets(� 	 � �):
11 """Alllow addforms to also have default values."""

12 parent = � 	 � � .context.context
13 title = parent.title

14

�
� � �� title.startswith(’Re:’):

15 title = ’Re: ’ + parent.title

16

17 dc = getAdapter(parent, ICMFDublinCore)

18 formatter = � 	 � � .request.locale.getDateTimeFormatter(

CHAPTER 24 DEVELOPING NEW SKINS

24.9. REPLIES TO MESSAGES
237

19 ’medium’)

20 body = ’%s on %s wrote:\n’ %(dc.creators[0],

21 formatter.format(dc.created))

22 body += ’> ’ + parent.body.replace(’\n’, ’\n> ’)

23

24 setUpWidgets(� 	 � � , � 	 � � .schema, IInputWidget

25 initial={’title’: title, ’body’: body},

26 names= � 	 � � .fieldNames)

. Line 24–26: This is pretty much the original content of the setUpWidgets()

method, except for the initial argument, which carries the default values of the
widgets.

Just register the form as

1 <addform

2 label="Reply to Message"

3 name="ReplyMessage"

4 schema="book.messageboard.interfaces.IMessage"

5 content_factory="book.messageboard.message.Message"

6 permission="book.messageboard.Add"

7 class=".views.ReplyMessage"

8 layer="board"/>

Once you restart Zope 3, you should be able to see the reply to Message screen.

This is how far I want to go with creating a nice, enduser-friendly interface. There
is much more that could be done to make the package attractive, but it would not
contain much content and would be boring to read about. Instead, I encourage
the reader to decide him/herself about making further improvements. The exercises
below should stimulate the reader about some possible improvements.

238
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

Figure 24.5: Reply to a message.

Exercises

1. If you don’t like the generated message names, there is a way to change this.
The names are generated by an adapter for IWriteContainer implementing
zope.app.container.interfaces.INameChooser. Write you own adapter for
IMessage and IMessageBoard

2. Currently the actions on the bottom of the page are implemented using simple
links and the user does not know whether s/he will be able to access the view or
not. Implement the actions in a way that they depend on the user’s permissions.
Note: Menus are extremely helpful for this, so I suggest using them.

3. The message board’s “Posts” screen currently shows all published messages, no
matter what. If you have a couple hundred messages, it can take quiet a while
to load the screen. Therefore you should implement some batching that only
shows at most 20 messages at a time.

CHAPTER 24 DEVELOPING NEW SKINS

24.9. REPLIES TO MESSAGES
239

4. There exists currently no way to add attachments to posts. Add a screen that
allows you to add attachments to a message. You might also want to customize
the “Create a new Post” and “Reply to Post” add forms to be able to add
attachments.

5. The “Review Messages” for publication screen has really no option of declining
messages. Therefore add some functionality that allows the refusal of messages.
Once a message is refused, it should be either deleted or set to private state.

6. There is currently no way for users to mail-subscribe to messages. Implement
this screen.

7. Utilize the Online Help and the existing screens to build a very user-friendly
help for the message board.

240
Zope 3 Developer’s Book

PART IV CONTENT COMPONENTS – ADVANCED TECHNIQUES

PART V
Other Components

From the introduction chapters you know that content objects are not the only
type of component you want to write. This section covers several of these various
other components, such as utilities and resources.

Chapter 25: Building and Storing Annotations

Since it is desirable to leave an object as untouched as possible, we developed a mechanism for
attaching meta data to an object without the object knowing about it.

Chapter 26: New Principal-Source Plug-Ins

Many people have very different requirements on the mechanism an authentication service should
function and Zope 3 respects this need. There exists an Authentication Service that accepts plugins
to provide principal data from external data sources.

Chapter 27: Principal Annotations

A common task is to append data to principals. Since principals are often imported from
external data sources, they are not attribute annotatable. This chapter will make use of the
Principal Annotation service to store additional data.

Chapter 28: Creating a new Browser Resource

This is a short chapter telling the reader how to implement a new file system based resource (a
context independent view).

Chapter 29: Registries with Global Utilities

Utilties can be used to implement Zope-wide registries. Since registries are so very useful, this
chapter is a must.

Chapter 30: Local Utilities

While we saw already how simple it is to write global utilities, there is some more work to do
for local utilities, which will be introduced in this chapter.

Chapter 31: Vocabularies and Related Fields/Widgets

Vocabularies are a powerful extension to the schema framework and provide a generic method
to create fields with variable and context dependent selection lists.

Chapter 32: Exception Views

For Zope 3, exceptions are simply objects, which can have views that make them representable
on any output medium (usually the browser). Every exception has a standard view, but for a
professional Web site you will need better screens.

CHAPTER 25

BUILDING AND STORING

ANNOTATIONS

Difficulty

Sprinter

Skills

• Be familiar with the concept of annotations and how they are used. See the
WebDAV Namespace chapter for a good example of how to use annotations.

• Be comfortable with the component architecture and ZCML.

Problem/Task

Currently, every object that comes with Zope 3 and can have some sort of anno-
tation, uses attribute annotations. Attribute annotations store the annotation data
directly in the objects. This implementation works fine as long as the object is per-
sistent and is stored in the ZODB. But what if you have SQL-based objects, such as
in relational-to-object mapping solutions? Storing annotations on the attribute of
the object would certainly not work. In these scenarios it becomes necessary to im-
plement a custom annotations implementation. This chapter will demonstrate how
this can be done.

Solution

243

244
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

25.1 Introduction

Before we can dive into developing a new annotation adapter, it is important to un-
derstand the inner-workings. First, there exists an interface named IAnnotatable.
By providing this interface, an object declares that it is possible to store annotations
for itself.

However, IAnnotable is too general, since it does not specify how the annotation
can be stored and should therefore never be provided directly. One should never
assume that one method works for all possible objects.

Zope 3 comes by default with an IAttributeAnnotatable interface that allows
you to store the annotations in the attribute annotations on the object itself.
This works well for any object whose instances are stored in the ZODB.

As second part to the equation we have the IAnnotations interface, which pro-
vides a simple mapping API (i.e. dictionary-like) that allows you to look up annota-
tion data using a unique key. This interface is commonly implemented as an adapter
requiring IAnnotatable and providing IAnnotations. Thus we need to provide
an implementation for IAnnotations to have our own annotations storage mecha-
nism.

For IAttributeAnnotable we have an AttributeAnnotations adapter. Note
that by definition IAnnotations extends IAnnotable, since an IAnnotation can
always adapt to itself.

Another important aspect about annotations is the key (unique id) that is being
used in the mapping. Since annotations may contain a large amount of data, it is
important to choose keys in a way that they will always be unique. The simplest
way to ensure this is to include the package name in the key. So for dublin core meta
data, for example, instead of using “ZopeDublinCore” as the key one should use
“zope.app.dublincore.ZopeDublinCore”. Some people also use a URI-based names-
pace notation: http://namespace.zope.org/dublincore/ZopeDublinCore/1.0.

25.2 Implementing an Alternative Annotations Mechanism

So, let’s say we cannot store annotations in an attribute on the object, because the
object is volatile. Where could we store the annotation data then? One possibility
would be to use RDBs, which makes sense, if your object’s data is also stored in a
relational database. A derivative of this solution would be to use files; but this is
hard to get working with transactions.

We also have to bear in mind, that annotations are used by Zope to store meta
data such as dublin core meta data or workflow data. It would be hard to store this

CHAPTER 25 BUILDING AND STORING ANNOTATIONS

25.3. DEVELOPING THE INTERFACES
245

data in a RDB. So the ZODB is still a good place to to store the annotation data.
One way would be to develop some sort of annotations container. But it would be
even better, if the annotations could store their annotations to a nearby object that
implements IAttibuteAnnotable.

25.3 Step I: Developing the Interfaces

We don’t want to put the burden of holding other object’s annotations on just any
object that we can find. Instead, an object should declare that it is willing to keep an-
notations of other objects by implementing an interface named IAnnotationKeeper.

Objects that want their annotations to be stored in annotation keepers, need to
implement IKeeperAnnotable.

By the way, for an object to find a keeper, it must also implement ILocation.
So clearly, the keeper annotation design makes only sense, if you expect the object
to be stored in a traversable path and is therefore not generally applicable either.

For writing the interfaces, you first need to start a new package in ZOPE3/src/

book called keeperannotations. Add the following contents in interfaces.py:

1 �
����� zope.interface
�
��� ���� Interface

2 �
����� zope.app.annotation.interfaces
�
��� ���� IAnnotatable

3

4
��������� IAnnotationKeeper(Interface):

5 """Marker indicating that an object is willing to store other object’s

6 annotations in its own annotations.

7

8 This interface makes only sense, if the object that implements this

9 interface also implements ’IAnnotatable’ or any sub-class.

10 """

11

12
��������� IKeeperAnnotatable(IAnnotatable):

13 """Marker indicating that an object will store its annotations in an

14 object implementing IAnnotationKeeper.

15

16 This requires the object that provides this interface to also implement

17 ILocation.

18

19 This interface does not specify how the keeper may be found. This is up

20 to the adapter that uses this interface to provide ’IAnnotations’.

21 """

Both interfaces are just markers, since there is no direct duty involved by imple-
menting these interfaces.

25.4 Step II: The KeeperAnnotations Adapter

Implementing the keeper annotations adapter is simply a matter of implementing the
IAnnotations interface’s mapping methods. The tricky part of the implementation

246
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

is to find the object that is the annotation keeper. This should be no problem as
long as (1) the object has a location and (2) a keeper is available in the path of the
object.

This first issue is important. When an object was just created, an ObjectCreatedEvent

is sent out to which the dublin core mechanism listens. The dublin core mechanism
then tries to set the creation and modification date on the object using annotations.
This is of course a problem, since the object has no location at this point. In these
cases we need some sort of temporary storage that can keep the annotation until the
object has a location.

The other issue we safely ignore. The easiest would be to simply make the root
folder an IAnnotationKeeper. This way the lookup for a keeper will never fail
provided the object has a location. In the init .py file of your package, add the
following adapter code:

1 ������� BTrees.OOBTree
�
�������� OOBTree

2

3 ������� zope.interface
�
�������� implements

4 ������� zope.proxy
�
� � ���� removeAllProxies

5

6 ������� zope.app
�
� � ���
 zapi

7 ������� zope.app.annotation.interfaces
�
�������� IAnnotations

8

9 ������� interfaces
�
� � ���� IKeeperAnnotatable, IAnnotationKeeper

10

11 keeper_key = ’book.keeperannotation.KeeperAnnotations’

12

13 tmp = {}

14

15
�
������� KeeperAnnotations(object):

16 """Store the annotations in a keeper.

17 """

18 implements(IAnnotations)

19 __used_for__ = IKeeperAnnotatable

20

21 ��	�� __init__(� 	 � � , obj):

22
� 	 � � .obj = obj

23
� 	 � � .obj_key = removeAllProxies(obj)

24
� 	 � � .keeper_annotations = None

25

26 # Annotations might be set when object has no context

27

�
� � �� hasattr(obj, ’__parent__’) ��� obj.__parent__

� � None:

28
� 	 � � .keeper_annotations = tmp

29 �
	�������
30

31 � ��� parent
�
� zapi.getParents(obj):

32

�
� IAnnotationKeeper.providedBy(parent):

33 # We found the keeper, get the annotation that will store

34 # the data.

35 annotations = IAnnotations(parent)

36

�
� ���� annotations.has_key(keeper_key):

37 annotations[keeper_key] = OOBTree()

38
� 	 � � .keeper_annotations = annotations[keeper_key]

39

CHAPTER 25 BUILDING AND STORING ANNOTATIONS

25.4. THE KEEPERANNOTATIONS ADAPTER
247

40

�
� � 	 � � .keeper_annotations == None:

41 � �
� � 	 ValueError, ’No annotation keeper found.’

42

43 # There are some temporary stored annotations; add them to the keeper

44

�
� tmp.has_key(obj):

45
� 	 � � .keeper_annotations[� 	 � � .obj_key] = tmp[obj]

46 �
	 � tmp[obj]

47

48 ��	�� __getitem__(� 	 � � , key):

49 """See zope.app.annotation.interfaces.IAnnotations"""

50 annotations = � 	 � � .keeper_annotations.get(� 	 � � .obj_key, {})

51 �
	������� annotations[key]

52

53 ��	�� __setitem__(� 	 � � , key, value):

54 """See zope.app.annotation.interfaces.IAnnotations"""

55

�
� � �� � 	 � � .keeper_annotations.has_key(� 	 � � .obj_key):

56
� 	 � � .keeper_annotations[� 	 � � .obj_key] = OOBTree()

57
� 	 � � .keeper_annotations[� 	 � � .obj_key][key] = value

58

59 ��	�� get(� 	 � � , key, default=None):

60 """See zope.app.annotation.interfaces.IAnnotations"""

61 ���� :
62 �
	������� � 	 � � [key]
63 	 � � 	 �� KeyError:

64 �
	������� default

65

66 ��	�� __delitem__(� 	 � � , key):

67 """See zope.app.annotation.interfaces.IAnnotations"""

68 �
	 � � 	 � � .keeper_annotations[� 	 � � .obj_key][key]

. Line 11: This string will be used in the keeper’s annotations to store the other
objects’ annotations.

. Line 13: This is the temporary annotations variable, which holds annotations for
objects that have not yet been located (i.e. have no parent and name).

. Line 23: Here we use the object itself as key in the annotations. This works well
for persistent objects, but volatile content components would still not work. See
exercise 1, which addresses this issue.

Note: We could not use the path of the object yet either, since the object might
not have been located yet.

. Line 27–29: In the case that no location has been assigned to the object yet, use
the temporary storage.

. Line 31–38: Walk through all the parents and try to find the closest keeper. When
a keeper is found, use it. Next, add a keeper b-tree, if none exists yet.

. Line 40–41: If no keeper was found, raise a ValueError. The condition should
never be true, since this would cause a lot of application code to fail. So make
sure, that a keeper can always be found.

248
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

. Line 44–46: If there are some temporary annotation entries, it is time to move
them to the real keeper now and delete it from the temporary storage.

. Line 48–51: A straightforward implementation that simply looks for the key at
the correct place. A default is passed in, since the annotation for the given object
might not even exist yet.

. Line 53–57: First the code checks whether an annotation entry already exists for
the object in the keeper. If not, then a new entry is added. Finally, the new
annotation for the object is set.

. Line 59–64: This implementation reuses the getitem () method to avoid code
duplication.

. Line 66–68: Delegate the deletion request to the correct entry.

This implementation is not meant to be used in production, but to serve as a
simple demonstration. The exercises address the most obvious issues and ask the
reader to fix them with some guidance.

25.5 Step III: Unit Testing

The problem with writing annotations is that they are used by other content objects.
The correct way of writing the tests would be to develop dummy content objects.
But in order to keep the testing code as small as possible, we are just going to depend
on some of the existing content implementations, namely Folder and File. The
most well-defined annotation is probably the ZopeDublinCore, so we will use it to
declare and test some annotations.

We will use doc strings to write the tests. For clarity of this chapter, the doc
string tests are not listed here. You can find the test code in the class doc string of
KeeperAnnotations.

We now just have to write a tests module to execute the doc tests. Create a file
called tests.py and add the following lines. There are a lot of imports, since we
have to register a bunch of adapters for the testing code to work.

You can now execute the tests fromt the Zope 3 root directory using
python tests.py -vpu --dir src/book/keeperannotations

25.6 Step IV: Configuration of the KeeperAnnotations Compo-
nent

To use the KeeperAnnotations adapter, we need to register it.

CHAPTER 25 BUILDING AND STORING ANNOTATIONS

25.7. FUNCTIONAL TESTS AND CONFIGURATION
249

In configure.zcml add the following lines:

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:browser="http://namespaces.zope.org/browser"

4 i18n_domain="zope">

5

6 <adapter

7 for=".interfaces.IKeeperAnnotatable"

8 provides="zope.app.annotation.interfaces.IAnnotations"

9 factory=".KeeperAnnotations" />

10

11 </configure>

And that’s it for the package. The annotations keeper adapter is set up an can
be used by other components.

25.7 Step V: Writing Functional Tests and Configuration

Functional tests are very important for this code, since we do not know whether we
thought of all exceptions until we test the keeper annotations code in a fully running
Zope 3 environment. In a running Zope 3 setup we cannot use the File as test
object anymore, since it already implements IAttributeAnnotable. Instead, we
will use a KeeperFile class that inherits from File and register it seperately. In a
new file named ftests.py add the new content type.

1 �
����� zope.app.file
�
��� ���� File

2

3
��������� KeeperFile(File):

4 � �����

We now need to register this new content type. We could add the registration
directives to configure.zcml and be done, but since this content type is for testing
only, it is better to create a separate configuration file and hook it up with the
functional testing configuration directly.

We register the KeeperFile in almost identically the same way as the regular
File. Additionally, the KeeperAnnotations adapter must be registered. For sim-
plicity we make every Folder an IAnnotationKeeper.

Create a new file keeper.zcml and add the following lines.

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:browser="http://namespaces.zope.org/browser"

4 i18n_domain="zope">

5

6 <content class="zope.app.folder.Folder">

7 <implements

8 interface=".interfaces.IAnnotationKeeper"

9 />

10 </content>

11

250
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

12 <content class=".ftests.KeeperFile">

13 <factory

14 id="KeeperFile"

15 title="Keeper File"

16 description="A Keeper File" />

17

18 <require

19 permission="zope.View"

20 interface="zope.app.filerepresentation.interfaces.IReadFile" />

21

22 <require

23 permission="zope.ManageContent"

24 interface="zope.app.filerepresentation.interfaces.IWriteFile"

25 set_schema="zope.app.filerepresentation.interfaces.IReadFile"

26 />

27

28 <implements

29 interface=".interfaces.IKeeperAnnotatable"

30 />

31 </content>

32

33 <browser:addMenuItem

34 class=".ftests.KeeperFile"

35 title="Keeper File"

36 permission="zope.ManageContent"

37 view="KeeperFile"

38 />

39

40 <browser:addform

41 schema="zope.app.file.interfaces.IFile"

42 label="Add a Keeper File"

43 content_factory=".ftests.KeeperFile"

44 name="AddKeeperFile"

45 permission="zope.ManageContent"

46 />

47

48 </configure>

If you do not understand these directives, read some of the content component
chapters, as they explain them in much detail.

We now need to tell the functional configuration setup, that it should evaluate
keeper.zcml. We do so by adding

1 <include file="src/book/keeperannotations/keeper.zcml" />

to ZOPE3/ftesting.zcml. This file is the main configuration file for functional
tests. It is used in the same way that site.zcml is used for a real start up.

Now we should be configured and can concentrate on writing the test itself. The
test will emulate pretty much the unit tests. Here is the setup, which should be
added to ftests.py.

1

�
�������
 time

2

�
�������
 unittest

3

4 ������� zope.app.file
�
�������� File

5 ������� zope.app.tests.functional
�
� � ���
 BrowserTestCase

CHAPTER 25 BUILDING AND STORING ANNOTATIONS

25.7. FUNCTIONAL TESTS AND CONFIGURATION
251

6

7 �
����� book.keeperannotations
�
��� ���� keeper_key

8

9
��������� KeeperFile(File):

10 � �����

11

12

13
��������� Test(BrowserTestCase):

14 """Funcional tests for Keeper Annotations.

15 """

16

17 ��	�� test_DC_Annotations(� 	 � �):
18 # Create file

19 response = � 	 � � .publish(
20 "/+/action.html?type_name=KeeperFile",

21 basic=’mgr:mgrpw’)

22

23
� 	 � � .assertEqual(response.getStatus(), 302)

24
� 	 � � .assertEqual(response.getHeader(’Location’),

25 ’http://localhost/@@contents.html’)

26

27 # Update the file’s title

28
� 	 � � .publish("/@@contents.html",

29 basic=’mgr:mgrpw’,

30 form={’retitle_id’ : ’KeeperFile’,

31 ’new_value’ : u’File Title’})

32

33 root = � 	 � � .getRootFolder()
34 file = root[’KeeperFile’]

35 ann = root.__annotations__[keeper_key][file]

36 dc_ann = ann[’zope.app.dublincore.ZopeDublinCore’]

37
� 	 � � .assert_(dc_ann[u’Date.Created’][0] > u’2004-01-01T12:00:00’)

38
� 	 � � .assert_(dc_ann[u’Date.Created’][0] == dc_ann[u’Date.Modified’][0])

39
� 	 � � .assertEqual(dc_ann[u’Title’][0], u’File Title’)

40

41

42 ��	�� test_suite():

43 ��	������� unittest.TestSuite((

44 unittest.makeSuite(Test),

45))

46

47

�
� __name__==’__main__’:

48 unittest.main(defaultTest=’test_suite’)

. Line 19–25: Add a keeper file to the root folder and make sure the correct HTTP
response its provided.

. Line 28–31: Now change the title of the file. The title is provided by the Dublin
Core, which in turn uses annotations to store its values.

. Line 33–40: Testing the correct behavior using HTML views would be too tedious,
so we just grab the root folder directly and analyze the annotations for correct
entries like we did it in the unit tests.

252
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

You can now run the tests as usual. You can also try the annotation keeper
with the messageboard. Simply make the message board an annotation keeper for
messages.

You can find the complete source code at http://svn.zope.org/book/trunk/

keeperannotations.

CHAPTER 25 BUILDING AND STORING ANNOTATIONS

25.7. FUNCTIONAL TESTS AND CONFIGURATION
253

Exercises

1. Using the object itself as key for the annotations works well for persistent ob-
jects, but fails for volatile ones. Develop an interface and adapter that will pro-
vide a unique id for a given object. While Zope X3 3.0.0 does not ship with a
unique id generator, the trunk has a unique id utility, which can be used to cre-
ate such ids for objects. You might want to use that utility.

2. Storing the annotations in a dictionary called tmp until the object has been
placed somewhere is not the best solution. It would be better, if the temporary
annotations would be stored in a file. Hint: You might want to use pickle to
convert the Python data structures to a string and back.

3. Currently, if you only set annotations before the object is assigned a location,
then the annotations will last forever in the temporary annotations dictionary.
If you shut down the server, you loose the annotations (using the approach asked
for in exercise 2 solves the issue). The better approach, however, would be to
write an event subscriber that listens for events that notify the system that a
location was assigned to an object. It could then move the data as response.
Write such an event subscriber and hook it up to the existing code.

4. The existing implementation lacks the ability to handle moving and copying of
objects. Why is that bad? When an object is moved, its keeper might change;
therefore the object will effectively loose its annotations. The key, again, would
be to implement an event subscriber that listens to move and copy events.
When an object is moved and the keeper changes, the subscriber will copy the
annotation data from the old keeper to the new one. Implement this!

254
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

CHAPTER 26

NEW PRINCIPAL-SOURCE PLUG-INS

Difficulty

Sprinter

Skills

• You should have a basic understanding of the Zope 3 component architecture.

• It is necessary to understand the purpose and differences between permissions,
roles and principals.

• Basic knowledge about the Authentication Service. Optional.

Problem/Task

Many systems provide their own mechanisms for authentication. Examples in-
clude /etc/passwd, LDAP, NIS, Radius and relational databases. For a generic
platform like Zope it is critically necessary to provide facilities to connect to these
external authentication sources.

Zope 3 provides an advanced Authentication Service that provides an interface to
integrate any external authentication source by simply developing a small plug-in,
called a principal source. In this chapter we create such a plug-in and register it with
the Authentication Service .

Solution

While one can become very fancy in implementing a feature-rich principal source
implementation, we are concentrating on the most simple case here. The exercises
point out many of the improvements that can be done during later development.

255

256
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

The goal of this chapter is to create a file-based principal source, so that it could
read a /etc/passwd-like file (it will not actually be able to read passwd files,
since we do not know whether everyone has the crypt module installed on her/his
machine). The format of the file that we want to be able to read and parse is (users
are separated by a newline character):

1 login:password:title:other_stuff

Let’s now turn to the principal source. A component implementing ILoginPasswordPrincipalSource

(which extends IPrincipalSource) promises to provide three simple methods:

• getPrincipal(id) – This method gets a particular principal by its id, which is
unique for this particular source. If no principal with the supplied id is found,
a NotFoundError is raised.

• getPrincipals(name) – This method returns a list of principals whose login
somehow contains the substring specified in name. If name is an empty string,
all principals of this source are returned.

• authenticate(login,password) – This method is actually required by the
ILoginPasswordPrincipalSource interface and provides authentication for the
provided principal. There are other ways to implement authentication for these
principals, but they add unnecessary complexity. None is returned, if no match
is made.

The next step is to provide an implementation of ILoginPasswordPrincipalSource

for password files. Create a new sub-package called passwdauth in the book pack-
age. Now the first step is to define the interfaces, as usual.

26.1 Step I: Defining the interface

“What interface do we need?”, you might wonder. In order for a file-based principal
source plug-in to provide principals, we need to know the file that contains the data;
knowing about this file is certainly part of the API for this plug-in. So we want
to create a specific interface that contains a filename. If we make this attribute a
schema field, we can even use the interface/schema to create autogenerated add and
edit forms.

In the passwdauth directory add an interfaces.py file and add the following
contents:

1 ������� zope.schema
�
��� ���� TextLine

2 ������� zope.app.i18n
�
�������� ZopeMessageIDFactory as _

3

4 ������� zope.app.pluggableauth.interfaces
�
� � ���
 IPrincipalSource

5

CHAPTER 26 NEW PRINCIPAL-SOURCE PLUG-INS

26.2. WRITING THE TESTS
257

6
��������� IFileBasedPrincipalSource(IPrincipalSource):

7 """Describes file-based principal sources."""

8

9 filename = TextLine(

10 title = _(u’File Name’),

11 description=_(u’File name of the data file.’),

12 default = u’/etc/passwd’)

. Line 1: Here we have the usual imports of the TextLine field for the filename
property.

. Line 2: This is the typical I18n boilerplate (not much though); all text strings
wrapped by the underscore function will be internationalized, or in other terms
localizable.

. Line 4: Our file-based principal source is still of type IPrincipalSource, so let’s
make it the base interface.

. Line 9–12: Typical internationalized text line field declaration, making /etc/

passwd the default value (even though the product will not work with this file due
to the crypt module issue). You might want to add a different default, also based
on the operating system you are on.

26.2 Step II: Writing the tests

The next step is to write some unit tests that assure that the file parser does its
job right. But first we need to develop a small data file with which we can test
the plug-in with. Create a file called passwd.sample and add the following two
principal entries:

1 foo1:bar1:Foo Bar 1

2 foo2:bar2:Foo Bar 2

Now we have a user with login foo1 and one known as foo2, having bar1 and
bar2 as passwords, respectively.

In the following test code we will only test the aforementioned three methods of
the principal source. The file reading code is not separately checked, since it will be
well tested through the other tests.

Create a tests.py file and add the code below.

1

�
�������� os

2

�
�������� unittest

3

4 �
����� zope.exceptions
�
�������� NotFoundError

5

6 �
����� book
�
� � ���� passwdauth

7

258
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

8

9
�
������� PasswdPrincipalSourceTest(unittest.TestCase):

10

11 ��	�� setUp(� 	 � �):
12 dir = os.path.dirname(passwdauth.__file__)

13
� 	 � � .source = passwdauth.PasswdPrincipalSource(

14 os.path.join(dir, ’passwd.sample’))

15

16 ��	�� test_getPrincipal(� 	 � �):
17

� 	 � � .assertEqual(� 	 � � .source.getPrincipal(’\t\tfoo1’).password, ’bar1’)

18
� 	 � � .assertEqual(� 	 � � .source.getPrincipal(’\t\tfoo2’).password, ’bar2’)

19
� 	 � � .assertRaises(NotFoundError, � 	 � � .source.getPrincipal, ’\t\tfoo’)

20

21 ��	�� test_getPrincipals(� 	 � �):
22

� 	 � � .assertEqual(len(� 	 � � .source.getPrincipals(’foo’)), 2)

23
� 	 � � .assertEqual(len(� 	 � � .source.getPrincipals(’’)), 2)

24
� 	 � � .assertEqual(len(� 	 � � .source.getPrincipals(’2’)), 1)

25

26 ��	�� test_authenticate(� 	 � �):
27

� 	 � � .assertEqual(� 	 � � .source.authenticate(’foo1’, ’bar1’)._id, ’foo1’)

28
� 	 � � .assertEqual(� 	 � � .source.authenticate(’foo1’, ’bar’), None)

29
� 	 � � .assertEqual(� 	 � � .source.authenticate(’foo’, ’bar1’), None)

30

31 �
	�� test_suite():

32 ��	������� unittest.makeSuite(PasswdPrincipalSourceTest)

33

34

�
� __name__==’__main__’:

35 unittest.main(defaultTest=’test_suite’)

. Line 1, 12–14: The reason we imported os was to be able to get to the directory
of the code as seen in line 12. Once we have the directory it is easy to build up
the data file path and initialize the principal source (line 13–14).

. Line 16–19: Test the getPrincipal(id) method. The last test checks that the
correct error is thrown in case of a failure. The full principal id is usually a tab-
separated string of an earmark, the principal source name and the principal id.
Since we do not have an earmark or a principal source name specified in a unit
tests, these two values are empty and the full principal id has two tab characters
at the beginning.

. Line 21–24: The test for getPrincipals(name) mainly tests that the resulting
user list is correctly filtered based on the name parameter value.

. Line 26–29: The authentication test concentrates on checking that really only a
valid login name and password pair receives a positive authentication by returning
the principal object.

. Line 31–35: This is the usual test boiler plate.

CHAPTER 26 NEW PRINCIPAL-SOURCE PLUG-INS

26.3. IMPLEMENTING THE PLUG-IN
259

You can later run the tests either using Zope’s test.py test runner or by executing
the script directly; the latter method requires the Python path to be set correctly to
ZOPE3/src.

26.3 Step III: Implementing the plug-in

The implementation of the plug-in should be straightforward and bear no sur-
prises. The tests already express all the necessary semantics. We only have not
discussed the data structure of the principal itself yet. Here we can reuse the
SimplePrincipal, which is a basic IUser implementation that contains all the
data fields (IUserSchemafied) relevant to a principal: id, login (username), pass-
word, title and description.

Note that in Zope 3 the principal knows absolutely nothing about its roles, per-
missions or anything else about security. This information is handled by other com-
ponents of the system and is subject to policy settings. Now we are ready to realize
the principal source. In the init .py file of the passwdauth package we add the
following implementation:

1

�
�������� os

2 �
����� persistent
�
� � ���
 Persistent

3

4 �
����� zope.exceptions
�
�������� NotFoundError

5 �
����� zope.interface
�
��� ���� implements

6

7 �
����� zope.app.container.contained
�
� � ���� Contained

8 �
����� zope.app.location
�
�������
 locate

9 �
����� zope.app.pluggableauth
�
��� ���� SimplePrincipal

10 �
����� zope.app.pluggableauth.interfaces
�
�������
 IContainedPrincipalSource

11 �
����� zope.app.pluggableauth.interfaces
�
�������
 ILoginPasswordPrincipalSource

12

13 �
����� interfaces
�
� � ���
 IFileBasedPrincipalSource

14

15
��������� PasswdPrincipalSource(Contained, Persistent):

16 """A Principal Source for /etc/passwd-like files."""

17

18 implements(ILoginPasswordPrincipalSource, IFileBasedPrincipalSource,

19 IContainedPrincipalSource)

20

21 ��	�� __init__(� 	 � � , filename=’’):

22
� 	 � � .filename = filename

23

24 ��	�� readPrincipals(� 	 � �):
25

�
� � �� os.path.exists(� 	 � � .filename):

26 �
	������� []

27 file = open(� 	 � � .filename, ’r’)

28 principals = []

29 ����� line
�
� file.readlines():

30

�
� line.strip() != ’’:

31 user_info = line.strip().split(’:’, 3)

32 p = SimplePrincipal(*user_info)

260
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

33 locate(p, � 	 � � , p._id)

34 p._id = p.login

35 principals.append(p)

36 ��	������� principals

37

38 ��	�� getPrincipal(� 	 � � , id):

39 """See ‘IPrincipalSource‘."""

40 earmark, source_name, id = id.split(’\t’)

41 � ��� p
�
� � 	 � � .readPrincipals():

42

�
� p._id == id:

43 �
	������� p

44 � �
� � 	 NotFoundError, id

45

46 ��	�� getPrincipals(� 	 � � , name):

47 """See ‘IPrincipalSource‘."""

48 ��	������� filter(��� ����� � p: p.login.find(name) != -1,

49
� 	 � � .readPrincipals())

50

51 ��	�� authenticate(� 	 � � , login, password):

52 """See ‘ILoginPasswordPrincipalSource‘. """

53 � ��� user
�
� � 	 � � .readPrincipals():

54

�
� user.login == login � ��� user.password == password:

55 �
	������� user

. Line 2 & 14: Make sure the principal source object itself is persistent, so that it
can be stored in the Authentication Service.

. Line 4: The NotFoundError is a Zope-specific exception, so we need to import it.

. Line 7 & 14: Since the principal source is stored inside an authentication service,
we need to make it an IContained object.

. Line 8: The locate() method helps us assigning a location to objects, in this
case principals. Since principals are contained by principal sources, we need to
assign a parent and a name to them when they are created.

. Line 9: Here you can see where the SimplePrincipal is defined. There is really
no need to implement our own version, even though it is a persistent class – we
never add it to any object in the ZODB anyways.

. Line 10–13, & 18–19: Import the three principal source interfaces we promise to
implement in our new principal source. The IContainerPrincipalSource makes
sure that the principal source can only be added to a pluggable authentication
service and nowhere else.

. Line 21–22: We need to make sure the filename attribute always exists; optionally
it can even be passed to the constructor; we will make use of this fact in the
autogenerated add form.

CHAPTER 26 NEW PRINCIPAL-SOURCE PLUG-INS

26.3. IMPLEMENTING THE PLUG-IN
261

. Line 24–36: The readPrincipals() method does all the heavy lifting as it is re-
sponsible for reading and “parsing” the file. It contains all the logic for interpret-
ing the file format. readPrincipals() is just a helper method and is therefore
not defined in any interface.

• Line 25–26: In the first if statement the algorithm checks that the file really
exists and return an empty list if it does not. This prohibits Zope from crashing
if the file is not found, which is desirable in case you just made a simple typo
and now you cannot access your Zope, because any authentication check will
fail, since it passes through this code for every authentication call.

• Line 29: As mentioned before we assume that there is one line per user.

• Line 30: Let’s ignore empty lines, they just cause headaches.

• Line 31–32: Another assumption is made; the entries in the file correspond
directly to the arguments of the SimplePrincipal constructor, which is valid
as long as the constructor signature of SimplePrincipal does not change.

• Line 33: Assign a location to the principal, so that we know where it came
from.

• Line 34: The principal’s login is generally different from its id field. Since
we do not just want to support /etc/passwd files, we are not going to reuse
the Unix user id, but simply use the login for its id.

. Line 38–44: This implementation of the getPrincipal() method reads all prin-
cipals in and checks whether one with a matching id is found; if not, raise a
NotFoundError. This is of course horribly inefficient and one should use caching
– see Exercise 5 at the end of this chapter.

The principal id that is passed into this method argument really exists of three
parts separated by a tab-character. The first part is the earmark (or unique id)
of the authentication service, the second the name of the principal source and the
third the id of the principal (line 38). However, we are only interested in the last
part, which we use for comparison.

. Line 46–49: Again we simply use the readPrincipals() result to built up the
list of matching principals.

. Line 51–55: The authenticate() method simply wades through all the users
and tries to find a matching login/ password pair. When a match is found, the
principal object is returned. Note that Python returns None, if no return value is
specified, which is the case if no match was determined.

You should now run the unit tests to make sure that the implementation behaves
as expected.

262
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

26.4 Step IV: Registering the Principal Source and Creating
basic Views

We now have to register the PasswdPrincipalSource as content and create a basic
add/edit form, since we need to allow the user to specify a data file. Create a
configuration file (configure.zcml) and add the following directives:

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:browser="http://namespaces.zope.org/browser"

4 i18n_domain="demo_passwdauth">

5

6 <content class=".PasswdPrincipalSource">

7 <factory

8 id="zope.app.principalsources.PasswdPrincipalSource"

9 />

10 <allow interface=".interfaces.IFileBasedPrincipalSource"

11 />

12 <require

13 permission="zope.ManageContent"

14 set_schema=".interfaces.IFileBasedPrincipalSource"

15 />

16 </content>

17

18 <browser:addform

19 schema=".interfaces.IFileBasedPrincipalSource"

20 label="Add file-based Principal Source in /etc/passwd style"

21 content_factory=".PasswdPrincipalSource"

22 arguments="filename"

23 name="AddPasswdPrincipalSourceForm"

24 menu="add_principal_source" title="/etc/passwd Principal Source"

25 permission="zope.ManageContent"

26 />

27 <browser:editform

28 schema=".interfaces.IFileBasedPrincipalSource"

29 label="Edit file-based Principal Source"

30 name="edit.html"

31 menu="zmi_views" title="Edit"

32 permission="zope.ManageContent"

33 />

34 </configure>

. Line 6–16: Define the principal source as content, create a factory for it and make
the appropriate security declarations for the interfaces. While the factory id (line
8) is usually the same as the Python object path, this is not the case here. However,
this poses no problem, since the only requirement is that the id is globally unique.

. Line 18–26: Create a simple autogenerated add form. We also specify that the
filename is the first and only argument for the constructor.

. Line 27–33: Matching to the add form, this is a simple edit form for the file name.
Plain and simple is enough in this case.

CHAPTER 26 NEW PRINCIPAL-SOURCE PLUG-INS

26.5. TAKING IT FOR A TEST RUN
263

One last step must be taken before the package can be tested: We need to incorpo-
rate the package into the system. Therefore add a file named passwdauth-configure.

zcml into the package-includes directory having the following content:

1 <include package="book.passwdauth" />

Now (re)start your Zope server and try the new plug-in.

26.5 Step V: Taking it for a test run

After you have restarted Zope, take a Web browser and access http://localhost:

8080/. From the contents screen go to the configuration by clicking on the
ManageSite link. You are probably being prompted to login. Make sure you are
logging in as a user having the zope.Manager role.

If you do not have an Authentication Service yet, then add this service by clicking
on the AddService link. Select AuthenticationService and give it the name
auth service. The service will be automatically registered and activated for you.
After this is done, you are left in the Registration view of the authentication
service itself. In the Add: box on the left side, you should now see two entries, one
of which is /etc/passwdPrincipalSource. Click on the new principal source and
enter passwd as the name of the principal source.

In the next screen you are being asked to enter the path of the file. Darn, you
might think, I do not have a file yet. But don’t worry, we still have the file we used
for the tests, so we can reuse it (and we know it works). So enter the following path,
replacing ZOPE3 with the path to your Zope 3 installation:

1 ZOPE3/src/book/passwdauth/passwd.sample

After submitting the form you end up in the Contents view of the Authentication
Service again. Unfortunately, we have not added a screen yet, telling us whether the
file exists and it successfully found users. I leave this exercise for the reader.

Before we can use the new principals, however, we have to assign roles to them.
So go to http://localhost:8080/@@contents.html. In the top right corner
you will see a Grant menu option. Click on it. In the next screen click on
Grantrolestoprincipals. Now you should be convinced that the new principal
source works, since “Foo Bar 1” and “Foo Bar 2” should appear in the principal’s
list. Select “Foo Bar 1” and all of the listed roles and submit the form by pressing
Filter. In the next screen you simply select Allow for all available roles, which as-
signs them to this user. Store the changes by clicking Apply.

We are finally ready to test the principal! Open another browser and enter the fol-
lowing URL: http://localhost:8080/@@contents.html. You will be prompted
for a login. Enter foo1 as username and bar1 as password and it should show

264
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

you the expected screen, meaning that the user was authenticated and the role
SiteManager was appropriately assigned. You should also see User:FooBar1 some-
where on near the top of the screen.

CHAPTER 26 NEW PRINCIPAL-SOURCE PLUG-INS

26.5. TAKING IT FOR A TEST RUN
265

Exercises

1. The chapter’s implementation did not concentrate much on providing feedback
to the user. It would be nice to have a screen with an overview of all of the
login names with their titles and other information. Implement such a screen
and add it as the default tab for the principal source.

2. The current implementation requires the passwords to be plain text, which is of
course a huge security risk. Implement a version of the plug-in that can handle
plain text, crypt-based and SHA passwords. Implement a setting in the user
interface that lets the user select one of the encryption types.

3. Implement a version of the plug-in that provides a write interface, i.e. you
should be able to add, edit and delete principals. It would be best to implement
the entire IContainerPrincipalSource interface for this, since you can then
make use of existing Container code.

4. It is very limiting to require a special file format for the principal data. It would
be useful to develop a feature that allows the user to specify the file format.
Implement this feature and provide an intuitive user interface for this feature.
(This is a tough one; feel free to make some assumptions to solve the problem.)

5. Reading in the user data for every single authentication call is quiet expensive, so
it would be helpful to implement some caching features. This can be done in two
ways: (1) Use the caching framework to implement a cached version of the source
or (2) save the list of principals in a volatile attribute (i.e. v principals)
and check for every call whether the file had been modified since the last time
it was read.

266
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

CHAPTER 27

PRINCIPAL ANNOTATIONS

Difficulty

Sprinter

Skills

• You should understand the concept of annotations.

• Be familiar with adapters and how to register them.

Problem/Task

A common task is to append meta-data to principals. However, principals are
often imported from external data sources, so that they are not attribute annotatable.
Therefore a different solution is desirable. The Principal Annotation service was
developed to always allow annotations for a principal. This chapter will show you
how to use the Principal Annotation service to store additional data.

Solution

We now know that we want to store additional meta-data for the principal, but
what do we want to store? To make it short, let’s provide an E-mail address and
an IRC nickname. Since we do not want to hand-code the HTML forms, we will
describe the two meta-data elements by an interface as usual.

But before we can write the interface, create a new package named principalinfo

in the book package. Do not forget to add the init .py file.

267

268
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

27.1 Step I: The Principal Information Interface

Add file called interfaces.py in the newly created package. Then place the fol-
lowing interface in it.

1 ������� zope.i18n
�
� � ���
 MessageIDFactory

2 ������� zope.interface
�
�������� Interface

3 ������� zope.schema
�
��� ���� TextLine

4

5 _ = MessageIDFactory(’principalinfo’)

6

7

8
�
������� IPrincipalInformation(Interface):

9 """This interface additional information about a principal."""

10

11 email = TextLine(

12 title=_("E-mail"),

13 description=_("E-mail Address"),

14 default=u"",

15 required=False)

16

17 ircNickname = TextLine(

18 title=_("IRC Nickname"),

19 description=_("IRC Nickname"),

20 default=u"",

21 required=False)

The interface is straight forward. the two data elements are simply two text lines.
If you wish, you could write a special EMail field that also checks for valid E-mail
addresses.

27.2 Step II: The Information Adapter

The next task is to provide an adapter that is able to adapt from IPrincipal to
IPrincipalInformation using the principal annotation service to store the data.
In a new module named info.py add the following adapter code.

1 ������� persistent.dict
�
�������
 PersistentDict

2 ������� zope.interface
�
�������� implements

3 ������� zope.app
�
� � ���
 zapi

4

5 ������� interfaces
�
� � ���� IPrincipalInformation

6

7 key = ’book.principalinfo.Information’

8

9
�
������� PrincipalInformation(object):

10 r"""Principal Information Adapter"""

11 implements(IPrincipalInformation)

12

13 ��	�� __init__(� 	 � � , principal):

14 annotationsvc = zapi.getService(’PrincipalAnnotation’)

15 annotations = annotationsvc.getAnnotations(principal)

16

�
� annotations.get(key)

� � None:

CHAPTER 27 PRINCIPAL ANNOTATIONS

27.2. THE INFORMATION ADAPTER
269

17 annotations[key] = PersistentDict()

18
� 	 � � .info = annotations[key]

19

20 ��	�� __getattr__(� 	 � � , name):

21

�
� name

�
� IPrincipalInformation:

22 �
	������� � 	 � � .info.get(name, None)

23 � �
� � 	 AttributeError, "’%s’ not in interface." %name

24

25 ��	�� __setattr__(� 	 � � , name, value):

26

�
� name

�
� IPrincipalInformation:

27
� 	 � � .info[name] = value

28 	 �
� 	 :
29 super(PrincipalInformation, � 	 � �).__setattr__(name, value)

. Line 7: The key is used to uniquely identify the annotation that is used by this
adapter.

. Line 8: Get the principal annotation service. Note that this code assumes that such
a service exists. If not, a ComponentLookupError is raised and the initialization
of the adapter fails. Luckily, when the ZODB is first generated it adds a principal
annotation service to the root site manager.

. Line 9: Retrieve the set of annotations for the principal that was passed in. In-
ternally, the annotation service uses the principal’s id to store the annotations.
Therefore it is important that a principal always keep its id or when it is changed,
the annotation must be moved.

. Line 10–11: If the key was not yet registered for the principal, then initialize a
persistent dictionary, which we will use to store the values of the fields.

. Line 12: The persistent data dictionary is set to be available as info.

. Line 14–17: If the name of the attribute we are trying to get is in the
IPrincipalInformation interface, then retrieve the value from the info dic-
tionary. If the name does not corresponds to a field in the interface, then raise an
attribute error. Note that getattr is only called after the normal attribute
lookup fails.

. Line 19–23: Similar to the previous method, if the name corresponds to a field in
the IPrincipalInformation interface, then store the value in the data dictionary.
If not, then use the original getattr () method to store the value.

This was not that hard, was it?

270
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

27.3 Step III: Registering the Components

Now that we have an adapter, we need to register it as such. Also, we want to create
an edit form that allows us to edit the values.

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:browser="http://namespaces.zope.org/browser"

4 i18n_domain="principalinfo">

5

6 <adapter

7 factory=".info.PrincipalInformation"

8 provides=".interfaces.IPrincipalInformation"

9 for="zope.app.security.interfaces.IPrincipal"

10 permission="zope.ManageServices"

11 />

12

13 <browser:editform

14 name="userInfo.html"

15 schema=".interfaces.IPrincipalInformation"

16 for="zope.app.security.interfaces.IPrincipal"

17 label="Change User Information"

18 permission="zope.ManageServices"

19 menu="zmi_views" title="User Info" />

20

21 </configure>

. Line 6–11: The adapter is registered for all objects implementing IPrincipal.
The entire IPrincipalInformation schema is available under the zope.

ManageServices permission, which might not be desirable, but is sufficient for
this example. For a real project, you would probably give the accessor a less strict
permission than the attribute mutator. This can be done with a zope:class di-
rective containing zope:require directives.

. Line 13–19: This edit form is registered for IPrincipal components, so that it
will be available as a view for all principals. However, the schema that is being
edited in IPrincipalInformation. The edit form will automatically lookup the
adapter from IPrincipal to IPrincipalInformation.

You need to register the configuration with the Zope 3 framework by adding
a file named principalinfo-configure.zcml to package-includes having the
following one line directive.

1 <include package="book.principalinfo" />

You can now restart Zope 3, and the view should be available.

CHAPTER 27 PRINCIPAL ANNOTATIONS

27.4. TESTING THE ADAPTER
271

27.4 Step IV: Testing the Adapter

Before I show you how to use the Web interface to test the view, let’s first write a
test for the adapter to ensure the correct functioning. The most difficult part about
the unit tests here is actually setting up the environment, such as defining and
registering a principal annotation service. We will implement the test as a doctest
in the PrincipalInformation’s doc string.

Let’s first setup the environment.

1 >>> from zope.app.tests import setup

2 >>> from zope.app.principalannotation.interfaces import \

3 ... IPrincipalAnnotationService

4 >>> from zope.app.principalannotation import PrincipalAnnotationService

5

6 >>> site = setup.placefulSetUp(site=True)

7 >>> sm = zapi.getGlobalServices()

8 >>> sm.defineService(’PrincipalAnnotation’,

9 ... IPrincipalAnnotationService)

10 >>> svc = setup.addService(site.getSiteManager(), ’PrincipalAnnotation’,

11 ... PrincipalAnnotationService())

. Line 1: The setup module contains some extremely helpful convenience functions.

. Line 2–3: Import the interface that a principal annotation service must provide.

. Line 4: Import the implementation of the service.

. Line 6: Create a placeful setup, making the root folder a site, which is returned.

. Line 7–9: A new service type can only be defined via the global service manager,
so get it first. Then define the service type by name and interface.

. Line 10–11: Add a principal annotation service to the site of the root folder.

Now that the service is setup, we need a principal to use the adapter on. We could
use an existing principal implementation, but every that the principal annotation
service needs from the principal is the id, which we can easily provide via a stub
implementation.

1 >>> class Principal(object):

2 ... id = ’user1’

3 >>> principal = Principal()

Now create the principal information adapter:

1 >>> info = PrincipalInformation(principal)

Before we give the fields any values, they should default to None. Any field not
listed in the information interface should cause an AttributeError.

272
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

1 >>> info.email is None

2 True

3 >>> info.ircNickname is None

4 True

5 >>> info.phone

6 Traceback (most recent call last):

7 ...

8 AttributeError: ’phone’ not in interface.

Next we try to set a value for the email and make sure that it is even available if
we reinstantiate the adapter.

1 >>> info.email = ’foo@bar.com’

2 >>> info.email

3 ’foo@bar.com’

4

5 >>> info = PrincipalInformation(principal)

6 >>> info.email

7 ’foo@bar.com’

Finally, let’s make sure that the data is really stored in the service.

1 >>> svc.annotations[’user1’][’book.principalinfo.Information’][’email’]

2 ’foo@bar.com’

Be careful to clean up after yourself.

1 >>> setup.placefulTearDown()

To make the tests runnable via the test runner, add the following test setup code
to tests.py.

1

�
�������
 unittest

2 ������� zope.testing.doctestunit
�
� � ���
 DocTestSuite

3

4 �
	�� test_suite():

5 ��	������� DocTestSuite(’book.principalinfo.info’)

6

7

�
� __name__ == ’__main__’:

8 unittest.main(defaultTest=’test_suite’)

Make sure that the test passes, before you proceed.

27.5 Step V: Playing with the new Feature

Now that the tests pass and the components are configured let’s see the edit form.
Restart Zope 3. Once restarted, go to http://localhost:8080/++etc++site/

default/manage and click on “Authentication Service” in the “Add:” box. Once
the authentication service is added, go to its “Contents” tab. Click on “Add Principal
Source” in the “Add:” box and call it “btree”, since it is a b-tree based persistent
source. Enter the source’s management screen and add a principal with any values.
Once you enter the principal, you will see that a tab named “User Info” is available,

CHAPTER 27 PRINCIPAL ANNOTATIONS

27.5. PLAYING WITH THE NEW FEATURE
273

Figure 27.1: The principal’s “User Info” screen.

which will provide you with the edit form created in this chapter. You can now go
there and add the E-mail and IRC nickname of the principal.

274
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

Exercises

1. Currently the interface that is used to provide the additional user information is
hard-coded. It would be nice, if the user could choose the interface s/he wishes
to append as user information. Generalize the implementation, so that the user
is asked to input the desired data interface as well.

CHAPTER 28

CREATING A NEW BROWSER

RESOURCE

Difficulty

Newcomer

Skills

• Some basic ZCML knowledge is required.

• You should be familiar with the component architecture, especially presentation
components and views.

Problem/Task

Certain presentation, like images and style sheets are not associated with any
other component, so that one cannot create a view. To solve the problem resources
were developed, which are presentation components that do not require any context.
This mini-chapter will demonstrate how resources are created and registered with
Zope 3.

Solution

The first goal is to register a simple plain-text file called resource.txt as a
browser resource. The first step is to create this file anywhere you wish on the
filesystem, and adding the following content:

1 Hello, I am a Zope 3 Resource Component!

275

276
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

Now just register the resource in a ZCML configuration file using the browser:

resource directive:

1 <browser:resource

2 name="resource.txt"

3 file="resource.txt"

4 layer="default" />

. Line 2: This is the name under which the resource will be known in Zope.

. Line 3: The file attribute specifies the path to the resource on the filessytem.
The current working directory (’ .’) is always the directory the configuration file
is located. So in the example above, the file resource.txt is located in the same
folder as the configuration file is.

. Line 4: The optional layer attribute specifies the layer the resource is added to.
By default, the default layer is selected.

Once you hook up the configuration file to the main configuration path and restart
Zope 3, you should be able to access the resource now via a Browser using http:

//localhost:8080/@@/resource.txt. The @@/ in the URL tells the traversal
mechanism that the following object is a resource.

If you have an image resource, you might want to use different configuration.
Create a simple image called img.png and register it as follows:

1 <browser:resource

2 name="img.png"

3 image="img.png"

4 permission="zope.ManageContent" />

. Line 3: As you can see, instead of the file attribute we use the image one.
Internally this will create an Image object, which is able to detect the content
type and returns it correctly. There is a third possible attribute named template.
If specified, a Page Template that is executed when the resource is called.

Note that only one of file, image, or template attributes can be specified
inside a resource directive.

. Line 4: A final optional attribute is the “permission” one must have to view the
resource. To demonstrate the security, I set the permission required for viewing
the image to zope.ManageContent, so that you must log in as an administrator/-
manager to be able to view it. The default of the attribute is zope.Public so
that everyone can see the resource.

If you have many resource files to register, it can be very tedious to write a
single directive for every resource. For this purpose the resourceDirectory is

CHAPTER 28 CREATING A NEW BROWSER RESOURCE
277

provided, with which you can simply declare an entire directory, including its content
as resources. Thereby the filenames of the files are reused as the names for the
resource available. Assuming you put your two previous resources in a directory
called resource, then you can use the following:

1 <browser:resourceDirectory

2 name="resources"

3 directory="../resource" />

The image will then be publically available under the URL: http://localhost:

8080/@@/resources/img.png

The DirectoryResource object uses a simple resource type recognition. It looks
at the filename extensions to discover the type. For page templates, currently the
extensions “pt”, “zpt” and “html” are registered and for an image “gif”, “png”
and “jpg”. All other extensions are converted to file resources. Note that it is not
necessary to have a list of all image types, since only Browser-displayable images
must be recognized.

278
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

CHAPTER 29

REGISTRIES WITH GLOBAL UTILITIES

Difficulty

Contributer

Skills

• Familiarity with the Component Architecture is required.

• Be comfortable with ZCML.

• You should know the message board example, since we are going to use it in
the final step.

Problem/Task

We need registries all the time. It is a very common pattern. In fact, the Compo-
nent Architecture itself depends heavily on registered component lookups to provide
functionality. These registries, especially the utility service, can be used to provide
application-level registries as well.

Solution

29.1 Introduction

The goal of this chapter is to develop a mechanism that provides image-representations

of text-based smileys. For example, the text “:-)” should be converted to . To

279

280
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

further complicate the problem, it is undesirable to just store smileys without any
order. Many applications support multiple themes of smileys, so we want to do that
as well. For example, the message board administrator should be able to choose the
desired smiley theme for his message board.

Based on the requirements above, we want a registry of smiley themes that the
user can choose from. Therefore, we will develop the theme as a utility and register
it with a specific interface, ISmileyTheme. Thus, the entire utility service acts as
a huge registry, but we can easily simulate sub-registries by specifying a particular
interface for a utility. We can then ask the Zope component API to return a list of
all utilities providing ISmileyTheme or simply return a single ISmileyTheme having
a specific name.

Let’s now take a look on how to handle the smileys themselves. Inside the theme,
we simply need a mapping (dictionary) from the text representation to the image.
However, should we really store the image data. In fact, it would better to declare the
image itself as a resource and only store the URL, so that we can (a) support external
links (not done in this chapter) and (b) do not have to worry about publishing the
images.

The code will be rounded off by implementing a couple new ZCML directives to
make the registration of new smiley themes as easy as possible, so that a message
board editor can easily upload his/her favorite theme and use it. We will actually
add a final step to the message board example incorporating smiley themes at the
end of the chapter.

To allow the smiley theme utility to be distributed independently of the message
board application, develop its code in a new package called smileyutility, which
you should place into ZOPE3/src/book. Don’t forget to add an init .py file to
the directory.

29.2 Step I: Defining the Interfaces

Before we start coding away, we need to spend some time thinking about the API
that we want to expose. In the next chapter we develop a local/placeful equivalent of
the utility, so our base interface, ISmileyTheme, should be general enough to support
both implementations and not include any implementation-specific methods. We will
then derive another interface, IGlobalSmileyTheme, from the general one that will
specify methods to manage smileys for the global implementation. Note: The utility
will still be registered as a ISmileyTheme.

1 ������� zope.interface
�
�������� Interface

2

3
�
������� ISmileyTheme(Interface):

4 """A theme is a collection of smileys having a stylistic theme.

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.2. DEFINING THE INTERFACES
281

5

6 Themes are intended to be implemented as named utilities, which will be

7 available via a local smiley service.

8 """

9

10 ��	�� getSmiley(text, request):

11 """Returns a smiley for the given text and theme.

12

13 If no smiley was found, a ComponentLookupError should be raised.

14 """

15

16 ��	�� querySmiley(text, request, default=None):

17 """Returns a smiley for the given text and theme.

18

19 If no smiley was found, the default value is returned.

20 """

21

22 ��	�� getSmileysMapping(request):

23 """Return a mapping of text to URL.

24

25 This is incredibly useful when actually attempting to substitute the

26 smiley texts with a URL.

27 """

28

29

30
��������� IGlobalSmileyTheme(ISmileyTheme):

31 """A global smiley theme that also allows management of smileys."""

32

33 ��	�� provideSmiley(text, smiley_path):

34 """Provide a smiley for the utility."""

You might think that this interface seems a bit wordy, but in such widely available
components it is extremely important to document the specific semantics of each
method and the documentation should leave no question or corner case uncovered.
Many people will depend on the correctness of the API.

. Line 1 & 3: Notice that a utility does not have to inherit any special interfaces.
Until we declare a utility to be a utility, it is just a general component.

. Line 10–14: Retrieve a smiley given its text representation. Note that we need
the request, since the URL could be built on the fly and we need all the request
information to generate an appropriate URL.

. Line 16–20: Similar to the get-method, except that it returns default instead of
raising an error, if the smiley was not found.

. Line 22–25: Interestingly enough, I did not have this method in my original design,
but noticed that the service would be unusable without it. By returning a complete
list of text-to-URL mappings, the application using this utility can simply do a
search and replace of all smiley occurrences.

In the beginning I envisioned a method that was taking a string as argument and
returns a string with all the smiley occurrences being replaced by image tags.

282
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

But this would have been rather limiting, since the utility would need to guess
the usage of the URL; not everyone wants to generate HTML necessarily. This
implementation does not carry this restriction, since it makes no assumption on
how the URLs will be used.

. Line 33–34: As an extension to the ISmileyTheme interface, this method adds
a new smiley to the theme. The smiley path will be expected to be a relative
path to a resource, something like ++resource++plain smile.png. Note that
the path must be unique, across all themes, so it is a good idea to encode the
theme name into it by convention. But let’s not introduce that restriction in the
theme.

Now that we have all interfaces defined, let’s look at the implementation, which
should be straightforward.

29.3 Step II: Implementing the Utility

The global theme will use simple dictionary that maps a text representation to the
path of a smiley. When smileys are requested this path is converted to a URL and
returned. The only tricky part of the utility will be to obtain the root URL, since
the utility does not know anything about locations.

However, there is an fast solution. We create a containment root component stub
that implements the IContainmentRoot interface, for which the traversal mechanism
is looking for while generating a path or URL. So here is what I did for obtaining
the root URL:

1 ������� zope.app
�
� � ���
 zapi

2 ������� zope.app.traversing.interfaces
�
�������� IContainmentRoot

3 ������� zope.interface
�
�������� implements

4

5
�
������� Root:

6 implements(IContainmentRoot)

7

8 �
	�� getRootURL(request):

9 ��	������� str(zapi.getView(Root(), ’absolute_url’, request))

. Line 8–9: Return the root URL for a given request. The reason we need this
request object is that it might contain information about the server name and
port, additional namespaces like skin declarations or virtual hosting information.

The absolute url view is defined for all objects and returns the URL the object
is reachable at, given that it has enough context information.

Now we have all the pieces to implement the utility. I just used pyskel.py to
create the skeleton and then filled it. Place the following and the getRootURL()

code in a file called globaltheme.py:

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.3. IMPLEMENTING THE UTILITY
283

1 om zope.component.exceptions
�
� � ���� ComponentLookupError

2 om interfaces
�
��� ���� IGlobalSmileyTheme

3

4 ass GlobalSmileyTheme(object):

5 """A filesystem based smiley theme."""

6 implements(IGlobalSmileyTheme)

7

8 �
	�� __init__(� 	 � �):
9

� 	 � � .__smileys = {}

10

11 �
	�� getSmiley(� 	 � � , text, request):

12 "See book.smileyutility.interfaces.ISmileyTheme"

13 smiley = � 	 � � .querySmiley(text, request)

14

�
� smiley

� � None:

15 � �
� � 	 ComponentLookupError, ’Smiley not found.’

16 �
	������� smiley

17

18 �
	�� querySmiley(� 	 � � , text, request, default=None):

19 "See book.smileyutility.interfaces.ISmileyTheme"

20

�
� � 	 � � .__smileys.get(text)

� � None:

21 ��	������� default

22 �
	������� getRootURL(request) + ’/’ + � 	 � � .__smileys[text]
23

24 �
	�� getSmileysMapping(� 	 � � , request):

25 "See book.smileyutility.interfaces.ISmileyTheme"

26 smileys = � 	 � � .__smileys.copy()
27 root_url = getRootURL(request)

28 ����� name, smiley
�
� smileys.items():

29 smileys[name] = root_url + ’/’ + smiley

30 �
	������� smileys

31

32 �
	�� provideSmiley(� 	 � � , text, smiley_path):

33 "See book.smileyutility.interfaces.IGlobalSmileyTheme"

34
� 	 � � .__smileys[text] = smiley_path

. Line 8–9: Initialize the registry, which is a simple dictionary. Note that I want
this registry to be totally private to this class and noone else should be able to
reach it.

. Line 11–16: This method does not do much, since we turn over all the responsibility
to the next method. All we do is complain with a ComponentLookupError if there
was no result (i.e. None was returned).

. Line 18–22: First, if the theme does not contain the requested smiley, then simply
return the default value. Now that we know that there is a smiley available,
construct the URL by appending the smiley path to the URL root.

. Line 36–46: We make a copy of all the smiley map. If the theme does not exist,
an empty dictionary is created. In line 43–44 we update every smiley path with a
smiley URL.

. Line 48–51: The smiley path is simply added with the text being the key of the
mapping.

284
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

Our utility is now complete. However, we have not created a way to declare a
default theme. To make life simple, the default theme is simply available under the
name “default”.

1 ������� interfaces
�
� � ���� ISmileyTheme

2

3 �
	�� declareDefaultSmileyTheme(name):

4 """Declare the default smiley theme."""

5 utilities = zapi.getService(zapi.servicenames.Utilities)

6 theme = zapi.getUtility(ISmileyTheme, name)

7 # register the utility simply without a name

8 utilities.provideUtility(ISmileyTheme, theme, ’default’)

In the code above we simply look up the utility by its original name and then
register it again using the name “default”. By the way, this is totally legal and
of practiced. One Utility instance can be registered multiple times using different
interfaces and/or names.

Now, let’s test our new utility.

29.4 Step III: Writing Tests

Writing tests for global utilities is usually fairly simple too, since you usually do not
have to start up the component architecture. In this case, however, we have to do
this, since we are looking up a view when asking for the root URL. We also have to
register this view (absolute url) in the first place, so it can be found later. In the
tests package I created a test doc.py and inserted the set up and tear down code
there:

1

�
�������
 unittest

2

3 ������� zope.interface
�
�������� Interface

4 ������� zope.testing.doctestunit
�
� � ���
 DocTestSuite

5

6 ������� zope.app.tests
�
�������� ztapi, placelesssetup

7

8
�
������� AbsoluteURL:

9 ��	�� __init__(� 	 � � , context, request):

10 � �����

11 ��	�� __str__(� 	 � �):
12 ��	������� ’’

13

14 �
	�� setUp():

15 placelesssetup.setUp()

16 ztapi.browserView(Interface, ’absolute_url’, AbsoluteURL)

17

18

19 �
	�� test_suite():

20 ��	������� unittest.TestSuite((

21 DocTestSuite(’book.smileyutility.globaltheme’,

22 setUp=setUp, tearDown=placelesssetup.tearDown),

23))

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.4. WRITING TESTS
285

24

25

�
� __name__ == ’__main__’:

26 unittest.main(defaultTest=’test_suite’)

. Line 8–12: This is a stub implementation of the absolute URL. We simply return
nothing as root of the url.

. Line 14–16: We have seen a placeless unittest setup before; placelesssetup.

setUp() brings up the basic component architecture and clears all the reg-
istries from possible entries. Line 16 then registers our stub-implementation of
AbsoluteURL as a view.

. Line 21–22: Here we create a doctest suite using the custom setup function.

Now we just have to write the tests. In the docstring of the GlobalSmileyTheme

class add the following doctest code:

1 Let’s make sure that the global theme implementation actually fulfills the

2 ‘ISmileyTheme‘ API.

3

4 >>> from zope.interface.verify import verifyClass

5 >>> verifyClass(IGlobalSmileyTheme, GlobalSmileyTheme)

6 True

7

8 Initialize the theme and add a couple of smileys.

9

10 >>> theme = GlobalSmileyTheme()

11 >>> theme.provideSmiley(’:-)’, ’++resource++plain__smile.png’)

12 >>> theme.provideSmiley(’;-)’, ’++resource++plain__wink.png’)

13

14 Let’s try to get a smiley out of the registry.

15

16 >>> from zope.publisher.browser import TestRequest

17

18 >>> theme.getSmiley(’:-)’, TestRequest())

19 ’/++resource++plain__smile.png’

20 >>> theme.getSmiley(’:-(’, TestRequest())

21 Traceback (most recent call last):

22 ...

23 ComponentLookupError: ’Smiley not found.’

24 >>> theme.querySmiley(’;-)’, TestRequest())

25 ’/++resource++plain__wink.png’

26 >>> theme.querySmiley(’;-(’, TestRequest()) is None

27 True

28

29 And finally we’d like to get a dictionary of all smileys.

30

31 >>> map = theme.getSmileysMapping(TestRequest())

32 >>> len(map)

33 2

34 >>> map[’:-)’]

35 ’/++resource++plain__smile.png’

36 >>> map[’;-)’]

37 ’/++resource++plain__wink.png’

286
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

. Line 4–6: It is always good to ensure that the interface was correctly implemented.

. Line 8–12: Test the provideSmiley() method.

. Line 14–27: Test the simple smiley accessor methods of the utility. Note how
nicely doctests also handle exceptions.

. Line 29–37: Make sure that the getSmileyMapping() method gives the right out-
put. Note that dictionaries cannot be directly tested in doctests, since its repre-
sentation depends on the computer architecture, since the item order is arbitrary.

Run the tests and make sure that they all pass.

29.5 Step IV: Providing a user-friendly UI

While the current API is functional, it is not very practical to the developer, since
s/he first needs to look up the theme using the component architecture’s utility API
and only then can make use the of the smiley theme features. It would be much
nicer, if we would only need a smiley-theme-related API to work with. Thus we
create some convenience functions in the package’s init .py file:

1 ������� zope.app
�
� � ���
 zapi

2

3 ������� interfaces
�
� � ���� ISmileyTheme

4

5 �
	�� getSmiley(text, request, theme=’default’):

6 theme = zapi.getUtility(ISmileyTheme, theme)

7 ��	������� theme.getSmiley(text, request)

8

9 �
	�� querySmiley(text, request, theme=’default’, default=None):

10 theme = zapi.queryUtility(ISmileyTheme, theme)

11

�
� theme

� � None:

12 ��	������� default

13 ��	������� theme.querySmiley(text, request, default)

14

15 �
	�� getSmileyThemes():

16 ��	������� [name ����� name, util
�
� zapi.getUtilitiesFor(ISmileyTheme)

17

�
� name != ’default’]

18

19 �
	�� getSmileysMapping(request, theme=’default’):

20 theme = zapi.getUtility(ISmileyTheme, theme)

21 ��	������� theme.getSmileysMapping(request)

The functions integrate the theme utility more tightly in the API.

. Line 15–17: Return a list of names of all available themes, excluding the “default”
one.

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.6. IMPLEMENT ZCML DIRECTIVES
287

The tests for these functions are very similar to the ones of the theme utility,
so I am not going to include them in the text. As always, you can find the com-
plete code including methods in the code repository (http://svn.zope.org/book/
smileyutility).

29.6 Step V: Implement ZCML Directives

You might have already wondered, how this utility can be useful, if it does not even
deal with the smiley images. This functionality is reserved for the configuration.
When a smiley registration is made, the directive will receive a path to an image,
but does not just register it with the smiley theme. Instead, it first creates a resource
for the image and then passes the resource’s relative path to the smiley theme.

In case you have not written a ZCML directive yet, there are three steps: creating
the directive schema, implementing the directive handlers and writing the meta-
ZCML configuration. They are represented by the next three sections (a) through
(c).

But first we need to decide what directives we want to create. The first one,
smiley:theme, defines a new theme and allows a sub-directive, smiley:smiley,
that registers new smileys for this theme. A second directive, smiley:smiley, allows
you to register a single smiley for an existing theme, so that other packages can add
additional smileys to a theme. The third and final directive, smiley:defaultTheme,
let’s you specify the theme that will be known as the default one. The specified theme
must exist already.

29.6.1 (a) Declaring the directive schemas

Each ZCML directive is represented by a schema, which defines the type of content
for each element/directive attribute. Each field is also responsible for knowing how
to convert the attribute value into something that is useful. All the usual schema
fields are available. Additionally there are some specific configuration fields that can
also be used. They are listed in the “Intorduction to the Zope Configuration Markup
Language (ZCML)” chapter.

So now that we know what we can use, let’s define the schemas. By convention
they are placed in a file called metadirectives.py:

1 �
����� zope.interface
�
��� ���� Interface

2 �
����� zope.configuration.fields
�
�������
 Path

3 �
����� zope.schema
�
� � ���� TextLine

4

5
��������� IThemeDirective(Interface):

6 """Define a new theme."""

7

8 name = TextLine(

288
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

9 title=u"Theme Name",

10 description=u"The name of the theme.",

11 default=None,

12 required=False)

13

14
�
������� ISmileySubdirective(Interface):

15 """This directive adds a new smiley using the theme information of the

16 complex smileys directive."""

17

18 text = TextLine(

19 title=u"Smiley Text",

20 description=u"The text that represents the smiley, i.e. ’:-)’",

21 required=True)

22

23 file = Path(

24 title=u"Image file",

25 description=u"Path to the image that represents the smiley.",

26 required=True)

27

28
�
������� ISmileyDirective(ISmileySubdirective):

29 """This is a standalone directive registering a smiley for a certain

30 theme."""

31

32 theme = TextLine(

33 title=u"Theme",

34 description=u"The theme the smiley belongs to.",

35 default=None,

36 required=False)

37

38
�
������� IDefaultThemeDirective(IThemeDirective):

39 """Specify the default theme."""

. Line 5–12: The theme directive only requires a “name” attribute that gives the
theme its name.

. Line 13–25: Every smiley is identified by its text representation and the image file.
(The theme is already specified in the sub-directive.)

. Line 27–35: This is the single directive that specifies all information at once. We
simply reuse the previously defined smiley sub-directive interface and specify the
theme.

. Line 37–38: The default theme directive is simple, because it just takes a theme
name.

29.6.2 (b) Implement ZCML directive handlers

Next we implement the directive handlers themselves, which is the real fun part,
since it actually represents some important part of the package’s logic. This code
goes by convention into metaconfigure.py:

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.6. IMPLEMENT ZCML DIRECTIVES
289

1

�
�������� os

2

3 �
����� zope.app
�
�������
 zapi

4 �
����� zope.app.component.metaconfigure
�
�������� utility

5 �
����� zope.app.publisher.browser.resourcemeta
�
�������� resource

6

7 �
����� interfaces
�
� � ���
 ISmileyTheme

8 �
����� globaltheme
�
� � ���� GlobalSmileyTheme, declareDefaultSmileyTheme

9

10 __registered_resources = []

11

12 ��	�� registerSmiley(text, path, theme):

13 theme = zapi.queryUtility(ISmileyTheme, theme)

14 theme.provideSmiley(text, path)

15

16
��������� theme(object):

17

18 ��	�� __init__(� 	 � � , _context, name):

19
� 	 � � .name = name

20 utility(_context, ISmileyTheme,

21 factory=GlobalSmileyTheme, name=name)

22

23 ��	�� smiley(� 	 � � , _context, text, file):

24 �
	������� smiley(_context, text, file, � 	 � � .name)
25

26 ��	�� __call__(� 	 � �):
27 �
	�������
28

29 ��	�� smiley(_context, text, file, theme):

30 name = theme + ’__’ + os.path.split(file)[1]

31 path = ’/++resource++’ + name

32

33

�
� name ����

�
� __registered_resources:

34 resource(_context, name, image=file)

35 __registered_resources.append(name)

36

37 _context.action(

38 discriminator = (’smiley’, theme, text),

39 callable = registerSmiley,

40 args = (text, path, theme),

41)

42

43 ��	�� defaultTheme(_context, name=None):

44 _context.action(

45 discriminator = (’smiley’, ’defaultTheme’,),

46 callable = declareDefaultSmileyTheme,

47 args = (name,),

48)

. Line 10: We want to keep track of all resources that we have already added, so
that we do not register any resource twice, which would raise a component error.

. Line 12–14: Actually sticking in the smileys into the theme must be delayed till
the configuration actions are executed. This method will be the smiley registration
callable that is called when the smiley registration action is executed.

290
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

. Line 16–27: Since theme is a complex directive (it can contain other directives
inside), it is implemented as a class. The parameters of the constructor resemble
the arguments of the XML element, except for context, which is always passed
in as first argument and represents the configuration context.

Each sub-directive (in our case smiley) is a method of the class taking the element
attributes as parameters. In this implementation we forward the configuration
request to the main smiley directive; there is no need to implement the same
code twice.

Every complex directive class must be callable (i.e. implement call ()) . This
method is called when the closing element is parsed. Usually all of the configuration
action is happening here, but not in our case.

. Line 29–41: The first task is to separate the filename from the file path and
construct a unique name and path for the smiley. On line 33–35 we register the
resource. We do that only, if we have not registered it before, which can happen
if there are two text representations for a single smiley image, like “:)” and “:-
)”. On line 37–41 we then tell the configuration system it should add the smiley
to the theme. Note that these actions are not executed at this time, since the
configuration mechanism must first resolve possible overrides and conflict errors.

. Line 43–48: This is a simple handler for the simple defaultTheme directive.
It calls our previously developed declareDefaultSmileyTheme() function and
that’s it.

29.6.3 (c) Writing the meta-ZCML directives

Now that we have completed the Python-side of things, let’s register the new ZCML
directives using the meta namespace in ZCML. By convention the ZCML directives
are placed into a file named metal.zcml:

1 <configure xmlns:meta="http://namespaces.zope.org/meta">

2

3 <meta:directives namespace="http://namespaces.zope.org/smiley">

4

5 <meta:complexDirective

6 name="theme"

7 schema=".metadirectives.IThemeDirective"

8 handler=".metaconfigure.theme">

9

10 <meta:subdirective

11 name="smiley"

12 schema=".metadirectives.ISmileySubdirective" />

13

14 </meta:complexDirective>

15

16 <meta:directive

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.6. IMPLEMENT ZCML DIRECTIVES
291

17 name="smiley"

18 schema=".metadirectives.ISmileyDirective"

19 handler=".metaconfigure.smiley" />

20

21 <meta:directive

22 name="defaultTheme"

23 schema=".metadirectives.IDefaultThemeDirective"

24 handler=".metaconfigure.defaultTheme" />

25

26 </meta:directives>

27

28 </configure>

Each meta directive, whether it is directive, complexDirective or subdirective,
specifies the name of the directive and the schema it represents. The first two meta
directives also take a handler attribute, which describes the callable object that
will execute the directive.

You register this meta ZCML file with the system by placing a file called
smileyutility-meta.zcml in the package-includes directory having the follow-
ing content:

1 <include package="book.smileyutility" file="meta.zcml" />

29.6.4 (d) Test Directives

Now we are ready to test the directives. First we create a test ZCML file in tests

called smiley.zcml. We write the directives in a way that we assume we are in the
tests directory during its execution:

1 <configure

2 xmlns:zope="http://namespaces.zope.org/zope"

3 xmlns="http://namespaces.zope.org/smiley">

4

5 <zope:include package="book.smileyutility" file="meta.zcml" />

6

7 <theme name="yazoo">

8 <smiley text=":(" file="../smileys/yazoo/sad.png"/>

9 <smiley text=":)" file="../smileys/yazoo/smile.png"/>

10 </theme>

11

12 <theme name="plain" />

13

14 <smiley

15 theme="plain"

16 text=":("

17 file="../smileys/yazoo/sad.png"/>

18

19 <defaultTheme name="plain" />

20

21 </configure>

. Line 5: First read the meta configuration.

292
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

. Line 9–19: Use the three directives.

Now create a module called test directives.py (the directive tests modules
are usually called this way) and add the following test code:

1

�
�������
 unittest

2

3 ������� zope.app
�
� � ���
 zapi

4 ������� zope.app.tests.placelesssetup
�
�������� PlacelessSetup

5 ������� zope.configuration
�
� � ���� xmlconfig

6

7 ������� book.smileyutility
�
� � ���� tests

8 ������� book.smileyutility.interfaces
�
�������� ISmileyTheme

9

10
�
������� DirectivesTest(PlacelessSetup, unittest.TestCase):

11

12 ��	�� setUp(� 	 � �):
13 super(DirectivesTest, � 	 � �).setUp()
14

� 	 � � .context = xmlconfig.file("smiley.zcml", tests)

15

16 ��	�� test_SmileyDirectives(� 	 � �):
17

� 	 � � .assertEqual(
18 zapi.getUtility(ISmileyTheme,

19 ’default’)._GlobalSmileyTheme__smileys,

20 {u’:(’: u’/++resource++plain__sad.png’})

21
� 	 � � .assertEqual(

22 zapi.getUtility(ISmileyTheme,

23 ’plain’)._GlobalSmileyTheme__smileys,

24 {u’:(’: u’/++resource++plain__sad.png’})

25
� 	 � � .assertEqual(

26 zapi.getUtility(ISmileyTheme,

27 ’yazoo’)._GlobalSmileyTheme__smileys,

28 {u’:)’: u’/++resource++yazoo__smile.png’,

29 u’:(’: u’/++resource++yazoo__sad.png’})

30

31 ��	�� test_defaultTheme(� 	 � �):
32

� 	 � � .assertEqual(zapi.getUtility(ISmileyTheme, ’default’),

33 zapi.getUtility(ISmileyTheme, ’plain’))

34

35 �
	�� test_suite():

36 ��	������� unittest.TestSuite((

37 unittest.makeSuite(DirectivesTest),

38))

39

40

�
� __name__ == ’__main__’:

41 unittest.main()

As we can see, directive unittests can be very compact thanks to the xmlconfig.

file() call.

. Line 4 & 10: Since we are registering resources during the configuration, we need
to create a placeless setup.

. Line 14: Execute the configuration.

. Line 16–29: Make sure that all entries in the smiley themes were created.

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.7. SETTING UP SOME SMILEY THEMES
293

. Line 31–33: A quick check that the default theme was set correctly.

. Line 35–41: This is just the necessary unittest boilerplate.

29.7 Step VI: Setting up some Smiley Themes

The service functionality is complete and we are now ready to hook it up to the sys-
tem. We need to define the service and provide an implementation to the component
architecture before we add two smiley themes. Therefore, in the configure.zcml

file add:
1 <configure

2 xmlns="http://namespaces.zope.org/smiley"

3 i18n_domain="smileyutility">

4

5 <theme name="plain">

6 <smiley text=":(" file="./smileys/plain/sad.png"/>

7 <smiley text=":-(" file="./smileys/plain/sad.png"/>

8 <smiley text=":)" file="./smileys/plain/smile.png"/>

9 <smiley text=":-)" file="./smileys/plain/smile.png"/>

10 ...

11 </theme>

12

13 <theme name="yazoo">

14 <smiley text=":(" file="./smileys/yazoo/sad.png"/>

15 <smiley text=":-(" file="./smileys/yazoo/sad.png"/>

16 <smiley text=":)" file="./smileys/yazoo/smile.png"/>

17 <smiley text=":-)" file="./smileys/yazoo/smile.png"/>

18 ...

19 </theme>

20

21 <defaultTheme name="plain" />

22

23 </configure>

. Line 5–19: Provide two smiley themes. I abbreviated the list somewhat from the
actual size, since I think you get the picture.

. Line 21: Set the default theme to “plain”.

You can now activate the configuration by placing a file named smileyutility-configure.

zcml in package-includes. It should have the following content:
1 <include package="book.smileyutility" />

29.8 Step VII: Integrate Smiley Themes into the Message
Board

Okay, now we have these smiley themes, but we do not use them anywhere. So that
it will be easier for us to see the smiley themes in action, I decided to extend the

294
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

messageboard example by yet another step. The new code consists of two parts: (a)
allow the message board to select one of the available themes and (b) use smileys in
the “Preview” tab of the message board.

29.8.1 (a) The Smiley Theme Selection Adapter

The additional functionality is best implemented using an Adapter and annotations.
The interface that we need is trivially:

1 ������� zope.schema
�
��� ���� Choice

2

3
�
������� ISmileyThemeSpecification(Interface):

4

5 theme = Choice(

6 title=u"Smiley Theme",

7 description=u"The Smiley Theme used in message bodies.",

8 vocabulary=u"Smiley Themes",

9 default=u"default",

10 required=True)

Add this interface to the interfaces.py file of the message board. In the
interface above we refer to a vocabulary called “Smiley Themes” without having
specified it. We expect this vocabulary to provide a list of names of all available
smiley themes. Luckily, creating vocabularies for utilities or utility names can be
easily done using a single ZCML directive:

1 <vocabulary

2 name="Smiley Themes"

3 factory="zope.app.utility.vocabulary.UtilityVocabulary"

4 interface="book.smileyutility.interfaces.ISmileyTheme"

5 nameOnly="true" />

. Line 3: This is a special utility vocabulary class that is used to quickly create
utility-based vocabularies.

. Line 4: This is the interface by which the utilities will be looked up.

. Line 5: If “nameOnly” is specified, the vocabulary will provide utility names
instead of the utility component itself.

Next we create the adapter; place the following class into messageboard.py:

1 ������� zope.app.annotation.interfaces
�
�������� IAnnotations

2 ������� book.messageboard.interfaces
�
��� ���� ISmileyThemeSpecification

3

4
�
������� SmileyThemeSpecification(object):

5

6 implements(ISmileyThemeSpecification)

7 __used_for__ = IMessageBoard

8

9 ��	�� __init__(� 	 � � , context):

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.8. INTEGRATE SMILEY THEMES INTO THE MESSAGE BOARD
295

10
� 	 � � .context = � 	 � � .__parent__ = context

11
� 	 � � ._annotations = IAnnotations(context)

12

�
� � 	 � � ._annotations.get(ThemeKey, None)

� � None:

13
� 	 � � ._annotations[ThemeKey] = ’default’

14

15 ��	�� getTheme(� 	 � �):
16 �
	������� � 	 � � ._annotations[ThemeKey]
17

18 ��	�� setTheme(� 	 � � , value):

19
� 	 � � ._annotations[ThemeKey] = value

20

21 # See .interfaces.ISmileyThemeSpecification

22 theme = property(getTheme, setTheme)

As you can see, this is a very straightforward implementation of the interface
using annotations and the adapter concept, both of which were introduced in the
content components parts before.

The adapter registration and security is a bit tricky, since we must use a trusted
adapter. It is not enough to just specify the “permission” attribute in the adapter
directive, since it will only affect attribute access, but not mutation. Instead of
specifying the “permission” attribute, we need to do a full security declaration using
the zope:class and zope:require directives:

1 <class class=".messageboard.SmileyThemeSpecification">

2 <require

3 permission="book.messageboard.View"

4 interface=".interfaces.ISmileyThemeSpecification"

5 />

6 <require

7 permission="book.messageboard.Edit"

8 set_schema=".interfaces.ISmileyThemeSpecification"

9 />

10 </class>

11

12 <adapter

13 factory=".messageboard.SmileyThemeSpecification"

14 provides=".interfaces.ISmileyThemeSpecification"

15 for=".interfaces.IMessageBoard"

16 trusted="true" />

Last, we need to create a view to set the value. We can simply use the
browser:editform. We configure the view with the following directive in browser/

configure.zcml:

1 <editform

2 name="smileyTheme.html"

3 schema="book.messageboard.interfaces.ISmileyThemeSpecification"

4 for="book.messageboard.interfaces.IMessageBoard"

5 label="Change Smiley Theme"

6 permission="book.messageboard.Edit"

7 menu="zmi_views" title="Smiley Theme" />

296
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

By the way, the editform will automatically know how to look up the adapter and
use it instead of the MessageBoard instance. If you now restart Zope 3, you should
be able to change the theme to whatever you like.

29.8.2 (b) Using the Smiley Theme

The very final step is to use all this machinery. To do this, add a method called
body() to the MessageDetails (browser/message.py) class:

1 �
	�� body(� 	 � �):
2 """Return the body, but mark up smileys."""

3 body = � 	 � � .context.body
4

5 # Find the messageboard and get the theme preference

6 obj = � 	 � � .context
7 �

� � � 	 � �� IMessageBoard.providedBy(obj) � ��� \

8 obj
� � � �� None:

9 obj = zapi.getParent(obj)

10

11

�
� obj

� � None:

12 theme = None

13 	 ��� 	 :
14 theme = ISmileyThemeSpecification(obj).theme

15

16 � ��� text, url
�
� getSmileysMapping(� 	 � � .request, theme).items():

17 body = body.replace(

18 text,

19 ’’ %(url, text))

20

21 ��	������� body

. Line 5–14: This code finds the MessageBoard and, when found, gets the desired
theme.

. Line 16–19: Using the theme, get the smiley mapping and convert one smiley after
another from the text representation to an image tag referencing the smiley.

In the details.pt template, line 33, we now just have to change the call from
context/body to view/body so that the above method is being used. Once you
have done that you are ready to restart Zope 3 and enjoy the smileys.

CHAPTER 29 REGISTRIES WITH GLOBAL UTILITIES

29.8. INTEGRATE SMILEY THEMES INTO THE MESSAGE BOARD
297

Figure 29.1: The message “Preview” screen featuring the smileys.

Exercises

1. The GlobalSmileyTheme currently is really only meant to work with resources
that are defined while executing the smiley directives. However, it is not very
hard to support general URLs as well. To do this, you will have to change the
configuration to allow for another attribute called url and you have to adjust
the theme so that it does not attempt all the time to add the root URL to the
smiley path.

2. The directive tests do not check whether resources were created by the directives.
You should enhance the test directives.py module to do that.

3. I only updated one view to use the smileys. Update the skin as well to make
use of them.

298
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

CHAPTER 30

LOCAL UTILITIES

Difficulty

Contributer

Skills

• Be comfortable with the Component Architecture, specifically utilities.

• Be familiar with the Site Manager Web GUI.

• Know the message board example as this affects somewhat the smiley support.

• You should be familiar with the global utility chapter, since this chapter creates
its local companion.

Problem/Task

It is great to have our global smiley theme utilities. It works just fine. But what
if I want to provide different icon themes for different message boards on the same
Zope installation? Or I want to allow my online users to upload new themes? Then
the global smiley theme is not sufficient anymore and we need a local and persistent
version. This chapter will create a local smiley theme utility.

Solution

299

300
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

30.1 Introduction to Local Utilities

The semantics of local utilities are often very different than the ones for global utilities
and have thus a very different implementation. For one, local utilities can be fully
managed, which means that they can be added, edited and deleted. Only the first
one of these actions is possible for their global counterparts. Furthermore, and most
important, local utilities must know how to delegate requests to other utilities higher
up, including the global version of the utility. All of these facts create a very different
problem domain, which I intend to address in this chapter.

From the global smiley utility we already know that its purpose is to manage
smileys (in a very limited way). Since the local smiley theme must be able to manage
smileys fully, it is best to make the utility also a container that can only contain
smileys. A smiley component will simply be a glorified image that can only be
contained by local smiley themes. Thus we need to develop an ILocalSmileyTheme

that extends IContainer. This interface must also limit its containable items to be
only smileys. The second interface will be ISmiley, which simply extends IImage

and only allows itself to be added to smiley themes.
Like all other local components, local utilities must be registered. One way would

be to write a custom registration component; however, the simpler method is to have
the local smiley theme provide the ILocalUtility marker interface. A registration
component (including all necessary views) exists for any object that provides this
interface making the implementation of a local utility much simpler.

30.2 Step I: Defining Interfaces

As I pointed out in the introduction, we will need two new interfaces. The first one
is the ISmiley interface:

1 ������� zope.schema
�
��� ���� Field

2

3 ������� zope.app.container.constraints
�
�������� ContainerTypesConstraint

4 ������� zope.app.file.interfaces
�
� � ���
 IImage

5

6
�
������� ISmiley(IImage):

7 """A smiley is just a glorified image"""

8 __parent__ = Field(

9 constraint = ContainerTypesConstraint(ISmileyTheme))

As I said before, the smiley component is simply an image that can only be
added to smiley themes. The second interface is the ILocalSmileyTheme, which
will manage all its smileys in a typical container-like fashion:

1 ������� zope.app.container.constraints
�
�������� ItemTypePrecondition

2 ������� zope.app.container.interfaces
�
�������� IContainer

3

CHAPTER 30 LOCAL UTILITIES

30.3. IMPLEMENTATION
301

4
��������� ILocalSmileyTheme(ISmileyTheme, IContainer):

5 """A local smiley themes that manages its smileys via the container API"""

6

7 ��	�� __setitem__(name, object):

8 """Add a IMessage object."""

9

10 __setitem__.precondition = ItemTypePrecondition(ISmiley)

After we make the local smiley theme a container, we declare that it can only
contain smileys. If you do not know about preconditions and constraints in interfaces,
please read the chapter on creating a content component.

30.3 Step II: Implementation

Implementing the smiley is trivial. In a new Python file called localtheme.py add
the following:

1 �
����� zope.app.file.image
�
� � ���� Image

2 �
����� interfaces
�
� � ���
 ISmiley

3

4
��������� Smiley(Image):

5 implements(ISmiley)

Now we just need to provide an implementation for the theme. As before, we can
use the BTreeContainer as a base class that provides us with a full implementation
of the IContainer interface. Then all that we have to worry about are the three
ISmileyTheme API methods.

1 �
����� zope.component.exceptions
�
�������
 ComponentLookupError

2 �
����� zope.interface
�
��� ���� implements

3

4 �
����� zope.app
�
�������
 zapi

5 �
����� zope.app.container.btree
�
�������
 BTreeContainer

6 �
����� zope.app.component.localservice
�
�������� getNextService

7

8 �
����� interfaces
�
� � ���
 ISmileyTheme, ILocalSmileyTheme

9

10
��������� SmileyTheme(BTreeContainer):

11 """A local smiley theme implementation."""

12 implements(ILocalSmileyTheme)

13

14 ��	�� getSmiley(� 	 � � , text, request):

15 "See book.smileyutility.interfaces.ISmileyTheme"

16 smiley = � 	 � � .querySmiley(text, request)

17

�
� smiley

� � None:

18 � �
� � 	 ComponentLookupError, ’Smiley not found.’

19 �
	������� smiley

20

21 ��	�� querySmiley(� 	 � � , text, request, default=None):

22 "See book.smileyutility.interfaces.ISmileyTheme"

23

�
� text ����

�
� � 	 � � :

24 theme = queryNextTheme(� 	 � � , zapi.name(� 	 � �))
25

�
� theme

� � None:

26 �
	������� default

302
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

27 	 �
� 	 :
28 �
	������� theme.querySmiley(text, request, default)

29 ��	������� getURL(� 	 � � [text], request)

30

31 ��	�� getSmileysMapping(� 	 � � , request):

32 "See book.smileyutility.interfaces.ISmileyTheme"

33 theme = queryNextTheme(� 	 � � , zapi.name(� 	 � �))
34

�
� theme

� � None:

35 smileys = {}

36 	 ��� 	 :
37 smileys = theme.getSmileysMapping(request)

38

39 � ��� name, smiley
�
� � 	 � � .items():

40 smileys[name] = getURL(smiley, request)

41

42 ��	������� smileys

43

44

45 �
	�� queryNextTheme(context, name, default=None):

46 """Get the next theme higher up."""

47 theme = default

48 �
� � � 	 theme

� � default:

49 utilities = queryNextService(context, zapi.servicenames.Utilities)

50

�
� utilities

� � None:

51 �
	������� default

52 theme = utilities.queryUtility(ISmileyTheme, name, default)

53 context = utilities

54 ��	������� theme

55

56 �
	�� getURL(smiley, request):

57 """Get the URL of the smiley."""

58 url = zapi.getView(smiley, ’absolute_url’, request=request)

59 ��	������� url()

. Line 14–19: This implementation is identical to the global one. We have the
method querySmiley() do the work.

. Line 21–29: If the requested smiley is available in the theme, simply return its
URL. However, if the smiley is not found, we should not give up that quickly.
It might be defined in a theme (with the same name) in a level higher up. The
highest layer are the global components. If a theme of the same name exists higher
up, then try to get the smiley from there. If no such theme exists, then its time
to give up and to return the default value.

This generalizes very nicely to all local components. Local components should
only concerned with querying and searching their local place and not stretch out
into other places. For utilities, the request should then always be forwarded to
the next occurrence at a higher place. This method will automatically be able
to recursively search the entire path all the way up. The termination condition
is usually the global utility, which always has to return and will never refer to
another place. If you do not have a global version of the utility available, then you

CHAPTER 30 LOCAL UTILITIES

30.4. REGISTRATIONS
303

need to put a condition in your local code, terminating when no other utility is
found.

. Line 31–42: This is method that has to be very careful about the procedure it uses
to generate the result. The exact same smiley (text, theme) might be declared
in several locations along the path, but only the last declaration (closest to the
current location) should make it into the smiley mapping. Therefore we first get
the acquired results and then merge the local smiley mapping into it, so that
the local smileys are always added last. Note that this implementation makes
this method also recursive, ensuring that all themes with the matching name are
considered.

. Line 34–43: This method returns the next matching theme up. Starting at
context, the queryNextService() method walks up the tree looking for the
next site in the path. If a site is found, it sees whether it finds the specified ser-
vice (in our case the utility service) in the site. If not, it keeps walking. It will
terminate its search once the global site is reached (None is returned) or a service
is found.

If the utilities service was found, we now need to ensure that it also has a matching
theme. If not we have to keep looking by finding the next utilities service. If a
matching theme is found, the while loop’s condition is fulfilled and the theme is
returned.

. Line 45–48: Since smiley entries are not URLs in the local theme, we look up their
URLs using the absolute url view.

As you can see, the implementation of the local theme was a bit more involved,
since we had to worry about the delegation of the requests. But it is downhill from
now on. What we got for free was a full management and registration user and
programming interface for the local themes and smileys, which is the equivalent of
the ZCML directives we had to develop for the global theme.

Until now we always wrote the tests right after the implementation. However,
tests for local components very much reflect their behavior in the system and the
tests will be easier to understand, if we get the everything working first. Therefore,
we will next develop the necessary registrations followed by providing some views.

30.4 Step III: Registrations

First we register the local theme as a new content type and local utility. Making it
a local utility will also ensure that it can only be added to site management folders.
Add the following directives to you configuration file:

304
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

1 <zope:content class=".localtheme.SmileyTheme">

2 <zope:factory

3 id="book.smileyutility.SmileyTheme"

4 title="Smiley Theme"

5 description="A Smiley Theme"

6 />

7 <zope:implements

8 interface="zope.app.utility.interfaces.ILocalUtility"

9 />

10 <zope:implements

11 interface="zope.app.container.interfaces.IContentContainer"

12 />

13 <zope:implements

14 interface="zope.app.annotation.interfaces.IAttributeAnnotatable"

15 />

16 <zope:allow

17 interface="zope.app.container.interfaces.IReadContainer"

18 />

19 <zope:require

20 permission="zope.ManageServices"

21 interface="zope.app.container.interfaces.IWriteContainer"

22 />

23 <zope:allow

24 interface=".interfaces.ISmileyTheme"

25 />

26 </zope:content>

General Note: The reason we use the zope: prefix in our directives here is that
we used the smiley namespace as the default.

. Line 7–9: Declare the local theme component to be a local utility. Since this is
just a marker interface, no special methods or attributes must be implemented.

. Line 10–12: In order for the precondition of setitem () to work, we need to
make the smiley theme also a IContentContainer. This is just another marker
interface.

. Line 13–15: All local components should be annotatable, so that we can append
Dublin Core and other meta-data.

. Line 16–18: Allow everyone to just access the smileys at their heart’s content.

. Line 19–22: However, for changing the theme we require the service management
permission.

. Line 24–27: We also want to make the theme’s API methods publicly available.

Now that we just have to declare the Smiley class as a content type.

1 <zope:content class=".localtheme.Smiley">

2 <zope:require

3 like_class="zope.app.file.image.Image"

4 />

5 </zope:content>

CHAPTER 30 LOCAL UTILITIES

30.5. VIEWS
305

. Line 2–4: Just give the Smiley the same security declarations as the image. Since
the smiley does not declare any new methods and attributes, we have to make no
further security declarations.

The components are registered now, but we will still not be able to do much, since
we have not added any menu items to the add menu or any other management view.

30.5 Step IV: Views

As you will see, the browser code for the theme is minimal, so that we will not create
a separate browser package and we place the browser code simply in the main
configuration file. As always, you need to add the browser namespace first:

1 xmlns:browser="http://namespaces.zope.org/browser"

Now we create add menu entries for each content type.

1 <browser:addMenuItem

2 class=".localtheme.Smiley"

3 title="Smiley"

4 description="A Smiley"

5 permission="zope.ManageServices"

6 />

7

8 <browser:addMenuItem

9 class=".localtheme.SmileyTheme"

10 title="Smiley Theme"

11 description="A Smiley Theme"

12 permission="zope.ManageServices"

13 />

We also want the standard container management screens be available in the
theme, so we just add the following directive:

1 <browser:containerViews

2 for=".localtheme.SmileyTheme"

3 index="zope.View"

4 contents="zope.ManageServices"

5 add="zope.ManageServices"

6 />

Practically, you can now restart Zope 3 and test the utility and everything should
work as expected. Even so, I want to create a couple more convenience views that
make the utility a little bit nicer.

First, you might have noticed already the “Tools” tab in the site manager. Tools
are mainly meant to make the management of utilities simpler; and the best about
it is that a tools entry requires only one simple directive:

1 <browser:tool

2 interface=".interfaces.ISmileyTheme"

3 title="Smiley Themes"

306
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

4 description="Smiley Themes allow you to convert text-based to icon-based

5 smileys."

6 />

. Line 1: Since tools are not components, but just views on the site manager, the
directive is part of the browser namespace.

. Line 2: This is the interface under which the utility is registered.

. Line 3–4: Here we provide a human-readable title and description for the tool,
which is used in the tools overview screen.

The second step is to create a nice “Overview” screen that tells us the available
local and acquired smileys available for a particular theme. The first step is to create
a view class, which provides one method for retrieving all locally defined smileys and
one method that retrieves all acquired smileys from higher up themes. In a new file
called browser.py add the following code:

1 ������� zope.app
�
� � ���
 zapi

2

3 ������� localtheme
�
� � ���� queryNextTheme, getURL

4

5
�
������� Overview(object):

6

7 ��	�� getLocalSmileys(� 	 � �):
8 ��	������� [{’text’: name, ’url’: getURL(smiley, � 	 � � .request)}
9 ����� name, smiley

�
� � 	 � � .context.items()]

10

11 ��	�� getAcquiredSmileys(� 	 � �):
12 theme = queryNextTheme(� 	 � � .context, zapi.name(� 	 � � .context))
13 map = theme.getSmileysMapping(� 	 � � .request)
14 ��	������� [{’text’: name, ’url’: path} � ��� name, path

�
� map.items()

15

�
� name � ��

�
� � 	 � � .context]

. Line 7–9: Getting all the locally defined smileys is easy; simply get all the items
from the container and convert the smiley object to a URL. The return object will
be a list of dictionaries of the following form:

• “text” −→ This is the text representation of the smiley; in this case the name
of the smiley object.

• “url” −→ This is the URL of the smiley as located in the theme. We already
developed a function for getting the URL (getURL()), so let’s reuse it.

. Line 11–15: We know that getSmileysMapping() will get us all local and acquired
smileys. But if we get the next theme first and then call the method, we will only
get the acquired smileys with respect to this theme. We only need to make sure
that we exclude smileys that are also defined locally. From the mapping, we then
create the same output dictionary as in the previous function.

CHAPTER 30 LOCAL UTILITIES

30.6. WORKING WITH THE LOCAL SMILEY THEME
307

The template that will make use of the two view methods above could look some-
thing like this:

1 <html metal:use-macro="views/standard_macros/view">

2 <head>

3 <title metal:fill-slot="title"

4 i18n:translate="">Smiley Theme</title>

5 </head>

6 <body>

7 <div metal:fill-slot="body">

8

9 <h2 i18n:translate="">Local Smileys</h2>

10

11 <li tal:repeat="smiley view/getLocalSmileys">

12 <b tal:content="smiley/text"/> →

13

14

15

16

17 <h2 i18n:translate="">Acquired Smileys</h2>

18

19 <li tal:repeat="smiley view/getAcquiredSmileys">

20 <b tal:content="smiley/text"/> →

21

22

23

24

25 </div>

26 </body>

27 </html>

Place the above template in a new file called overview.pt. All that’s left now
is to register the view using a simple browser:page directive.

1 <browser:page

2 name="overview.html"

3 menu="zmi_views" title="Overview"

4 for=".localtheme.SmileyTheme"

5 permission="zope.ManageServices"

6 class=".browser.Overview"

7 template="overview.pt" />

30.6 Step V: Working with the Local Smiley Theme

Let’s test the new local theme now by walking through the steps of creating a utility
via the Web interface. This will help us understand the tests we will have to write
at the end. First restart Zope 3 and log in with a user that is also a manager. Go to
the contents view of the root folder and click on the “Manage Site” link just below
the tabs. When the screen is loaded, click on the “Tools” tab and choose the “Smiley
Themes” tool. You can now add a new theme by pressing the “Add” button. Once
the new page appears, enter the name of the theme in the text field and press the
“Add” button. You best choose a name for the theme that is already used as a

308
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

global theme as well, like “plain”. This way we can test the acquisition of themes
better. Once the browser is done loading the following page, you should be back in
the smiley themes tool overview screen listing the “plain” theme, which is already
registered as being “active”.

Figure 30.1: An overview of all smiley themes.

To add a new smiley click on “plain”, which will bring you to the theme’s “Con-
tents” view. Right beside the “Add” button you will see a text field. Enter the name
“:-)” there and press “Add”. You now created a new smiley. Click on “:-)” to up-
load a new image. Choose an image in the “Data” row and press “Change”, which
will upload the image. Repeat the procedure for the “:)” smiley. To see the con-
trast, you might want to upload smileys from the “yazoo” theme.

Once you are done, click on the “Overview” tab and you should see the two local
and a bunch of acquired smileys, which are provided by the global “plain” smiley
theme.

If you like you can now go to the message board and ensure that the local smiley
definitions are now preferred over the global ones for the “plain” theme.

30.7 Step VI: Writing Tests

While we have a working system now, we still should write tests, so that we can
figure out whether all aspects of the local smiley theme are working correctly. The
truly interesting part about testing any local component is the setup; once you get
this right, the tests are quickly written.

When testing local components one must basically bring up an entire bootstrap
ZODB with folders and site managers. Luckily, there are some very nice utility
functions that help with this tedious setup. They can be found in zope.app.

tests.setup. Here are the functions that are commonly useful to the developer:

CHAPTER 30 LOCAL UTILITIES

30.7. WRITING TESTS
309

Figure 30.2: An overview of all available smileys in this theme.

• setUpAnnotations(): This function registers the attribute annotations adapter.
This function is also useful for placeless setups.

• setUpTraversal(): This function sets up a wide range of traversal-related
adapters and views, including everything that is needed to traverse a path, get
object’s parent path and traverse the “etc” namespace. The absolute url

view is also registered.

• placefulSetUp(site=False): Like the placeless setup, this function registers
all the interfaces and adapters required for doing anything useful. Included
are annotations, dependency framework, traversal hooks and the registration
machinery. If site is set to True, then a root folder with a ServiceManager

(also known as site manager) inside will be created and the site manager is
returned.

310
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

• placefulTearDown(): Like the placeless equivalent, this function correctly
shuts down the registries.

• buildSampleFolderTree(): A sample folder tree is built to support multi-place
settings, something that is important for testing acquisition of local components.
The following structure is created:

• createServiceManager(folder,setsite=False): Create a local service/site
manager for this folder. Note that the function can be used for any object that
implements ISite. If setsite is True, then the thread global site variable
will be set to the new site as well.

• addService(servicemanager,name,service,suffix=""): This function adds
a service instance to the specified service manager and registers it. The service
will be available as name and the instance will be stored as name+suffix.

• addService(servicemanager,name,iface,utility,suffix=""): Her we reg-
ister a utility providing the interface iface and having the name name to the
specified service manager. The utility will be stored in the site management
folder under the name name+suffix.

Now we are ready to look into writing our tests. Like for the global theme, I
decided to write doc tests for the theme. Thus, add the following lines in tests/

test doc.py after line 41:

1 DocTestSuite(’book.smileyutility.localtheme’)

The following tests will all be added to the doc string or the SmileyTheme class.
We begin with calling the placefulSetUp() function and setting up the folder tree.

1 >>> from zope.app.tests import setup

2 >>> from zope.app.utility.utility import LocalUtilityService

CHAPTER 30 LOCAL UTILITIES

30.7. WRITING TESTS
311

3 >>> site = setup.placefulSetUp()

4 >>> rootFolder = setup.buildSampleFolderTree()

Next we write a convenience function that let’s us quickly add a new smiley to a
local theme.

1 Setup a simple function to add local smileys to a theme.

2

3 >>> import os

4 >>> import book.smileyutility

5 >>> def addSmiley(theme, text, filename):

6 ... base_dir = os.path.dirname(book.smileyutility.__file__)

7 ... filename = os.path.join(base_dir, filename)

8 ... theme[text] = Smiley(open(filename, ’r’))

Now that the framework is all setup, we can add some smiley themes in various
folders.

1 Create components in root folder

2

3 >>> site = setup.createServiceManager(rootFolder)

4 >>> utils = setup.addService(site, zapi.servicenames.Utilities,

5 ... LocalUtilityService())

6 >>> theme = setup.addUtility(site, ’plain’, ISmileyTheme, SmileyTheme())

7 >>> addSmiley(theme, ’:)’, ’smileys/plain/smile.png’)

8 >>> addSmiley(theme, ’:(’, ’smileys/plain/sad.png’)

9

10 Create components in ‘folder1‘

11

12 >>> site = setup.createServiceManager(rootFolder[’folder1’])

13 >>> utils = setup.addService(site, zapi.servicenames.Utilities,

14 ... LocalUtilityService())

15 >>> theme = setup.addUtility(site, ’plain’, ISmileyTheme, SmileyTheme())

16 >>> addSmiley(theme, ’:)’, ’smileys/plain/biggrin.png’)

17 >>> addSmiley(theme, ’8)’, ’smileys/plain/cool.png’)

. Line 3: First, we make the root folder a site.

. Line 4–5: There are no local services in a new site by default. Before we can add
utilities, we first need to add a local utility service to the site.

. Line 6–8: First we create the theme and add it as a utility to the site. Then just
add two smileys to it.

. Line 10–17: A setup similar to the root folder for folder1.

Now we have completely setup the system and can test the API methods. First,
let’s test the getSmiley() and querySmiley() methods via the package’s API
convenience functions.

1 Now test the single smiley accessor methods

2

3 >>> from zope.publisher.browser import TestRequest

4 >>> from zope.app.component.localservice import setSite

312
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

5 >>> from book.smileyutility import getSmiley, querySmiley

6

7 >>> setSite(rootFolder)

8 >>> getSmiley(’:)’, TestRequest(), ’plain’)

9 ’http://127.0.0.1/++etc++site/default/plain/%3A%29’

10 >>> getSmiley(’:(’, TestRequest(), ’plain’)

11 ’http://127.0.0.1/++etc++site/default/plain/%3A%28’

12 >>> getSmiley(’8)’, TestRequest(), ’plain’)

13 Traceback (most recent call last):

14 ...

15 ComponentLookupError: ’Smiley not found.’

16 >>> querySmiley(’8)’, TestRequest(), ’plain’, ’nothing’)

17 ’nothing’

18

19 >>> setSite(rootFolder[’folder1’])

20 >>> getSmiley(’:)’, TestRequest(), ’plain’)

21 ’http://127.0.0.1/folder1/++etc++site/default/plain/%3A%29’

22 >>> getSmiley(’:(’, TestRequest(), ’plain’)

23 ’http://127.0.0.1/++etc++site/default/plain/%3A%28’

24 >>> getSmiley(’8)’, TestRequest(), ’plain’)

25 ’http://127.0.0.1/folder1/++etc++site/default/plain/8%29’

26 >>> getSmiley(’:|’, TestRequest(), ’plain’)

27 Traceback (most recent call last):

28 ...

29 ComponentLookupError: ’Smiley not found.’

30 >>> querySmiley(’:|’, TestRequest(), ’plain’, ’nothing’)

31 ’nothing’

. Line 7: Set the current site to the root folder. All requests are now with respect
from that site.

. Line 8–11: Make sure that the basic local access works. Note that the
TestRequest defines the computers IP address to be 127.0.0.1 and is not
computer-specific.

. Line 12–17: Make sure that a ComponentLookupError is raised, if a smiley is not
found or the default is returned, if querySmiley() was used.

. Line 19–31: Repeat the tests for using folder1 as location. Specifically interesting
is line 22–23, since the smiley is not found locally, but retrieved from the root
folder’s theme.

Let’s now test the ‘getSmileysMapping()‘ method. To do that we create a small
helper method that helps us compare dictionaries.

1 >>> from pprint import pprint

2 >>> from book.smileyutility import getSmileysMapping

3 >>> def output(dict):

4 ... items = dict.items()

5 ... items.sort()

6 ... pprint(items)

7

8 >>> setSite(rootFolder)

CHAPTER 30 LOCAL UTILITIES

30.7. WRITING TESTS
313

9 >>> output(getSmileysMapping(TestRequest(), ’plain’))

10 [(u’:(’, ’http://127.0.0.1/++etc++site/default/plain/%3A%28’),

11 (u’:)’, ’http://127.0.0.1/++etc++site/default/plain/%3A%29’)]

12

13 >>> setSite(rootFolder[’folder1’])

14 >>> output(getSmileysMapping(TestRequest(), ’plain’))

15 [(u’8)’, ’http://127.0.0.1/folder1/++etc++site/default/plain/8%29’),

16 (u’:(’, ’http://127.0.0.1/++etc++site/default/plain/%3A%28’),

17 (u’:)’, ’http://127.0.0.1/folder1/++etc++site/default/plain/%3A%29’)]

18 >>> getSmileysMapping(TestRequest(), ’foobar’)

19 Traceback (most recent call last):

20 ...

21 ComponentLookupError: \

22 (<InterfaceClass book.smileyutility.interfaces.ISmileyTheme>, ’foobar’)

. Line 8–17: Again, test the method for two locations, so that acquisition can be
tested.

. Line 18–22: Make sure we do not accidently find any non-existent themes.

After all the tests are complete, we need to cleanly shutdown the test case.

1 >>> setup.placefulTearDown()

You should now run the tests and see that they all pass. Another interesting
function that deserves careful testing is the queryNextTheme(). I will not explain
the test here, since it is very similar to the previous one and will ask you to look in
the code yourself for the test or even try to develop it yourself.

314
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

Exercises

1. Something that I have silently ignored is to allow to specify a default smiley
theme. This can be simply accomplished by adding a second registration for a
theme. Implement this feature.

2. Currently, smileys are always acquired. But this might be sometimes undesired
and should be really up to the manager to decide. Develop an option that allows
the manager to choose whether smileys should be acquired or not.

3. Uploading one smiley at a time might be extremely tedious. Instead, it should
be allowed to upload ZIP-archives that contain the smileys. Implement that
feature.

CHAPTER 31

VOCABULARIES AND RELATED

FIELDS/WIDGETS

Difficulty

Sprinter

Skills

• Be familiar with the zope.schema package.

• Be familiar with the zope.app.widget package.

Problem/Task

You will agree that schemas in combination with widgets and forms are pretty cool.
The times of writing boring HTML forms and data verification are over. However,
the standard fields make it hard (if not impossible) to create a dynamic list of possible
values to choose from. To solve this problem, the vocabulary and their corresponding
fields and widgets were developed. In this chapter we will demonstrate one of the
common usages of vocabularies in Zope 3.

Solution

31.1 Introduction

A common user interface pattern is to provide the user with a list of available or
possible values from which one or more might be selected. This is done to reduce

315

316
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

the amount of errors the user could possibly make. Often the list of choices is static,
meaning they do not change over time or are dependent on a particular situation.
On the other hand, you commonly have choices for a field that depends strongly on
the situation you are presented with.

The Choice field is used to allow users to select a value from a provided list.
If you pass the keyword argument values to the list, the field let’s you always
choose from this static list of values. However, if you specify a vocabulary via the
vocabulary argument, then it will be used to provide the list of available choices.
By the way, the argument either accepts a vocabulary object or a vocabulary name
(string). If you wish to select multiple items from a list of choices, then you can
either use the Tuple, List or Set field, which except a value type argument,
which specifies the type of values that can reside in these collection types. If you
pass a Choice field as value type, then a widget will be chosen that let’s you select
only from the choices in the Choice field.

Vocabularies in themselves are not difficult to understand, but their application
ranges from the generation of a static list of elements to providing a list of all available
RDB connections, for example. But at the end of the day, vocabularies just provide
a list of iterms or terms, which is the correct jargon. For large data sets vocabularies
also have a simple query support, so that we can build a sane user interface for the
data; however, the default widgets do not support queries that well yet.

Generally there are two scenarios of vocabulary usage in Zope 3: the ones that
so and others that do need a place to generate the list of terms. Vocabularies that
do not need a place can be created as singeltons and would be useful when data is
retrieved from a file, RDB or any other Zope-external data source. In this chapter,
however, we are going to implement a vocabulary that provides a list of all items in
a container (or any other IReadMapping object). Thus the location clearly matters.

Vocabularies that need a location, cannot exist as singletons, but the location
must be passed into the constructor. Zope 3 provides a vocabulary registry with
which one can register vocabulary factories (which are usually just the classes) by
name. The ZCML directive, zope:vocabulary, can be used as follows:

1 <vocabulary

2 name="VocabularyName"

3 factory=".vocab.Vocabulary" />

You can then use the vocabulary in a schema by declaring a Choice field:

1 ������� zope.schema
�
��� ���� Choice

2

3 field = Choice(

4 title=u"...",

5 description=u"...",

6 vocabulary="VocabularyName")

CHAPTER 31 VOCABULARIES AND RELATED FIELDS/WIDGETS

31.2. THE VOCABULARY AND ITS TERM
317

If the vocabulary argument value is a string, then it is used as a vocabulary
name, and the vocabulary is created with a context whenever needed. But the
argument also accepts IVocabulary instances, which are directly used.

Okay, I wrote already too much. Let’s see how we can achieve our task using
vocabularies.

31.2 Step I: The Vocabulary and its Terms

A vocabulary has a very simple interface. It is almost like a simple mapping object
with some additional functionality. The main idea is that a vocabulary provides
ITerm objects. A term has simply a value that can be any Python object. However,
for Web forms (and other user interfaces) this minimalistic interface does not suffice,
since we have no way of reliably specifiying a unique id (a string) for a term, which
we need to do to create any HTML input element with the terms. To solve this
problem, the ITokenizedTerm was developed, which provides a token attribute
that must be a string uniquely identifying the term.

Since our vocabulary deals with folder item names, our ITerm value is equal to
the token. Therefore, we only need a minimal implementation of ITokenizedTerm

as seen below.

1 �
����� zope.interface
�
��� ���� implements

2 �
����� zope.schema.interfaces
�
��� ���� ITokenizedTerm

3

4
��������� ItemTerm(object):

5 """A simple term implementation for items."""

6 implements(ITokenizedTerm)

7 ��	�� __init__(� 	 � � , value):

8
� 	 � � .value = � 	 � � .token = value

Create a new package called itemvocabulary in ZOPE3/src/book and place the
above code in the init .py file. Next we need to implement the vocabulary.
Since the context of the vocabulary is an IReadMapping object, the implementation
is straightforward:

1 �
����� zope.schema.interfaces
�
��� ���� IVocabulary, IVocabularyTokenized

2 �
����� zope.interface.common.mapping
�
��� ���� IEnumerableMapping

3

4
��������� ItemVocabulary(object):

5 """A vocabulary that provides the keys of any IEnumerableMapping object.

6

7 Every dictionary will qualify for this vocabulary."""

8 implements(IVocabulary, IVocabularyTokenized)

9 __used_for__ = IEnumerableMapping

10

11 ��	�� __init__(� 	 � � , context):

12
� 	 � � .context = context

13

14 ��	�� __iter__(� 	 � �):

318
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

15 """See zope.schema.interfaces.IIterableVocabulary"""

16 ��	������� iter([ItemTerm(key) ����� key
�
� � 	 � � .context.keys()])

17

18 ��	�� __len__(� 	 � �):
19 """See zope.schema.interfaces.IIterableVocabulary"""

20 ��	������� len(� 	 � � .context)
21

22 ��	�� __contains__(� 	 � � , value):

23 """See zope.schema.interfaces.IBaseVocabulary"""

24 ��	������� value
�
� � 	 � � .context

25

26 ��	�� getQuery(� 	 � �):
27 """See zope.schema.interfaces.IBaseVocabulary"""

28 ��	������� None

29

30 ��	�� getTerm(� 	 � � , value):

31 """See zope.schema.interfaces.IBaseVocabulary"""

32

�
� value � ��

�
� � 	 � � .context:

33 � �
� � 	 LookupError, value

34 ��	������� ItemTerm(value)

35

36 ��	�� getTermByToken(� 	 � � , token):

37 """See zope.schema.interfaces.IVocabularyTokenized"""

38 ��	������� � 	 � � .getTerm(token)

. Line 8: Make sure that you implement both, IVocabulary and IVocabularyTokenized,
so that the widget mechanism will work correctly later.

. Line 14–16: Make sure that the values of the iterator are ITokenizedTerm objects
and not simple strings. If you only implement IVocabulary, then the objects just
have to implement ITerm.

. Line 26–28: We do not support queries in this implementation. The interface
specifies that vocabularies not supporting queries must return None.

. Line 30–34: We must be careful here and not just create an ItemTerm from the
value, since the interface specifies that if the value is not available in the vocabulary,
a LookupError should be raised.

. Line 36–38: Since the token and the value are equal, we can just forward the
request to getTerm().

Since the vocabulary requires a context for initiation, we need to register it with
the vocabulary registry. The vocabulary is also used in untrusted environments,
so that we have to make security assertions for it and the term. Place the ZCML
directives below in the configure.zcml of the package.

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 i18n_domain="itemvocabulary">

4

CHAPTER 31 VOCABULARIES AND RELATED FIELDS/WIDGETS

31.3. TESTING THE VOCABULARY
319

5 <vocabulary

6 name="Items"

7 factory=".ItemVocabulary" />

8

9 <content class=".ItemVocabulary">

10 <allow interface="zope.schema.interfaces.IVocabulary"/>

11 <allow interface="zope.schema.interfaces.IVocabularyTokenized"/>

12 </content>

13

14 <content class=".ItemTerm">

15 <allow interface="zope.schema.interfaces.ITokenizedTerm"/>

16 </content>

17

18 </configure>

. Line 5–7: Register the vocabulary under the name “Items”. The vocabulary di-
rective is available in the default “zope” namespace.

. Line 9–16: We simply open up all of the interfaces to the public, since the objects
that provide the data are protected themselves.

That was easy, right? Now, let’s write some quick tests for this code.

31.3 Step II: Testing the Vocabulary

The tests are as straightforward as the code itself. We are going to only test the
vocabulary, since it uses the trivial term. In the doc string of the ItemVocabulary

class add the following example and test code:

1 Example:

2

3 >>> data = {’a’: ’Anton’, ’b’: ’Berta’, ’c’: ’Charlie’}

4 >>> vocab = ItemVocabulary(data)

5 >>> iterator = iter(vocab)

6 >>> iterator.next().token

7 ’a’

8 >>> len(vocab)

9 3

10 >>> ’c’ in vocab

11 True

12 >>> vocab.getQuery() is None

13 True

14 >>> vocab.getTerm(’b’).value

15 ’b’

16 >>> vocab.getTerm(’d’)

17 Traceback (most recent call last):

18 ...

19 LookupError: d

20 >>> vocab.getTermByToken(’b’).token

21 ’b’

22 >>> vocab.getTermByToken(’d’)

23 Traceback (most recent call last):

320
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

24 ...

25 LookupError: d

Note that we can simply use a dictionary as our test context, since it fully provides
IEnumerableMapping. The tests are activated via a doc test that is initialized in
tests.py with the following code:

1

�
�������
 unittest

2 ������� zope.testing.doctestunit
�
� � ���
 DocTestSuite

3

4 �
	�� test_suite():

5 ��	������� unittest.TestSuite((

6 DocTestSuite(book.itemvocabulary’),

7))

8

9 if __name__ == ’__main__’:

10 unittest.main(defaultTest=’test_suite’)

You can execute the tests as usual via the Zope 3 test runner or call the test file
directly after you have set the correct Python path.

31.4 Step III: The Default Item Folder

To see the vocabulary working, we will develop a special folder that simply keeps
track of a default item (whatever “default” may mean). Since the folder is part of a
browser demonstration, we place the folder interface and implementation in the file
browser.py:

1 ������� zope.interface
�
�������� implements, Interface

2 ������� zope.schema
�
��� ���� Choice

3 ������� zope.app.folder
�
�������
 Folder

4

5
�
������� IDefaultItem(Interface):

6

7 default = Choice(

8 title=u"Default Item Key",

9 description=u"Key of the default item in the folder.",

10 vocabulary="Items")

11

12
�
������� DefaultItemFolder(Folder):

13 implements(IDefaultItem)

14

15 default = None

. Line 7–10: Here you can see the Choice field in a very common setup and usage.
The vocabulary argument can either be the vocabulary name or a vocabulary
instance, as pointed out earlier in this chapter.

. Line 12–15: A trivial content component implementation that combines IFolder

and IDefaultItem.

CHAPTER 31 VOCABULARIES AND RELATED FIELDS/WIDGETS

31.4. THE DEFAULT ITEM FOLDER
321

Now we only have we just have to register the new content component, make some
security assertions and create an edit form for the default value. All of this can be
done with the following three ZCML directives:

1 <content class=".browser.DefaultItemFolder">

2 <require like_class="zope.app.folder.Folder"/>

3

4 <require

5 permission="zope.View"

6 interface=".browser.IDefaultItem" />

7

8 <require

9 permission="zope.ManageContent"

10 set_schema=".browser.IDefaultItem" />

11 </content>

12

13 <browser:addMenuItem

14 class=".browser.DefaultItemFolder"

15 title="Default Item Folder"

16 permission="zope.ManageContent" />

17

18 <browser:editform

19 schema=".browser.IDefaultItem"

20 for=".browser.IDefaultItem"

21 label="Change Default Item"

22 name="defaultItem.html"

23 permission="zope.ManageContent"

24 menu="zmi_views" title="Default Item" />

Don’t forget to register the browser namespace in the configure tag:

1 xmlns:browser="http://namespaces.zope.org/browser"

Finally, you have to tell the system about the new paclage, so that it will read
its configuration. Place a file called itemvocabulary-configure.zcml in the
package-includes directory having the following one line directive:

1 <include package="book.itemvocabulary" />

You are now ready to go. Restart Zope 3. Once you refresh the ZMI, you will
see that you can now add a “Default Item Folder”. Create such a folder and add a
couple other components to it, like images and files. If you now click on the “Default
Item” tab, you will see a selection box with the names of all contained objects.
Select one and submit the form. You now stored the name of the object that will
be considered the “default”. As you can see, there exist widgets that know how to
display a vocabulary field. See exercise 1 for changing the used widget.

322
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

Exercises

1. Change the defaultItem.html of the DefaultItemFolder so that it uses
radio buttons instead of a drop-down menu.

CHAPTER 32

EXCEPTION VIEWS

Difficulty

Newcomer

Skills

• You should be knowledgeable about writing page templates.

• Have some basic ZCML knowledge.

Problem/Task

Zope 3 has the capability to provide views for exceptions and errors. Zope already
provides views for some of the most common user errors, such as NotFound (a page
was not found), and even a generic view for all exceptions. However, when you have
a specific application error, you usually want to provide a customized error message.

Solution

32.1 Introduction

Exceptions are a powerful tool in programming. However, sometimes it becomes
hard to deal with them when it comes to the point that exceptions reach the user.
In Zope 3 we allow exceptions to have views, so that the user will always see a very
friendly message when an error occurred. Thereby we clearly differentiate between

323

324
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

errors that were raised due to a programming error (a bug) and errors that were
raised on purpose to signalize a user error.

Programming errors should never occur in a production-quality application, and
as Jim Fulton said: “I want to discourage people from trying to make all errors look
good” (my emphasis). Thus Zope 3 provides by default only a very minimalistic view
saying “System Error”. An exception to that is the view for the NotFoundError,
which displays a very nice message explaining what happened. But even the best
applications have bugs and before publishing a Zope 3 application, one should prob-
ably provide a more polite message for programming errors. For development, the
“Debug” skin contains a nice view for IException that shows the exception class
and value as well as the traceback.

User and application errors, on the other hand, have often very fancy and elab-
orate views. User errors commonly implement IUserError defined in zope.app.

exceptions.interfaces. Simple examples of a user error is the message shown
when you forgot to enter a name when adding a new content type, like an image. A
very good example of an application error is Unauthorized, which is raised if a user
is not allow to access a particular resource. It’s view actually raises an HTTP chal-
lenge, so that your browser will ask you for a username and password.

Overall, you should be very careful about classifying your exceptions to which
ones are legitimate to reach the users and which aren’t. In this chapter, we will
create an exception that is raised when a payment is required to access a certain
page. We will test the payment exception view by writing a small page that raises
the exception.

32.2 Step I: Creating the Exception

Before we get started, create a new package called exceptionview in ZOPE3/src/

book. Then create a file called interfaces.py and add the following exception
interface and class.

1 ������� zope.interface
�
�������� implements

2 ������� zope.interface.common.interfaces
�
�������
 IException

3

4
�
������� IPaymentException(IException):

5 """This is an exception that can be raised by my application."""

6

7
�
������� PaymentException(Exception):

8 implements(IPaymentException)

9

10 # We really do nothing here.

. Line 2: The interfaces for all common exceptions are defined in zope.interface.

common.interfaces.

CHAPTER 32 EXCEPTION VIEWS

32.3. PROVIDING AN EXCEPTION VIEW
325

. Line 4: You should always inherit IException in any exception interface.

. Line 7: You should also always inherit Exception for any self-written exception.
Note that exceptions are considered to be part of a package’s API and are therefore
always implemented in the interfaces module.

32.3 Step II: Providing an Exception View

Now that we have a payment exception, we just have to provide a view for it. How-
ever, when the exception occurs, we do not want to return the HTTP status code
200. Instead, we want the status to be 402, which is the “Payment Required” sta-
tus. In a new module named browser.py add the following view class:

1
��������� PaymentExceptionView(object):

2 """This is a view for ‘IPaymentException‘ exceptions."""

3

4 ��	�� __call__(� 	 � � , *args, **kw):

5
� 	 � � .request.response.setStatus(402)

6 �
	������� � 	 � � .index(*args, **kw)

. Line 4: Since this view will be template-based, the call () method is usually
used to render the template.

. Line 5: However, before executing the template, we set the HTTP return status
to 402.

. Line 6: Now render the template, which is always available under the attribute
index.

Now we just need a template to render the view. Add the following ZPT code in
a file named error.pt:

1 <html metal:use-macro="context/@@standard_macros/dialog">

2 <body>

3 <div metal:fill-slot="body">

4

5 <h1>402 - Payment Required</h1>

6

7 <p>Before you can use this feature of the site, you have to make a

8 payment to Stephan Richter.</p>

9

10 </div>

11 </body>

12 </html>

There is nothing interesting going on in the template, since it has no dynamic
components. In configure.zcml you can register the page now using

326
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

1 <configure

2 xmlns="http://namespaces.zope.org/browser"

3 i18n_domain="exceptionview">

4

5 <page

6 name="index.html"

7 template="error.pt"

8 for=".interfaces.IPaymentException"

9 class=".browser.PaymentExceptionView"

10 permission="zope.Public"

11 />

12

13 </configure>

To register the new package, add a file named exceptionview-configure.zcml

to package-includes having the line:

1 <include package="book.exceptionview" />

You can now restart Zope 3. But how can we test whether the view works? There
exists currently no code that raises the exception.

32.4 Step III: Testing the Exception View

The easiest way to raise the exception is to write a simple view that just does it.
Something like this:

1 ������� book.exceptionview.interfaces
�
�������� PaymentException

2

3
�
������� RaiseExceptionView(object):

4 """The view that raises the exception"""

5

6 ��	�� raisePaymentException(� 	 � �):
7 � �

� � 	 PaymentException, ’You are required to pay.’

Let’s now register the class method as a view on a folder:

1 <page

2 name="raiseError.html"

3 for="zope.app.folder.interfaces.IFolder"

4 class=".browser.RaiseExceptionView"

5 attribute="raisePaymentException"

6 permission="zope.View"

7 />

Restart Zope now and enter the URL http://localhost:8080/raiseError.

html in your browser. You should now see the “Payment Required” exception view.
In your console you should see the following output:

04-08-23T12:38:01 ERROR SiteError http://localhost:8080/raiseError.html

aceback (most recent call last):

.

ymentException: You are required to pay.

CHAPTER 32 EXCEPTION VIEWS

32.4. TESTING THE EXCEPTION VIEW
327

Figure 32.1: This is the view for the PaymentException error.

The little experiment we just did is also quickly casted into a functional test. In
a new file called ftests.py add the following test code:

1

�
�������� unittest

2

3 �
����� zope.app.tests.functional
�
�������
 BrowserTestCase

4

5
��������� Test(BrowserTestCase):

6

7 ��	�� test_PaymentErrorView(� 	 � �):
8 response = � 	 � � .publish("/raiseError.html", handle_errors=True)

9

10
� 	 � � .assertEqual(response.getStatus(), 402)

11 body = response.getBody()

12
� 	 � � .assert_(’402 - Payment Required’

�
� body)

13
� 	 � � .assert_(’payment to Stephan Richter’

�
� body)

14

15 ��	�� test_suite():

16 ��	������� unittest.TestSuite((

17 unittest.makeSuite(Test),

18))

19

20

�
� __name__==’__main__’:

21 unittest.main(defaultTest=’test_suite’)

. Line 8: Make sure that handle errors is set to true, otherwise the publication
of this URL will raise the PaymentException, failing the test.

328
Zope 3 Developer’s Book

PART V OTHER COMPONENTS

. Line 10: Using the response’s getStatus() method we can even get to the HTTP
return status, which should be 402, of course. Note that this was not as easily
testable using the browser.

. Line 11–13: Make sure the page contains the right contents.

If you are not familiar with functional tests, please read the corresponding chapter.
You can verify the test by executing

python test.py -vpf --dir src/book/exceptionview

from your ZOPE3 directory.

PART VI
Advanced Topics

Not everything you ever want to develop are components that you would allow
the user to add and manipulate. This section contains a collection of chapters that
deal mainly with the packages outside of zope.app. These packages are often useful
outside of Zope 3 as well.

Chapter 33: Writing new ZCML Directives

Here we discusses how new directives can be added to a ZCML namespace using meta-directives
and/or how to create a new namespace from scratch.

Chapter 34: Implementing a TALES Namespaces

In Zope 3, Zope Page Templates (TALES expressions) can contain namespaces to provide easier
access to an object’s data and meta-data. While Zope 3 provides a zope namespace, it is sometimes
extremely helpful to develop your own to expose your product-specific API.

Chapter 35: Changing Traversal Behavior

Similar to Zope 2, one can change the traversal (lookup) behavior for an object, except that
this functionality is much more flexible in Zope 3.

Chapter 36: Registering new WebDAV Namespaces

WebDAV is allowed to store and request any namespace on any resource. However, we want to
have some control over the namespaces and their values. This chapter explains how to bind Zope
3 attributes and annotations to WebDAV namespaces.

Chapter 37: Using TALES outside of Page Templates

TALES is a powerful expression mechanism that certainly does not only find usage in Page
Templates. This chapter tells you how to incorporate TALES into your own Python applications
and scripts.

Chapter 38: Developing a new TALES expression

While TALES is powerful in itself, one can make it even more powerful by implementing custom
expressions. This chapter will explain step by step how the sql expression was created.

Chapter 39: Spacesuits – Objects in Hostile Environements

While the term “spacesuits” is not used in the Zope 3 terminology anymore, it best describes
the approach of the new security model, which will be introduced in this chapter.

Chapter 40: The Life of a Request

This chapter will show the request’s exciting journey through the server, publisher and publi-
cation frameworks.

CHAPTER 33

WRITING NEW ZCML DIRECTIVES

Difficulty

Sprinter

Skills

• Be familiar using ZCML. If necessary, you should read the “Introduction to
ZCML” chapter.

• Have a purpose in mind for creating or extending a namespace.

Problem/Task

As you know by now, we use ZCML to configure the Zope 3 framework, espe-
cially for globally-available components. When developing complex applications, it
is sometimes very useful to develop new and custom ZCML directives to reduce
repetitive tasks or simply make something configurable that would otherwise require
Python code manipulation. This chapter will implement a small browser:redirect

directive that defines a view that simply redirects to another URL.

Solution

33.1 Introduction

One of the major design goals of ZCML was to make it very easy for a developer
to create a new ZCML directives. We differentiate between simple and complex

331

332
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

directives. Simple directives consist of one XML element that causes a set of actions.
Complex directives are wrapper-like directives that can contain other sub-directives.
They usually do not cause actions themselves, but provide data that is applicable
to most of the sub-directives. In this chapter, however, we will just create a simple
directive; the complex ones are not much more difficult.

There are three simple steps to implementing a directive. First, you develop the
directive’s schema, which describes the attributes the XML element can and must
have. Like with any schema, you can specify, whether an attribute is required or
not. When the XML is parsed, the unicode values that are returned from the parser
are automatically converted to Python values as described by the field. Besides the
common fields, such as TextLine or Int, you also have special configuration fields,
such as GlobalObject, which automatically converts a Python reference to a Python
object. A full list of additional fields is provided in the “Introduction to ZCML”
chapter. Directive schemas are commonly placed in a file called metadirectives.py.

The second step is to develop a handler for the directive, which is for simple di-
rectives a function taking the attributes as arguments. The first attribute of the
handler is the context of the configuration. If you have a complex directive, the
handler is usually a class, where the constructor takes the attributes of the direc-
tive as arguments. Each sub-directive is then a method on the class. The class
must also be callable, so that it can be called when the complex directive is closed.
It is very important to note, that the directives should not perform any actions,
but only declare the actions as we will see later. This way the configuration mech-
anism can detect configuration conflict. By convention the handlers are stored in
metaconfigure.zcml.

Once the directive schema and handler are written, we can now register the ZCML
directive using the ZCML meta namespace, which is usually done in a configu-
ration file named meta.zcml. The meta-configuration file is then registered in
packages-includes using a filename like 〈package〉-meta.zcml.

Now that you have an overview over the necessary tasks, let’s get our hands dirty.
As mentioned before the goal is to provide a directive that creates a view that makes
a simple redirect. A view must always be defined for a particular object and needs a
name to be accessible under. We should also optionally allow a layer to be specified.
Usually, we also want to specify a permission, but since this view just redirects to
another we simply make the view public. The final attribute we need for the directive
is the url, which specifies the URL we want to direct to. so, first create a package
named redirect in ZOPE3/src/book/ (and don’t forget about init .py).

CHAPTER 33 WRITING NEW ZCML DIRECTIVES

33.2. DEVELOPING THE DIRECTIVE SCHEMA
333

33.2 Step I: Developing the Directive Schema

In a new file named metadirectives.py add the following schema.

1 �
����� zope.interface
�
��� ���� Interface

2 �
����� zope.configuration.fields
�
�������
 GlobalObject

3 �
����� zope.schema
�
� � ���� TextLine

4

5
��������� IRedirectDirective(Interface):

6 """Redirects clients to a specified URL."""

7

8 name = TextLine(

9 title=u"Name",

10 description=u"The name of the requested view.")

11

12 for_ = GlobalObject(

13 title=u"For Interface",

14 description=u"The interface the directive is used for.",

15 required=False)

16

17 url = TextLine(

18 title=u"URL",

19 description=u"The URL the client should be redirected to.")

20

21 layer = TextLine(

22 title=u"Layer",

23 description=u"The layer the redirect is defined in.",

24 required=False)

. Line 2: As you can see, all configuration-specific fields, like GlobalObject are
defined in zope.configuration.fields.

. Line 3: However, you can also use any of the conventional fields as well.

. Line 5: The directive schemas are just schemas like any other ones. There is no
special base-class required.

. Line 12: Whenever you have an attribute whose name is a Python keyword, then
simply add an underscore behind it; the underscore will be safely ignored during
runtime.

33.3 Step II: Implementing the Directive Handler

The handler is added to metaconfigure.zcml.

1 �
����� zope.app.publisher.browser.viewmeta
�
� � ���
 page

2

3
��������� Redirect(object):

4 """Redirects to a specified URL."""

5 url = None

6

7 �
	�� __call__(� 	 � �):

334
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

8
� 	 � � .request.response.redirect(� 	 � � .url)

9

10

11 �
	�� redirect(_context, name, url, for_=None, layer=’default’):

12 # define the class that performs the redirect

13 redirectClass = type(str("Redirect %s for %s to ’%s’" %(name, for_, url)),

14 (Redirect,), {’url’ : url})

15

16 page(_context, name, ’zope.Public’, for_, layer, class_=redirectClass)

. Line 1: Since we are just defining a new page, why not reuse the page-directive
handler? This makes the implementation of our handler much simpler.

. Line 3–8: This is the base view class. We simply allow a URL to be set on it.
When the view is called, we simply redirect the HTTP request. There is no need
to implement IBrowserPublisher or IBrowserView here, since the page()

function will mix-in all of these APIs plus implementation.

. Line 11–16: This is the actual handler of the directive. The first step is to create
a customized version of the view class by merging in the URL (line 13). Then we
simply call the page-directive handler, where we use the public permission. The
page-directive handler hides a lot of the glory details of defining a full-blown view,
including creating configuration actions.

An action is created by calling context.action)). This function supports the
following arguments:

• discriminator – This is a unique identifier that is used to recognize a partic-
ular action. It is very important that no two actions have the same discrimi-
nator when starting Zope. This allows us to use the discriminator for conflict
resolution and spotting duplicate actions. It is usually a tuple.

• callable – Here we specify the callable (usually a method or function) that
is called when the action is executed.

• args & kw – Arguments and keywords that are passed to the callable as
arguments on execution time.

33.4 Step III: Writing the Meta-Configuration

Now that we have all pieces of the directive, let’s register it in meta.zcml.

1 <configure

2 xmlns="http://namespaces.zope.org/meta">

3

4 <directives namespace="http://namespaces.zope.org/browser">

5 <directive

6 name="redirect"

CHAPTER 33 WRITING NEW ZCML DIRECTIVES

33.5. TESTING THE DIRECTIVE
335

7 schema=".metadirectives.IRedirectDirective"

8 handler=".metaconfigure.redirect"

9 />

10 </directives>

11

12 </configure>

. Line 2: The meta namespace is used to define new ZCML directives.

. Line 4 & 10: The meta:directives directive is used to specify the namespace
under which the directives will be available. In our case it is the browser names-
pace.

. Line 5–9: The meta:directive directive is used to register a simple directive. The
name is the name as which the directive will be known/accessible. The schema

specified the directive schema and the handler the directive handler, both of
which we developed before.

If you develop a complex directive, you would use the meta:complexDirective

directive, which supports the same attributes. Inside a complex directive you
can then place meta:subdirective directives, which define the sub-directives of
the complex directive. You might want to look into the “Registries with Global
Utilities” chapter for an example of a relatively simple complex directive.

You now have to register the new directive with the Zope 3 system by placing a file
named redirect-meta.zcml in package-includes. It should have the following
content:

1 <include package="book.redirect" file="meta.zcml" />

The next time you restart Zope, the directive should be available.

33.5 Step IV: Testing the Directive

The best way to test the directive is to use it. Let’s have the view “manage.html” be
redirected to “manage” for all folders. In a new configuration file, configure.zcml,
add the following directives:

1 <configure

2 xmlns="http://namespaces.zope.org/browser">

3

4 <redirect

5 name="manage.html"

6 for="zope.app.folder.interfaces.IFolder"

7 url="manage" />

8

9 </configure>

336
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

. Line 2: As specified, the redirect directive is available via the browser names-
pace.

. Line 5: The name is the view that must be called to initiate the redirection.

. Line 6: The redirection will only be available for folders.

. Line 7: The target URL is the relative name “manage”.

After adding redirect-configure.zcml containing

1 <include package="book.redirect" />

to package-includes, restart Zope 3. You should now be able to call the URL
http://localhost:8080/@@manage.html, which should bring you to http://

localhost:8080/@@contents.html, since “manage” just redirects to “contents.html”.
This functionality can be easily duplicated in a functional test. Put the following

test case into a file named ftests.py:

1

�
�������
 unittest

2

3 ������� zope.app.tests.functional
�
� � ���
 BrowserTestCase

4

5

6
�
������� Test(BrowserTestCase):

7

8 ��	�� test_RedirectManageHtml(� 	 � �):
9 response = � 	 � � .publish("/manage.html")

10

11
� 	 � � .assertEqual(response.getStatus(), 302)

12
� 	 � � .assertEqual(response.getHeader(’Location’), ’manage’)

13

14

15 �
	�� test_suite():

16 ��	������� unittest.makeSuite(Test)

17

18

�
� __name__==’__main__’:

19 unittest.main(defaultTest=’test_suite’)

If you are not familiar with the BrowserTestCase API, I suggest you read the
“Writing Functional Tests” chapter. Otherwise the test is straightforward and you
can execute in the usual manner.

CHAPTER 34

IMPLEMENTING A TALES
NAMESPACES

Difficulty

Newcomer

Skills

• Be familiar with TAL and TALES (in the context of Page Templates).

• You should feel comfortable with ZCML.

Problem/Task

Zope 3 exposes a fair amount of its API in TAL and TALES through expression
types (path, python, string and sql [add-on]) as well as the TALES namespaces, such
as zope. However, sometimes this is not powerful enough or still requires a lot of
Python view class coding. For this reason Zope 3 allows you to add new TALES
namespace. This chapter will demonstrate on how to write and register a new TALES
namespace.

Solution

TALES namespaces use path adapters to implement the adaptation. Path
adapters are used to adapt an object to another interface while traversing a path.
The name of the adapter is used in the path to select the correct adapter. An ex-
ample is the zope TALES namespace.

337

338
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

1 <p tal:content="context/zope:modified" />

In this example, the object is adapted to the IZopeTalesAPI, which provides
many convenience methods, including the exposure of the Dublin Core. Then the
modified() method is called on the adapter, which returns the modification date of
the context object.

While the standard zope TALES namespace deals with retrieving additional data
about the component, it does not handle the output format of the data. So it would
be a good idea to specify a new namespace that deals exclusively with the formatting
of objects. To keep this chapter short, we will only concentrate on the full display
of dates, times and datetimes. The user’s locale functions are used to do the actual
formatting, so that the developer’s effort will be minimal and the output is correctly
localized.

The code for this example is located in book/formatns. Therefore, create this
product and do not forget the init .py file in the directory.

34.1 Step I: Defining the Namespace Interface

Let’s start out by defining the interface of the namespace. The interface specifies all
the functions that will be available in the namespace. Note that the code available
in the repository has a lot more functions, but since the code is fairly repetitive, I
decided not to put it all into the text.

1 ������� zope.interface
�
�������� Interface

2

3
�
������� IFormatTalesAPI(Interface):

4

5 ��	�� fullDate(� 	 � �):
6 """Returns the full date using the user’s locale.

7

8 The context of this namespace must be a datetime object,

9 otherwise an exception is raised.

10 """

11

12 ��	�� fullTime(� 	 � �):
13 """Returns the full time using the user’s locale.

14

15 The context of this namespace must be a datetime object,

16 otherwise an exception is raised.

17 """

18

19 ��	�� fullDateTime(� 	 � �):
20 """Returns the full datetime using the user’s locale.

21

22 The context of this namespace must be a datetime object,

23 otherwise an exception is raised.

24 """

CHAPTER 34 IMPLEMENTING A TALES NAMESPACES

34.2. IMPLEMENTING THE NAMESPACE
339

While every TALES namespace also has to implement ITALESFunctionNamespace,
we do not inherit from this interface here, but simply merge it in in the implemen-
tation. This has the advantage that the IFormatTalesAPI interface can be reused
elsewhere.

34.2 Step II: Implementing the Namespace

The actual code of the namespace is not much harder than the interface, if you
have played with the user locales before. Add the following implementation in the
package’s init .py file.

1 �
����� zope.interface
�
��� ���� implements

2 �
����� zope.tales.interfaces
�
��� ���� ITALESFunctionNamespace

3 �
����� zope.security.proxy
�
� � ���� removeSecurityProxy

4 �
����� interfaces
�
� � ���
 IFormatTalesAPI

5

6

7
��������� FormatTalesAPI(object):

8

9 implements(IFormatTalesAPI, ITALESFunctionNamespace)

10

11 ��	�� __init__(� 	 � � , context):

12
� 	 � � .context = context

13

14 ��	�� setEngine(� 	 � � , engine):

15 """See zope.tales.interfaces.ITALESFunctionNamespace"""

16
� 	 � � .locale = removeSecurityProxy(engine.vars[’request’]).locale

17

18 ��	�� fullDate(� 	 � �):
19 """See book.formatns.interfaces.IFormatTalesAPI"""

20 �
	������� � 	 � � .locale.dates.getFormatter(
21 ’date’, ’full’).format(� 	 � � .context)
22

23 ��	�� fullTime(� 	 � �):
24 """See book.formatns.interfaces.IFormatTalesAPI"""

25 �
	������� � 	 � � .locale.dates.getFormatter(
26 ’time’, ’full’).format(� 	 � � .context)
27

28 ��	�� fullDateTime(� 	 � �):
29 """See book.formatns.interfaces.IFormatTalesAPI"""

30 �
	������� � 	 � � .locale.dates.getFormatter(
31 ’dateTime’, ’full’).format(� 	 � � .context)

. Line 2: Here you see where to import the ITALESFunctionNamespace interface
from. Note that this interface is not totally necessary, but without it, the engine
will not be set on the namespace, which makes it impossible to reach the request.

. Line 11–12: All TALES function namespaces must be implemented as adapters.
The object they adapt is the object that was evaluated from the previous part of
the path expression.

340
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

. Line 14–16: This method implements the only requirement the ITALESFunctionNamespace

interface poses. This method provides the some additional context about the user
and the entire request. For this namespace, however, we are only interested in the
locale, so we get it. Interestingly enough, the engine is security-wrapped, so that
the request is automatically security-wrapped, which is unusal and therefore no
security declaration exists for accessing the locale attribute. Therefore we have
to remove all the security proxies from the request before accessing the locale

object. Note that this is safe, since all of the namespace functions only read data
from the locale, but do not do any write operations.

. Line 18–31: Here you can see the trivial implementations of the namespace func-
tions. The locale object provides all the functionality we need. From the lo-
cale itself we can retrieve the date, time or datetime formatting objects using
locale.dates.getFormat(). The method expect the name of the format to be
specified. The four names supported by ICU (on which the locale support is based)
are “short”, “medium”, “long”, and “full”. The formatting objects have a method
called format(), which converts the datetime object into a localized string rep-
resentation.

That was easy, wasn’t it? Next we are going to test the functionality.

34.3 Step III: Testing the Namespace

Here we are only going to test whether the namespace works by itself; we are not
checking whether the namespace will work correctly in TALES, since this should
be tested in the TALES implementation. The tricky part of the test is to create a
sufficient Engine object, so that the code can access the request:

1

�
�������
 unittest

2 ������� datetime
�
� � ���
 datetime

3 ������� zope.publisher.browser
�
�������� TestRequest

4 ������� zope.testing.doctestunit
�
� � ���
 DocTestSuite

5 ������� book.formatns
�
�������� FormatTalesAPI

6

7
�
������� Engine:

8 vars = {’request’: TestRequest(environ={’HTTP_ACCEPT_LANGUAGE’: ’en’})}

9

10 �
	�� getFormatNamespace(context):

11 ns = FormatTalesAPI(context)

12 ns.setEngine(Engine())

13 ��	������� ns

14

15 �
	�� fullDate():

16 """

17 >>> ns = getFormatNamespace(datetime(2003, 9, 16, 16, 51, 01))

18 >>> ns.fullDate()

19 u’Tuesday, September 16, 2003’

CHAPTER 34 IMPLEMENTING A TALES NAMESPACES

34.4. STEP IV: WIRING THE NAMSPACE INTO ZOPE 3
341

20 """

21

22 ��	�� fullTime():

23 """

24 >>> ns = getFormatNamespace(datetime(2003, 9, 16, 16, 51, 01))

25 >>> ns.shortTime()

26 u’4:51:01 PM +000’

27 """

28

29 ��	�� fullDateTime():

30 """

31 >>> ns = getFormatNamespace(datetime(2003, 9, 16, 16, 51, 01))

32 >>> ns.fullDateTime()

33 u’Tuesday, September 16, 2003 4:51:01 PM +000’

34 """

35

36 ��	�� test_suite():

37 ��	������� DocTestSuite()

38

39

�
� __name__ == ’__main__’:

40 unittest.main(defaultTest=’test_suite’)

. Line 7–8: This is the most minimal stub implementation of the engine, which
sufficiently provides the request, as it is required by the namespace.

. Line 10–13: This helper function creates the namespace instance for us and also
sets the engine, so that we are ready to use the returned namespace object.

. Line 15–34: These are the tests in the Zope “Doc Unit Test” format, which is easy
to read. You see what’s going on. The code inside the doc string is executed and
it is checked whether the returned value equals the expected value.

. Line 36–40: This is the usual unit doctest boilerplate. The only difference is that
we create a DocTestSuite without passing in the module name. If no name is
specified to the DocTestSuite constructor, the current module is searched for
tests.

You can run the tests as usual, of course, using

python test.py -vpu --dir src/book/formatns

34.4 Step IV: Wiring the Namspace into Zope 3

The last task is to hook up the namespace to the rest of the framework. This
is simply done by registering a normal adapter that provides the IPathAdapter

interface. Place the following code into the “configure.zcml” file:

342
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

1 <configure

2 xmlns="http://namespaces.zope.org/zope">

3

4 <adapter

5 for="*"

6 provides="zope.app.traversing.interfaces.IPathAdapter"

7 factory=".FormatTalesAPI"

8 name="format" />

9

10 </configure>

. Line 5: Register this namespace as an adapter for all possible objects, even though
in our case we could restrict it to IDateTime instances. However, the idea is that
the format namespace will support many different object types.

. Line 8: The name of the adapter is extremly important, since it is the name as
which the adapter will be available in the path expressions.

Now hook the configuration into Zope 3 by adding a file called formatns-configure.

zcml to package-includes having the following line as content:

1 <include package="book.formatns" />

34.5 Step VI: Trying the format Namespace

First you need to restart Zope. Then create a “ZPT Page” and add the following
content:

1 <html>

2 <body>

3 <h1 tal:content="context/zope:modified/format:fullDateTime">

4 Tuesday, September 16, 2003 04:51:01 PM +000

5 </h1>

6 </body>

7 </html>

. Line 3–4: This line displays the modification datetime of the root folder as a
“full” date time. The output is even localized to the user’s preferred language and
format.

A great aspect of the function namespace concept is that several namespace calls
can be piped together. In the example above you can see how the zope names-
pace extracts the modification datetime of the root folder, and this datetime object
is then passed to the format namespace to create the localized human-readable rep-
resentation.

CHAPTER 35

CHANGING TRAVERSAL BEHAVIOR

Difficulty

Sprinter

Skills

• Be familiar with the Zope 3 component architecture and testing framework.

• Some knowledge about the container interfaces is helpful. Optional.

Problem/Task

Zope 3 uses a mechanism called “traversal” to resolve an object path, as given
by a URL, to the actual object. Obviously, there is some policy involved in the
traversal process, as objects must be found, namespaces must be resolved, and even
components, such as views, be looked up in the component architecture. This also
means that these policies can be changed and replaced. This chapter will show you
how to change the traversal policy, so that the container items are not case-sensitive
anymore.

Solution

In Zope 3, traversers, objects that are responsible for using a path segment
to get from one object to another, are just implemented as views of the re-
spective presentation type. In principle the traverser only has to implement
IPublishTraverse (located in zope.publisher.interfaces), which specifies a
method named publishTraverse(request,name) that returns the traversed ob-
ject. The browser implementation, for example, is simply a view that tries to

343

344
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

resolve name using its context. Whether the method tries to access sub-
objects or look up views called name is up to the specific implementation, like
the zope.app.container.traversal.ContainerTraverser for the browser.

35.1 Step I: The Case-Insensitive Folder

As mentioned before, in this chapter we are going to implement a case-insensitive tra-
verser and a sample folder that uses this traverser called CaseInsensitiveFolder.
Let’s develop the latter component first. All we need for the case-insensitive folder
is an interface and a factory that provides the for a normal Folder instance.

Create a package called insensitivefolder in the book package. In the
init .py file add the following interface and factory:

1 ������� zope.component.interfaces
�
� � ���
 IFactory

2 ������� zope.app.folder
�
�������
 Folder

3 ������� zope.app.folder.interfaces
�
� � ���� IFolder

4 ������� zope.interface
�
�������� implements, implementedBy

5 ������� zope.interface
�
�������� directlyProvides, directlyProvidedBy

6

7
�
������� ICaseInsensitiveFolder(IFolder):

8 """Marker for folders whose contained items keys are case insensitive.

9

10 When traversing in this folder, all names will be converted to lower

11 case. For example, if the traverser requests an item called ‘Foo‘, in

12 reality the first item matching ‘foo‘ or any upper-and-lowercase

13 variants are looked up in the container."""

14

15
�
������� CaseInsensitiveFolderFactory(object):

16 """A Factory that creates case-insensitive Folders."""

17 implements(IFactory)

18

19 ��	�� __call__(� 	 � �):
20 """See zope.component.interfaces.IFactory

21

22 Create a folder and mark it as case insensitive.

23 """

24 folder = Folder()

25 directlyProvides(folder, directlyProvidedBy(folder),

26 ICaseInsensitiveFolder)

27 ��	������� folder

28

29 ��	�� getInterfaces(� 	 � �):
30 """See zope.component.interfaces.IFactory"""

31 ��	������� implementedBy(Folder) + ICaseInsensitiveFolder

32

33 caseInsensitiveFolderFactory = CaseInsensitiveFolderFactory()

Instead of developing a new content type, we create a factory that tags on the
marker interface making the Folder instance an ICaseInsensitiveFolder. This
is a classic example of declaring and using a factory directly. Factories are used in
many places, but usually they are auto-generated in ZCML handlers.

CHAPTER 35 CHANGING TRAVERSAL BEHAVIOR

35.2. THE TRAVERSER
345

The factory is simply registered in ZCML using

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:browser="http://namespaces.zope.org/browser"

4 i18n_domain="zope">

5

6 <factory

7 id="zope.CaseInsensitiveFolder"

8 component=".caseInsensitiveFolderFactory"

9 />

10

11 <browser:addMenuItem

12 factory="zope.CaseInsensitiveFolder"

13 title="Case insensitive Folder"

14 description="A simple case insensitive Folder."

15 permission="zope.ManageContent"

16 />

17

18 <browser:icon

19 name="zmi_icon"

20 for=".ICaseInsensitiveFolder"

21 file="cifolder_icon.png"

22 />

23

24 </configure>

. Line 6–9: Declare the factory. The id must be a valid Id field value.

. Line 11–16: Declare an add menu item entry using the factory id, as specified in
the id attribute before.

. Line 18–22: Register also a custom icon for the case-insensitive folder, so that we
can differentiate it from the other folders. The icon can be found in the repository.

35.2 Step II: The Traverser

Now we have a new content type, but it does not do anything special. We have
to implement the special traverser for the case-insensitive folder. Luckily, we do
not have to implement a new container traverser from scratch, but just use the
standard ContainerTraverser and replace the publishTraverse() method to be
a bit more flexible and ignore the case of the item names. In the init .py file
add the following traverser class:

1 �
����� zope.publisher.interfaces
�
�������
 NotFound

2

3 �
����� zope.app
�
�������
 zapi

4 �
����� zope.app.container.traversal
�
� � ���� ContainerTraverser

5

6
��������� CaseInsensitiveFolderTraverser(ContainerTraverser):

7

8 __used_for__ = ICaseInsensitiveFolder

346
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

9

10 ��	�� publishTraverse(� 	 � � , request, name):

11 """See zope.publisher.interfaces.browser.IBrowserPublisher"""

12 subob = � 	 � � ._guessTraverse(name)
13

�
� subob

� � None:

14 view = zapi.queryView(� 	 � � .context, name, request)

15

�
� view

� � � �� None:

16 �
	������� view

17

18 � �
� � 	 NotFound(� 	 � � .context, name, request)

19

20 ��	������� subob

21

22 ��	�� _guessTraverse(� 	 � � , name):

23 � ��� key
�
� � 	 � � .context.keys():

24

�
� key.lower() == name.lower():

25 �
	������� � 	 � � .context[key]
26 ��	������� None

. Line 8: Just as information, this traverser is only meant to be used with
ICaseInsensitiveFolder components. However, the following code is generic
enough that it would work with any object implementing IReadContainer. Note
that the most generic container traverser is registered for ISimpleReadContainer,
which is not sufficient here, since we make use of the keys() method, which is
not available in ISimpleReadContainer.

. Line 10–20: First we try to find the name using the private guessTraverse()

method. If no object was found in the items of the container, we check whether
name could be a view and return it. If the name does not point to an item or a
view, then we need to raise a NotFound error.

Note that the implementation of this method could have been more efficient. We
could first try to get the object using guessTraverse() and upon failure forward
the request to the original publishTraverse() method of the base class. Then
the code would look like this:

1 ��	�� publishTraverse(� 	 � � , request, name):

2 subob = � 	 � � ._guessTraverse(name)
3

�
� subob

� � � �� None:

4 �
	������� subob

5 �
	������� super(CaseInsensitiveFolderTraverser,

6
� 	 � �).publishTraverse(request, name)

However, this would have hidden some of the insights on how publishTraverse()

should behave.

. Line 22–26: Here we try to look up the name without caring about the case. This
works both ways. The keys of the container and the provided name are converted
to all lower case. We then compare the two. If a match is found, the value for

CHAPTER 35 CHANGING TRAVERSAL BEHAVIOR

35.3. UNIT TESTS
347

the key is returned. Note that we need to keep the original key (having upper and
lower case), since the container still manages the keys in a case-sensitive manner.

The traverser is registered via ZCML simply using the zope:view directive:

1 <view

2 for=".ICaseInsensitiveFolder"

3 type="zope.publisher.interfaces.browser.IBrowserRequest"

4 factory=".CaseInsensitiveFolderTraverser"

5 provides="zope.publisher.interfaces.browser.IBrowserPublisher"

6 permission="zope.Public"

7 />

. Line 2: Register the view only for case-insensitive folders.

. Line 3: Make sure that this traverser is only used for browser requests.

. Line 4: It is very important to specify the provided interface here, so that we know
that the object is a browser publisher and implements the sufficient interfaces for
traversal.

. Line 5: We want to allow everyone to be able to traverse through the folder, since
it does not you anyone any special access. All methods of the returned object are
protected separately anyways.

To register the product with Zope 3, add a file named insensitivefolder-configure.

zcml to package-includes. It should contain the following line:

1 <include package="book.insensitivefolder" />

Once you restart Zope 3, the new folder should be available to you.

35.3 Step III: Unit Tests

Unit tests can be quickly written, since we can make use of the original container
traverser’s unit tests and setup. Open a tests.py file to insert the following test
code.

1

�
�������� unittest

2 �
����� zope.app.container.tests
�
�������
 test_containertraverser

3 �
����� book.insensitivefolder
�
��� ���� CaseInsensitiveFolderTraverser

4

5
��������� Container(test_containertraverser.TestContainer):

6

7 ��	�� keys(� 	 � �):
8 �
	������� � 	 � � .__dict__.keys()
9

10 ��	�� __getitem__(� 	 � � , name):

11 �
	������� � 	 � � .__dict__[name]
12

348
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

13
�
������� InsensitiveCaseTraverserTest(test_containertraverser.TraverserTest):

14

15 ��	�� _getTraverser(� 	 � � , context, request):

16 ��	������� CaseInsensitiveFolderTraverser(context, request)

17

18 ��	�� _getContainer(� 	 � � , **kw):

19 ��	������� Container(**kw)

20

21 ��	�� test_allLowerCaseItemTraversal(� 	 � �):
22

� 	 � � .assertEquals(
23

� 	 � � .traverser.publishTraverse(� 	 � � .request, ’foo’),

24
� 	 � � .foo)

25
� 	 � � .assertEquals(

26
� 	 � � .traverser.publishTraverse(� 	 � � .request, ’foO’),

27
� 	 � � .foo)

28

29 �
	�� test_suite():

30 ��	������� unittest.TestSuite((

31 unittest.makeSuite(InsensitiveCaseTraverserTest),

32))

33

34

�
� __name__ == ’__main__’:

35 unittest.main(defaultTest=’test_suite’)

. Line 7–11: The original test container has to be extended to support keys()

and getitem (), since both of these methods are need for the case-insensitive
traverser.

. Line 15–16: A setup helper method that returns the traverser. This method is
used in the setUp() method to construct the environment.

. Line 18–19: Another helper method that allows us to specify a custom container.
This method is used in the setUp() method to construct the environment.

. Line 21–27: Most of the functionality is already tested in the base test case. Here
we just test that the case of the letters is truly ignored.

. Line 29–35: This is the usual unit test boilerplate.

As always, the tests are directly executable, once Zope 3 is in your path.

35.4 Step IV: Functional Tests

Before we let the code be run in the wild, we should test it some more in a fairly
contained environment. The following functional test is pretty straight forward and
mimics the unit tests.

Open a file called ftests.py and add

CHAPTER 35 CHANGING TRAVERSAL BEHAVIOR

35.4. FUNCTIONAL TESTS
349

1

�
�������� unittest

2 �
����� zope.app.tests.functional
�
�������
 BrowserTestCase

3 �
����� zope.publisher.interfaces
�
�������
 NotFound

4

5
��������� TestCaseInsensitiveFolder(BrowserTestCase):

6

7 ��	�� testAddCaseInsensitiveFolder(� 	 � �):
8 # Step 1: add the case insensitive folder

9 response = � 	 � � .publish(
10 ’/+/action.html’,

11 basic=’mgr:mgrpw’,

12 form={’type_name’: book.CaseInsensitiveFolder’,

13 ’id’: u’cisf’})

14 self.assertEqual(response.getStatus(), 302)

15 self.assertEqual(response.getHeader(’Location’),

16 ’http://localhost/@@contents.html’)

17 # Step 2: add the file

18 response = self.publish(’/cisf/+/action.html’,

19 basic=’mgr:mgrpw’,

20 form={’type_name’: u’zope.app.content.File’,

21 ’id’: u’foo’})

22 self.assertEqual(response.getStatus(), 302)

23 self.assertEqual(response.getHeader(’Location’),

24 ’http://localhost/cisf/@@contents.html’)

25 # Step 3: check that the file is traversed

26 response = self.publish(’/cisf/foo’)

27 self.assertEqual(response.getStatus(), 200)

28 response = self.publish(’/cisf/foO’)

29 self.assertEqual(response.getStatus(), 200)

30 self.assertRaises(NotFound, self.publish, ’/cisf/bar’)

31

32

33 def test_suite():

34 return unittest.TestSuite((

35 unittest.makeSuite(TestCaseInsensitiveFolder),

36))

37

38 if __name__ == ’__main__’:

39 unittest.main(defaultTest=’test_suite’)

There is really nothing interesting about this test. If you are not familiar with
functional tests, read the corresponding chapter in the “Writing Tests” part of the
book.

In Zope 2 it was common to change the traversal behavior of objects and container-
ish objects. In Zope 3, however, you will not need to implement your own traversers,
since most of the time it is better and easier to write a custom IReadContainer

content component.
The complete code of this product can be found at book/insensitivefolder.

It was originally written by Vincenzo Di Somma and has been maintained by many
developers throughout the development of Zope 3.

350
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

Exercises

1. The current implementation will only allow case-insensitive lookups through
browser requests. But what about

(a) XML-RPC and WebDAV, and

(b) FTP?

Extend the existing implementations to support these protocols as well.

2. You might have already noticed that the implementation of this traverser is not
quiet perfect and it might actually behave differently on various systems. Let’s
say you have an object called “Foo” and “foo”. The way guessTraverse()

is implemented, it will use the key that is listed first in the list returned by
keys(). However, the order the keys returned varies from system to system.
Fix the behavior so that the behavior (whatever you decide it to be) is the same
on every system. (Hint: This is a two line fix.)

3. It might be desirable, to change the policy of the name lookup a bit by giving
exact key matches preference to case-insensitive matches. Change the traverser
to implement this new policy.

CHAPTER 36

REGISTERING NEW WEBDAV
NAMESPACES

Difficulty

Sprinter

Skills

• You should know Zope 3’s component architecture.

• Be familiar with the WebDAV standard as proposed in RFC 2518.

Problem/Task

WebDAV, as an advanced application of HTTP and XML, supports an unlimited
amount meta-data to be associated with any resource. This, of course, is non-sense
for Zope related applications and could potentially make Zope vulnerable to DoS
attacks, since someone could try to add huge amounts of meta-data to a resource. A
namespace registry was created that manages the list of all available namespaces per
content type (interface). This chapter will show you how to enable a new namespace
called photo for an IImage object.

Solution

351

352
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

36.1 Introduction

As mentioned above, WebDAV’s unlimited support for XML namespaces make Web-
DAV very powerful but also provide an easy target for malicious attacks if not prop-
erly controlled. Therefore we would like to control, an object’s WebDAV names-
paces as well as the permissions required to access and modify the the namespace’s
attributes. Furthermore, there is a desire to integrate the namespace data and han-
dling into Zope 3 as much as possible, so that other components could easily reuse
the information.

First of all, namespaces with attributes are really just schemas, so that we are
able to describe a namespace using the Zope 3 zope.schema package. Now we
are even able to write WebDAV widgets for the schema field types. Adapters are
used to connect a WebDAV namespace to a content type or any other object. Using
schemas, widgets and adapters we are able to completely describe the namespace
and the storage of the data.

The last step of the process is to register the schema as a WebDAV namespace.
This is done by registering the schema as a IDAVNamespace, where the name of
the utility is the WebDAV namespace URI. However, the dav ZCML namespace
provides a nice directive, provideInterface, which registers the utility for you.

If one wants to provide a new namespace for a given object, the main task for
the developer consists of creating a schema for the namespace and to provide an
adapter from the object to the schema. The goal of this chapter will be to provide
some additional meta-data information about images that have been taken by digital
cameras – images that are photos.

Let’s create a new package called photodavns in 〈ZOPE3〉/src/book.

36.2 Step I: Creating the Namespace Schema

The schema of the photo should contain some information that are usually provided
by the camera. To implement the schema, open a new file interfaces.py and add
the following code.

1 ������� zope.interface
�
�������� Interface

2 ������� zope.schema
�
��� ���� Text, TextLine, Int, Float

3

4 photodavns = "http://namespaces.zope.org/dav/photo/1.0"

5

6
�
������� IPhoto(Interface):

7 """A WebDAV namespace to store photo-related meta data.

8

9 The ’IPhoto’ schema/namespace can be used in WebDAV clients to determine

10 information about a particular picture. Obviously, this namespace makes

11 only sense on Image objects.

12 """

CHAPTER 36 REGISTERING NEW WEBDAV NAMESPACES

36.3. IMPLEMENTING THE IPhoto TO IImage ADAPTER
353

13

14 height = Int(

15 title=u"Height",

16 description=u"Specifies the height in pixels.",

17 min=1)

18

19 width = Int(

20 title=u"Width",

21 description=u"Specifies the width in pixels.",

22 min=1)

23

24 equivalent35mm = TextLine(

25 title=u"35mm equivalent",

26 description=u"The photo’s size in 35mm is equivalent to this amount")

27

28 aperture = TextLine(

29 title=u"Aperture",

30 description=u"Size of the aperture.")

31

32 exposureTime = Float(

33 title=u"Exposure Time",

34 description=u"Specifies the exposure time in seconds.")

. Line 4: The name of the namespace is also part of the interface, so declare it here.
The name must be a valid URI, otherwise the configuration directive that registers
the namespace will fail.

There is nothing more of interest in this code; at this time you should be very
comfortable with interfaces and schemas. If not, please read the chapters on inter-
faces and schemas.

36.3 Step II: Implementing the IPhoto to IImage Adapter

Next we need to implement the adapter, which will use annotations to store
the attribute data. That means that the IImage object must also implement
IAttributeAnnotable. With the knowledge of the annotations chapter, the fol-
lowing implementation should seem simple. Place it in the init .py file of the
package.

1 �
����� persistent.dict
�
�������� PersistentDict

2 �
����� zope.interface
�
��� ���� implements

3 �
����� zope.schema
�
� � ���� getFieldNames

4 �
����� zope.app.annotation.interfaces
�
��� ���� IAnnotations

5 �
����� zope.app.file.interfaces
�
�������
 IImage

6 �
����� interfaces
�
� � ���
 IPhoto, photodavns

7

8
��������� ImagePhotoNamespace(object):

9 """Implement IPhoto namespace for IImage."""

10

11 implements(IPhoto)

12 __used_for__ = IImage

354
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

13

14 ��	�� __init__(� 	 � � , context):

15
� 	 � � .context = context

16
� 	 � � ._annotations = IAnnotations(context)

17

�
� � �� � 	 � � ._annotations.get(photodavns):

18
� 	 � � ._annotations[photodavns] = PersistentDict()

19

20 ��	�� __getattr__(� 	 � � , name):

21

�
� � �� name

�
� getFieldNames(IPhoto):

22 � �
� � 	 AttributeError, "’%s’ object has no attribute ’%s’" %(

23
� 	 � � .__class__.__name__, name)

24 ��	������� � 	 � � ._annotations[photodavns].get(name, None)

25

26 ��	�� __setattr__(� 	 � � , name, value):

27

�
� � �� name

�
� getFieldNames(IPhoto):

28 �
	������� super(ImagePhotoNamespace, � 	 � �).__setattr__(name, value)

29 field = IPhoto[name]

30 field.validate(value)

31
� 	 � � ._annotations[photodavns][name] = value

. Line 14–18: During initialization, get the annotations for the IImage object and
create a dictionary where all the attribute values will be stored. Make sure that
the dictionary is a PersistentDict instance, since otherwise the data will not be
stored permanently in the ZODB.

. Line 20–24: If the name of the requested attribute corresponds to a field in IPhoto

then we get the value from the annotations otherwise fail with an attribute error.

. Line 26–31: We want to set attributes differently, if they are fields in the IPhoto

schema. If the name is a field, then the first task is to get the field which is then
used to validate the value. This way we can enforce all specifications provided
for the fields in the schema. If the validation passes, then store the value in the
annotations.

36.4 Step III: Unit-Testing and Configuration

For the unit tests of the adapter, we use doc tests. So we extend the adapter’s class
doc string to become:

1 """Implement IPhoto namespace for IImage.

2

3 Examples:

4

5 >>> from zope.app.file.image import Image

6 >>> image = Image()

7 >>> photo = IPhoto(image)

8

9 >>> photo.height is None

10 True

11 >>> photo.height = 768

CHAPTER 36 REGISTERING NEW WEBDAV NAMESPACES

36.4. UNIT-TESTING AND CONFIGURATION
355

12 >>> photo.height

13 768

14 >>> photo.height = u’100’

15 Traceback (most recent call last):

16 ...

17 WrongType: (u’100’, (<type ’int’>, <type ’long’>))

18

19 >>> photo.width is None

20 True

21 >>> photo.width = 1024

22 >>> photo.width

23 1024

24

25 >>> photo.equivalent35mm is None

26 True

27 >>> photo.equivalent35mm = u’41 mm’

28 >>> photo.equivalent35mm

29 u’41 mm’

30

31 >>> photo.aperture is None

32 True

33 >>> photo.aperture = u’f/2.8’

34 >>> photo.aperture

35 u’f/2.8’

36

37 >>> photo.exposureTime is None

38 True

39 >>> photo.exposureTime = 0.031

40 >>> photo.exposureTime

41 0.031

42

43 >>> photo.occasion

44 Traceback (most recent call last):

45 ...

46 AttributeError: ’ImagePhotoNamespace’ object has no attribute ’occasion’

47 """

You can see that the example code covers pretty much every possible situation.

. Line 5–7: Use the standard Image content component as context for the adapter.
Then we use the component architecture to get the adapter. This already tests
whether the constructor – which is not trivial in this case – does not cause an
exception.

. Line 14–17: Test that the validation of the field’s values works correctly.

. Line 43–46: We also need to make sure that no non-existing attributes can be
assigned a value.

To make the tests runnable, add a file named tests.py and add the following
test code.

1

�
�������� unittest

2 �
����� zope.interface
�
��� ���� classImplements

3 �
����� zope.testing.doctestunit
�
�������
 DocTestSuite

356
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

4 ������� zope.app.annotation.interfaces
�
�������� IAttributeAnnotatable

5 ������� zope.app.file.image
�
��� ���� Image

6 ������� zope.app.file.interfaces
�
� � ���
 IImage

7 ������� zope.app.tests
�
�������� ztapi, placelesssetup, setup

8 ������� book.photodavns.interfaces
�
� � ���� IPhoto

9 ������� book.photodavns
�
�������
 ImagePhotoNamespace

10

11 �
	�� setUp(test):

12 placelesssetup.setUp()

13 ztapi.provideAdapter(IImage, IPhoto, ImagePhotoNamespace)

14 setup.setUpAnnotations()

15 classImplements(Image, IAttributeAnnotatable)

16

17 �
	�� test_suite():

18 ��	������� unittest.TestSuite((

19 DocTestSuite(’book.photodavns’,

20 setUp=setUp, tearDown=placelesssetup.tearDown),

21))

22

23

�
� __name__ == ’__main__’:

24 unittest.main(defaultTest=’test_suite’)

. Line 13–15: We need to setup some additional adapters to make the tests work.
First, of course, we need to register our adapter. Then we also need to pro-
vide the AttributeAdapter, so that the ImagePhotoNamespace will find the
annotations for the image. Luckily the zope.app.tests.setup module has
a convenience function to do that. Finally, since Image does not implement
IAttributeAnnotable directly (it is usually done in a ZCML directive), we need
to declare it manually for the unit tests.

. 19–20: The setUp() and tearDown() functions for a doc test can be passed as
keyword arguments to the DocTestSuite constructor.

From the Zope 3 root directory, you can now execute the tests using

python test.py -vpu --dir /src/book/photodavns

36.5 Step IV: Registering the WebDAV schema

As mentioned before, registering a new WebDAV namespace is a simple two step
process. First, we declare the IPhoto schema to be a WebDAV namespace and then
we register an adapter for it, making it available for images. In the file configure.

zcml add the following two directives:

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:dav="http://namespaces.zope.org/dav">

4

5 <dav:provideInterface

CHAPTER 36 REGISTERING NEW WEBDAV NAMESPACES

36.6. FUNCTIONAL TESTING
357

6 for="http://namespaces.zope.org/dav/photo/1.0"

7 interface=".interfaces.IPhoto" />

8

9 <adapter

10 provides=".interfaces.IPhoto"

11 for="zope.app.file.interfaces.IImage"

12 permission="zope.Public"

13 factory=".ImagePhotoNamespace"

14 trusted="True"/>

15

16 </configure>

. Line 5–7: The for attribute specifies the name of the schema as it will be available
via WebDAV and interface specifies the Zope schema for this namespace.

. Line 9–14: Register the adapter from IImage to IPhoto. Note that the adapter
must be trusted, since we are manipulating annotations and need a bare object to
be passed as the context of the adapter.

To register the new namespace with the Zope 3 framework, add a file called
photons-configure.zcml to package-includes having the following line:

1 <include package="book.photodavns" />

You can now restart Zope 3 to make the namespace available.

36.6 Step V: Functional Testing

Now let’s see our new namespace in action. Unfortunately, I am not aware of any
WebDAV tools that can handle any namespace in a generic fashion. For this reason
we will use functional tests for confirming the correct behavior.

In the first step we will test whether PROPFIND will (a) understand the namespace
and (b) return the right values from the annotation of the image. Here is the complete
code for the functional test, which you should place in a file called ftests.py.

1

�
�������� unittest

2 �
����� transaction
�
� � ���� get_transaction

3 �
����� xml.dom.minidom
�
�������� parseString as parseXML

4 �
����� zope.app.file.image
�
� � ���� Image

5 �
����� zope.app.dav.ftests.dav
�
�������� DAVTestCase

6 �
����� book.photodavns.interfaces
�
� � ���
 IPhoto

7 �
����� book.photodavns
�
�������� ImagePhotoNamespace

8

9 property_request = ’’’\

10 <?xml version="1.0" encoding="utf-8" ?>

11 <propfind xmlns="DAV:">

12 <prop xmlns:photo="http://namespaces.zope.org/dav/photo/1.0">

13 <photo:height />

14 <photo:width />

15 <photo:equivalent35mm />

358
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

16 <photo:aperture />

17 <photo:exposureTime />

18 </prop>

19 </propfind>

20 ’’’

21

22 data = {’height’: 768, ’width’: 1024, ’equivalent35mm’: u’41 mm’,

23 ’aperture’: u’f/2.8’, ’exposureTime’: 0.031}

24

25
�
������� IPhotoNamespaceTests(DAVTestCase):

26

27 ��	�� createImage(� 	 � �):
28 img = Image()

29 photo = ImagePhotoNamespace(img)

30 � ��� name, value
�
� data.items():

31 setattr(photo, name, value)

32 root = � 	 � � .getRootFolder()
33 root[’img.jpg’] = img

34 get_transaction().commit()

35

36 ��	�� test_propfind_fields(� 	 � �):
37

� 	 � � .createImage()
38 response = � 	 � � .publish(
39 ’/img.jpg/’,

40 env={’REQUEST_METHOD’:’PROPFIND’,

41 ’HTTP_Content_Type’: ’text/xml’},

42 request_body=property_request)

43
� 	 � � .assertEqual(response.getStatus(), 207)

44 xml = parseXML(response.getBody())

45 node = xml.documentElement.getElementsByTagName(’prop’)[0]

46

47 � ��� name, value
�
� data.items():

48 attr_node = node.getElementsByTagName(name)[0]

49
� 	 � � .assertEqual(attr_node.firstChild.data, unicode(value))

50

51 �
	�� test_suite():

52 ��	������� unittest.TestSuite((

53 unittest.makeSuite(IPhotoNamespaceTests),

54))

55

56

�
� __name__ == ’__main__’:

57 unittest.main(defaultTest=’test_suite’)

. Line 9–20: This is the XML request that will be sent to the Zope 3 WebDAV
server. Note that we need to make sure that the first line starts at the beginning
of the string, since otherwise the XML parser causes a failure. In the string, we
simply request explicitly all attributes of the photo namespace.

. Line 22–23: Here is the data that is being setup in the annotation and that we
expect to receive from the PROPFIND request.

. Line 27–34: This helper method creates an image and sets the photo data on the
image, so that we can access it. Note that we have to commit a transaction at this
point, otherwise the image will not be found in the ZODB.

CHAPTER 36 REGISTERING NEW WEBDAV NAMESPACES

36.6. FUNCTIONAL TESTING
359

. 36–49: First we create the image so that it will be available. Then we just publish
our request with a carefully constructed environment. To make the request a
PROPFIND call, you need to create a environment variable named REQUEST METHOD.
Since we send XML as the body of the request, we need to set the content type to
“text/xml”, which is done with a HTTP Content Type environment entry.

The answer we receive from the server should be 207, which signalizes that the
PROPFIND call was successful and the data is enclosed in the body. We then parse
the XML body simply using Python’s built-in xml.dom.minidom package. The
rest of the test code simply uses DOM to ensure that all of the requested attributes
were returned and the data is correct.

Once you are done with the functional test, you can run it using the usual
method:

python test.py -vpf --dir src/book/photodavns

The -f option executes only functional tests. Functional tests are recognized by
their module name, which must be ftests in comparison to tests for regular unit
tests.

360
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

Exercises

1. Implement height and width in a way that it uses the IImage’s getImageSize()

method to get the values.

2. JPEG files support EXIF meta-data tags that often already contain the data
provided by the IPhoto interface, so change the adapter in a way that it
first tries to retrieve the data from the image before using annotation data.
See http://topo.math.u-psud.fr/∼bousch/exifdump.py for a Python im-
plementation of a EXIF tag retriever.

CHAPTER 37

USING TALES OUTSIDE OF PAGE

TEMPLATES

Difficulty

Newcomer

Skills

• You should be familiar with TALES and know how TALES expressions are used
in Zope Page Templates.

• Python is required as usual. Being familiar with the os and os.path standard
module is of advantage, since we use the directory hierarchy as data source in
the chapter.

Problem/Task

As you probably know by now, Zope 3 comes with a lot of technologies and many
of them can be used outside their common environment. TALES expressions are no
exception. One can use TALES in any application without much overhead, as this
chapter will demonstrate.

Solution

361

362
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

37.1 Introduction

Throughout the book we used Page Templates and therefore TALES expressions
extensively. You might have already thought that using TALES outside templates
might be quiet useful, either to provide simple access to objects via path expressions,
provide users to enter Python code in a controlled environment or simply to specify
logical expressions. The latter use case was frequently applied in Zope 2 applications.

What is there to know about running TALES in an application? TALES mainly
consists of three concepts, the expression engine, expressions and contexts.

The expression engine is the object that can compile the expression code and
returns an expression object that can be executed/called. It is also responsible for
the setup. Here you can register the expressions that should be available in TALES
and register objects via names that are always available as base objects. A good
example of building up a simple engine is given in the tales.engine module.

An expression object is able to handle certain input. The most common one is the
path expression (zope.tales.expressions.PathExpr), which takes a filesystem or
URL-like path and tries to resolve it to a Python object by traversing through the
path segments. Another one is the string expression (zope.tales.expressions.

StringExpr), which simply returns a string, but can contain path expressions, for
example “ string:Theobjectidis\$\{context/id\}.”. A final common expression
you see a lot is the Python expression (zope.tales.expressions.PythonExpr),
which is simply able to execute the given expression code as Python and returns the
output of the operation. In the “Developing a new TALES expression” chapter I will
show you how to create a new TALES expression.

The third component, the context (zope.tales.tales.Context), is responsible
for providing run-time variables and information for the execution of an expression.
When you execute an expression, you always have to provide a context. This object
has many other methods, but they are mainly available for TAL and are not required
for understanding TALES.

By the way, TALES stands for “Template Attribute Language – Expression Syn-
tax”.

37.2 The TALES Filesystem Runner

When I was thinking about a concise example to present TALES expressions, I drew
blank for months. Finally I thought about a TALES runner, a program that would
simply execute TALES expressions and display the result. But that would be really
boring without having any data that can be used for the path expressions and so on.

CHAPTER 37 USING TALES OUTSIDE OF PAGE TEMPLATES

37.2. THE TALES FILESYSTEM RUNNER
363

Then I thought about the filesystem, which would provide a great tree with lots of
nodes.

So our first task then is to provide some objects which represent directories and
regular files (and ignores other file types). Directories should be simple read-only
mapping objects (i.e. behave like dictionaries). Okay that should not be too hard to
do. Open a new file called talesrunner.py and add the following two classes.

1

�
�������� os

2

3
��������� Directory(object):

4

5 ��	�� __init__(� 	 � � , path):

6
� 	 � � .path = path

7
� 	 � � .filename = os.path.split(path)[1]

8

9 ��	�� __getitem__(� 	 � � , key):

10 path = os.path.join(� 	 � � .path, key)

11

�
� � �� os.path.exists(path):

12 � �
� � 	 KeyError, "No file ’%s’ in ’%s’" %(key, � 	 � � .filename)

13 	 �
�
� os.path.isdir(path):

14 value = Directory(path)

15 	 �
� 	 :
16 value = File(path)

17 �
	������� value

18

19 ��	�� get(� 	 � � , key, default=None):

20 ���� :
21 �
	������� � 	 � � .__getitem__(key)
22 	 � � 	 �� KeyError:

23 �
	������� default

24

25 ��	�� keys(� 	 � �):
26 �
	������� os.listdir(� 	 � � .path)
27

28 ��	�� items(� 	 � �):
29 �
	������� [(key, � 	 � � [key]) ����� key

�
� � 	 � � .keys()]

30

31 ��	�� values(� 	 � �):
32 �
	������� [value � ��� key, value

�
� � 	 � � .items()]

33

34

35
��������� File(object):

36

37 ��	�� __init__(� 	 � � , path):

38
� 	 � � .path = path

39
� 	 � � .filename = os.path.split(path)[1]

40

41 ��	�� read(� 	 � �):
42 �
	������� open(� 	 � � .path, ’r’).read()

As you can notice, I did not worry about writing interfaces for this demo. Also,
these are really simple implementations and I did not include anything advanced,
like creation and modification date, size or permissions.

. Line 7: Let’s always provide the name of the directory.

364
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

. Line 9–17: If the requested file does not exist in the directory, raise a KeyError

saying that the file does not exist. Using the os.path module, we can easily de-
termine whether a given key represents a file or directory and create a correspond-
ing object for it accordingly.

. 24–25: The keys of a directory are simply all files it contains.

. 34–41: There is not much we can say about a file, so we want to at least provide
a method that shows its data.

Now that we have a way of providing a nice data tree, we can implement the
TALES runner. Simply add the following few lines to the same file:

1

�
�������
 sys

2 ������� zope.tales.engine
�
� � ���
 Engine

3 ������� zope.tales.tales
�
� � ���
 Context

4

5

�
� __name__ == ’__main__’:

6 path = sys.argv[1]

7 context = Context(Engine, {’root’: Directory(path)})

8 �
� � � 	 1 == 1:

9 expr = raw_input("TALES Expr: ")

10

�
� expr == ’exit’:

11 ����	 ���

12
� � :
13 bytecode = Engine.compile(expr)

14 ���
�
�� bytecode(context)

15 	 � � 	 �� Exception, error:

16 ���
�
�� error

. Line 2–3: For this example the standard engine and context objects are fine. If
you want to create your own Engine, because you want to reduce the number of
available expression types, you can just look at zope.tales.engine to see how
the engine was created. It is only a simple method that is easily understandable.

. Line 6: When executed, the runner expects a single command line argument, which
is the path to the directory that is being used as root.

. Line 7: Create a context for the TALES expressions. Make the root directory
available under the name root.

. Line 13–14: One can easily compile any expression by calling Engine.compile().
The bytecode object is simply an instance of one of the registered expressions.
I pointed out before that expressions are executed simply by calling them. The
call () method expects a context, so we pass one in. This will ensure that

root is available during the execution.

That was easy, wasn’t it? Note that you often do not need to mess with Context.
On the other hand, it is pretty reasonable to expect that people will change the

CHAPTER 37 USING TALES OUTSIDE OF PAGE TEMPLATES

37.2. THE TALES FILESYSTEM RUNNER
365

engine, for example to exclude the python expression, since it is simply too powerful
for some applications. Conversely, sometimes you might want to add additional
expression types to an engine.

Once you have set ZOPE3/src as part of your Python path, you can execute the
runner using

python talesrunner.py /

which uses the Unix root directory as the root for the TALES expressions. Here is
an example of a session.

$ python talesrunner.py /

TALES Expr: root/keys

[’boot’, ’dev’, ’etc’, ’usr’, ’lib’, ’bin’, ’opt’, ...]

TALES Expr: exists: root/us

0

TALES Expr: exists: root/usr

1

TALES Expr: root/usr

<__main__.Directory object at 0x4036e12c>

TALES Expr: root/usr/filename

usr

TALES Expr: string: This is the ${root/usr/path} directory.

This is the /usr directory.

TALES Expr: root/etc/motd/read

Welcome!

TALES Expr: python: root[’usr’].keys()

[’share’, ’bin’, ’lib’, ’libexec’, ’include’, ...]

TALES Expr: exit

366
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

Exercises

1. Include file status information for files and directories. See the os.stat module
for details on how to get the information.

2. Implement your own engine that does not support python and defer expres-
sions.

CHAPTER 38

DEVELOPING A NEW TALES
EXPRESSION

Difficulty

Contributer

Skills

• Solid knowledge about TAL and TALES as well as page templates is required.

• Detailed insight in Zope 3’s RDB integration is of advantage.

• Basic API knowledge of the ExpressionEngine and Context components is
desirable. Optional.

Problem/Task

TAL in combination with TALES provides an incredibly powerful templating
system for many types of applications (not only Zope). However, a templating system
must be able to adjust to the needs of its various uses. Zope makes extensive use of
this flexibility and implements custom versions of the ExpressionEngine , Context

and the expression components.
A way of extending TAL/TALES is to provide additional expressions . Existing

expressions include python, string, and path (which is the implicit default). In
this chapter we will create an expression that evaluates SQL expressions and returns
the result.

Solution

367

368
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

The goal of this chapter is to be able to have TAL code like

1 <html tal:define="rdb string:zope.da.PsycopgDA; dsn string:dbi://test">

2 <body>

3

4 <li tal:repeat="contact sql: SELECT * FROM contact">

5 <b tal:content="contact/name" />

6

7

8 </body>

9 </html>

to be evaluated to

1 <html>

2 <body>

3

4 [Contact Name 1]

5 [Contact Name 2]

6 ...

7

8 </body>

9 </html>

. Line 1: We tell the system that we want a connection to a PostGreSQL database
via the psycopg database adapter, which you can download online. We also tell
the system that we would like to connect anonymously to a database called test.
Alternatively to always specifying the database and the DSN, it will be helpful to
be able to specify a Zope Database Adapter object directly:

1 <html tal:define="sql_conn string:psycopg_test">

2 ...

3 </html>

. Line 4: Here we can see that generally an SQL Expression should return a result
set containing the various rows bundled as result objects. This is really fortunate,
since this is exactly the way Zope database connections return the data anyways.

It should be of course also possible to insert path expressions into the SQL, so
the SQL can be dynamic:

1 <ul tal:define="name string:Stephan; table string:contact">

2 <li tal:repeat="

3 contact sql: SELECT * FROM ${table} WHERE name = ’${name}’">

4 <b tal:content="contact/name" />

5

6

Note that expression code should also be responsible for quoting string input
correctly.

Next let’s have a closer look at the expression component itself. A TALES expres-
sion is actually a very simple object, having only a constructor and a call method:

CHAPTER 38 DEVELOPING A NEW TALES EXPRESSION

38.1. IMPLEMENTING THE SQL EXPRESSION
369

• The constructor takes three arguments, name, expr and egine. The name is
actually not used and can simply be ignored. The expr contains the string that
is being evaluated. It contains basically the users “source code”. The engine

is an instance of the ExpressionEngine component, which manages all of the
different expressions.

• The call () takes only one argument, namely the econtext. The expres-
sion context provides expression-external, runtime information, such as declared
variables. This allows the expression to behave differently in different contexts
and accept custom user input.

One should probably also implement the str and repr methods, but they
are for cosmetic and debugging purposes only, so they are not that interesting.

38.1 Step I: Implementing the SQL Expression

When I originally wrote the code, I noticed that the SQL expression is almost iden-
tical to the string expression, except that instead of returning a string from the
call () method, we evaluate computed string as an SQL statement and return

the result. This means that we can safely use the StringExpr class as a base for
out expression.

While all other code samples of this book are located in the book package, this
particular package became so popular that it was added to the Zope trunk, though
it is not distributed with Zope X3.0. Therefore, create a package called sqlexpr in
zope.app. Inside, create a module called sqlexpr.py and add the following code:

1 �
����� zope.component.exceptions
�
�������
 ComponentLookupError

2 �
����� zope.interface
�
��� ���� implements

3 �
����� zope.tales.interfaces
�
��� ���� ITALESExpression

4 �
����� zope.tales.expressions
�
��� ���� StringExpr

5 �
����� zope.app
�
�������
 zapi

6 �
����� zope.app.exception.interfaces
�
��� ���� UserError

7 �
����� zope.app.rdb
�
� � ���� queryForResults

8 �
����� zope.app.rdb.interfaces
�
�������� IZopeDatabaseAdapter, IZopeConnection

9

10
��������� ConnectionError(UserError):

11 """This exception is raised when the user did not specify an RDB

12 connection."""

13

14
��������� SQLExpr(StringExpr):

15 """SQL Expression Handler class"""

16

17 ��	�� __call__(� 	 � � , econtext):

18

�
� econtext.vars.has_key(’sql_conn’):

19 conn_name = econtext.vars[’sql_conn’]

20 adapter = zapi.queryUtility(IZopeDatabaseAdapter, conn_name)

21

�
� adapter

� � None:

22 � �
� � 	 ConnectionError, \

370
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

23 ("The RDB DA name, ’%s’ you specified is not "

24 "valid." %conn_name)

25 	 �
�
� econtext.vars.has_key(’rdb’) � ��� econtext.vars.has_key(’dsn’):

26 rdb = econtext.vars[’rdb’]

27 dsn = econtext.vars[’dsn’]

28 ���� :
29 adapter = zapi.createObject(None, rdb, dsn)

30 	 � � 	 �� ComponentLookupError:

31 � �
� � 	 ConnectionError, \

32 ("The factory id, ’%s’, you specified in the ‘rdb‘ "

33 "attribute did not match any registered factory." %rdb)

34

35

�
� � �� IZopeDatabaseAdapter.providedBy(adapter):

36 � �
� � 	 ConnectionError, \

37 ("The factory id, ’%s’, you specifed did not create a "

38 "Zope Database Adapter component." %rdb)

39 	 ��� 	 :
40 � �

� � 	 ConnectionError, \

41 ’You did not specify a RDB connection.’

42

43 connection = adapter()

44 vvals = []

45 � ��� var
�
� � 	 � � ._vars:

46 v = var(econtext)

47

�
� isinstance(v, (str, unicode)):

48 v = sql_quote(v)

49 vvals.append(v)

50 query = � 	 � � ._expr % tuple(vvals)

51 ��	������� queryForResults(connection, query)

52

53 ��	�� __str__(� 	 � �):
54 ��	������� ’sql expression (%s)’ % ‘ � 	 � � ._s‘
55

56 ��	�� __repr__(� 	 � �):
57 ��	������� ’<SQLExpr %s>’ % ‘ � 	 � � ._s‘
58

59

60 �
	�� sql_quote(value):

61

�
� value.find("\’") >= 0:

62 value = "’’".join(value.split("\’"))

63 ��	������� "%s" %value

. Line 5–8: Most TALES expressions do not depend on zope.app, which makes
them usable outside of Zope. However, for this expression we use much of the Zope
relational infrastructure, so that this particular expression depends on zope.app.

. Line 10–12: Of course it is not guaranteed that the user correctly specified the
required variables rdb/ dsn or sql conn. If an error occurs while retrieving
a Zope RDB connection from this data, then this exception is raised. It is a
UserError, since these exceptions are not due to a system failure but wrong user
input.

. Line 18–45: It is necessary to figure out, whether we actually have the right
variables defined to create/use a database connection.

CHAPTER 38 DEVELOPING A NEW TALES EXPRESSION

38.2. PREPARING AND IMPLEMENTING THE TESTS
371

• Line 18–24: A Zope Database Adapter was specified, so we try to look it up.
If no adapter was found, raise a ConnectionError exception.

• Line 25–38: If the rdb/ dsn pair is specified, then we assume the rdb is
the factory id and we try to initialize the database adapter using the dsn.
If the rdb value is not a valid factory id, we raise a ConnectionError (line
32–34). If the created object is not a IZopeDatabaseAdapter then also raise
a ConnectionError (line 36–38).

• Line 39–41: None of the two options was specified, so raise an error.

. Line 43: Get a connection from the database adapter by calling it.

. Line 44–49: First we evaluate all the path expressions. We then quote all string/u-
nicode values.

. Line 50–51: Make final preparations by inserting the path expression results in the
query, then we execute the query and return the result.

. Line 60–63: The SQL quoting function simply replaces all single quotes with two
single quotes, which is the correct escaping for this character.

That’s it. The main code for the expression has been written. Now we only need
to add the expression to the Zope TAL engine. To do that, create a configuration
file and add the following directive:

1 <configure

2 xmlns="http://namespaces.zope.org/zope"

3 xmlns:tales="http://namespaces.zope.org/tales"

4 i18n_domain="zope"

5 >

6

7 <tales:expressiontype

8 name="sql"

9 handler=".sqlexpr.SQLExpr"

10 />

11

12 </configure>

To insert the new expression to the Zope 3 framework, add a file called
sqlexpr-configure.zcml to package-includes having the following line:

1 <include package="zope.app.sqlexpr" />

38.2 Step II: Preparing and Implementing the tests

Writing tests for this code is actually quiet painful, since we have to simulate an entire
database connection and result objects. Furthermore we have to bring up the Com-
ponent Architecture, since the RDB connection is created using the createObject()

function, which uses factories. In tests.py add:

372
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

1

�
�������
 unittest

2

3 ������� zope.interface
�
�������� implements

4 ������� zope.component.factory
�
�������� Factory

5 ������� zope.component.interfaces
�
� � ���
 IFactory

6 ������� zope.component.tests.placelesssetup
�
� � ���� PlacelessSetup

7 ������� zope.tales.tests.test_expressions
�
� � ���
 Data

8 ������� zope.tales.engine
�
� � ���
 Engine

9

10 ������� zope.app.tests
�
�������� ztapi

11 ������� zope.app.rdb.interfaces
�
�������
 IZopeDatabaseAdapter, IZopeConnection

12 ������� zope.app.rdb.tests.stubs
�
�������
 ConnectionStub

13 ������� zope.app.sqlexpr.sqlexpr
�
�������
 SQLExpr, ConnectionError

14

15

16
�
������� AdapterStub(object):

17 implements(IZopeDatabaseAdapter)

18

19 ��	�� __init__(� 	 � � , dsn):

20 ��	�������
21

22 ��	�� __call__(� 	 � �):
23 ��	������� ConnectionStub()

24

25
�
������� ConnectionStub(object):

26 implements(IZopeConnection)

27

28 ��	�� __init__(� 	 � �):
29

� 	 � � ._called = {}

30

31 ��	�� cursor(� 	 � �):
32 ��	������� CursorStub()

33

34
�
������� CursorStub(object):

35

36 description = ((’id’, 0, 0, 0, 0, 0, 0),

37 (’name’, 0, 0, 0, 0, 0, 0),

38 (’email’, 0, 0, 0, 0, 0, 0))

39

40

41 ��	�� fetchall(� 	 � � , *args, **kw):

42 ��	������� ((1, ’Stephan’, ’srichter’),

43 (2, ’Foo Bar’, ’foobar’))

44

45 ��	�� execute(� 	 � � , operation, *args, **kw):

46

�
� operation != ’SELECT num FROM hitchhike’:

47 � �
� � 	 AssertionError(operation, ’SELECT num FROM hitchhike’)

48

49

50
�
������� SQLExprTest(PlacelessSetup, unittest.TestCase):

51

52 ��	�� setUp(� 	 � �):
53 super(SQLExprTest, � 	 � �).setUp()
54 ztapi.provideUtility(IFactory, Factory(AdapterStub),

55 ’zope.da.Stub’)

56 ztapi.provideUtility(IFactory, Factory(��� � ��� � x: None),

57 ’zope.Fake’)

58 ztapi.provideUtility(IZopeDatabaseAdapter, AdapterStub(’’),

CHAPTER 38 DEVELOPING A NEW TALES EXPRESSION

38.2. PREPARING AND IMPLEMENTING THE TESTS
373

59 ’test’)

60

61 ��	�� test_exprUsingRDBAndDSN(� 	 � �):
62 context = Data(vars = {’rdb’: ’zope.da.Stub’, ’dsn’: ’dbi://test’})

63 expr = SQLExpr(’name’, ’SELECT num FROM hitchhike’, Engine)

64 result = expr(context)

65
� 	 � � .assertEqual(1, result[0].id)

66
� 	 � � .assertEqual(’Stephan’, result[0].name)

67
� 	 � � .assertEqual(’srichter’, result[0].email)

68
� 	 � � .assertEqual(’Foo Bar’, result[1].name)

69

70 ��	�� test_exprUsingSQLConn(� 	 � �):
71 context = Data(vars = {’sql_conn’: ’test’})

72 expr = SQLExpr(’name’, ’SELECT num FROM hitchhike’, Engine)

73 result = expr(context)

74
� 	 � � .assertEqual(1, result[0].id)

75
� 	 � � .assertEqual(’Stephan’, result[0].name)

76
� 	 � � .assertEqual(’srichter’, result[0].email)

77
� 	 � � .assertEqual(’Foo Bar’, result[1].name)

78

79 ��	�� test_exprUsingRDBAndDSN_InvalidFactoryId(� 	 � �):
80 context = Data(vars = {’rdb’: ’zope.da.Stub1’, ’dsn’: ’dbi://test’})

81 expr = SQLExpr(’name’, ’SELECT num FROM hitchhike’, Engine)

82
� 	 � � .assertRaises(ConnectionError, expr, context)

83

84 ��	�� test_exprUsingRDBAndDSN_WrongFactory(� 	 � �):
85 context = Data(vars = {’rdb’: ’zope.Fake’, ’dsn’: ’dbi://test’})

86 expr = SQLExpr(’name’, ’SELECT num FROM hitchhike’, Engine)

87
� 	 � � .assertRaises(ConnectionError, expr, context)

88

89 ��	�� test_exprUsingSQLConn_WrongId(� 	 � �):
90 context = Data(vars = {’sql_conn’: ’test1’})

91 expr = SQLExpr(’name’, ’SELECT num FROM hitchhike’, Engine)

92
� 	 � � .assertRaises(ConnectionError, expr, context)

93

94 ��	�� test_noRDBSpecs(� 	 � �):
95 expr = SQLExpr(’name’, ’SELECT num FROM hitchhike’, Engine)

96
� 	 � � .assertRaises(ConnectionError, expr, Data(vars={}))

97

98

99 ��	�� test_suite():

100 ��	������� unittest.TestSuite((

101 unittest.makeSuite(SQLExprTest),

102))

103

104

�
� __name__ == ’__main__’:

105 unittest.main(defaultTest=’test_suite’)

. Line 16–23: Implement a database adapter stub that only can create connection
stubs. We even ignore the DSN.

. Line 25–32: This connection object does not implement the entire interface of
course; we only need the cursor() method here.

. Line 34–47: Whatever SQL query will be made, only a simple result is re-
turned having two rows with three entries, id, name and email. If a query

374
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

is successful then we should expect this result. Also note that only the query
SELECTnumFROMhitchhike is considered a valid SQL statement.

. Line 54–57: Create two factories. The first one is a factory for a valid Zope
Database Adapter component, so other one is a dummy factory. Having the
dummy factory will allow us to cause one of the anticipated failures.

. Line 58–59: Register an existing Database Adapter instance, so that the use of
sql conn can be tested.

. Line 61–68: This is a simple test using rdb and dsn to see whether a simple
query executes correctly.

. Line 70–77: Another simple test, this time using the sql conn variable.

. Line 79–96: These tests all attempt to cause ConnectionError exceptions. All
possible cases are covered.

Now you should run the tests and make sure they work and fix errors if necessary.

38.3 Step III: Trying our new expression in Zope

The following walk-through assumes that you have installed and started Post-
GreSQL. Furthermore, you should have installed the psycopgda database adapter
in your Python path somewhere (i.e. ZOPE3/src. Before we can come back to Zope,
you will need to create a user zope3 and a database called test using the com-
mands from the shell:

createuser zope3

createdb test

The user should be the same as the one running Zope 3 and the database should
be created by the user zope3. Now enter the database using psqltest and add a
table called contact having at least one column called name. Add a couple entries
to the table.

1 CREATE TABLE contact (name varchar);

2 INSERT INTO contact VALUES (’Stephan’);

3 INSERT INTO contact VALUES (’Claudia’);

4 INSERT INTO contact VALUES (’Jim’);

Next restart Zope. Go to the management interface, add a ZPTPage and add the
following content:

1 <html tal:define="rdb string:zope.da.PsycopgDA; dsn string:dbi://test">

2 <body>

3

4 <li tal:repeat="contact sql: SELECT * FROM contact">

CHAPTER 38 DEVELOPING A NEW TALES EXPRESSION

38.3. TRYING OUR NEW EXPRESSION IN ZOPE
375

5 <b tal:content="contact/name" />

6

7

8 </body>

9 </html>

Once you saved the code, you can click on the Preview tab and you should see a
bulleted list of all your contact entries names. Feel free to test the path expression
functionality and the usage of a database connection directly as well.

376
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

Exercises

1. Implement an expression that evaluates regular expressions. There are two in-
teresting functions that one can do with regular expressions, namely find/match
and replace (manipulation). For this exercise just implement find, which returns
a list of matches. The syntax might look as follows:

1 <html tal:define="foo regex: path/to/old/foo, ’([a-zA-Z]*) ?’" />

CHAPTER 39

SPACESUITS – OBJECTS IN HOSTILE

ENVIRONEMENTS

Difficulty

Core Developer

Skills

• Be familiar with the general usage of the Zope 3 security mechanism.

• Know how checkers and proxies work. Optional.

Problem/Task

Zope 3 can contain serious data or provide access to data that needs to be pro-
tected. This requirement is even amplified, if you think about the fact that actually
everyone can access Zope from any Web browser. One of Zope 3’s strengths is a solid
security system, which provides all the flexibility needed to implement any complex
security requirements.

Solution

39.1 Getting started . . .

From a security point of view, Zope distinguishes between trusted and untrusted
environments and code. Everything that the programmer has complete control over,

377

378
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

like filesystem-based Python modules, are considered trusted. Data or objects that
use input from the user, such as URLs or HTML form data, is always considered
untrusted and one should not blindly trust this data.

In order to be able to let any object float around in an untrusted universe, they
receive a spacesuit to protect the object. The spacesuit, known as a security proxy,
is a transparent object that encapsulates an object. The security proxy controls all
attribute accesses and mutations. Before access to an attribute is granted, the proxy
checks with the interaction (which is the realization of the security policy), if the
requesting party (the participations, which contains the principal/user) making the
request has permission to do so. But hold on, where did this interaction suddenly
come from? The interaction is stored as a thread-global variable via the security
management (zope.security.management) interface. The interaction can be com-
pared to the physical laws of the universe, which tells you if an action between an
actor (participation) and an object is possible.

Figure 39.1: This is a diagram containing all major security-relavant components. The lines between
them try to show how they are all connected.

CHAPTER 39 SPACESUITS – OBJECTS IN HOSTILE ENVIRONEMENTS

39.1. GETTING STARTED . . .
379

One component that we only mentioned briefly but is very important is the secu-
rity policy, which provides a blue print for the laws of the universe. But only when we
add some actors (participations) to these laws, the potential is realized. Therefore,
the security policy has only one methods, call (*participations), which takes
a list of participations and returns an interaction (a realization of itself). Since secu-
rity policies are pluggable in Zope, the default security policy is shipped in a separate
pacakge called zope.app.securitypolicy. Zope’s policy also provides the concept
of roles to Zope (roles group permissions together) and handles the complex struc-
tures that keep track of the various security declarations of the system. For more
details on the policy, see the interfaces and code in zope.app.securitypolicy.

Figure 39.2: Here you see the calls that are done in the security machinery to get the value of a
simple attribute.

The goal of the chapter is to develop a very simplistic application, specifically an
adventure game, that first runs completely without security. Then, almost without
any intrusion, a security framework is built around it, implementing a custom security
policy and ovbiously going through all the other steps to get security running.

380
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

39.2 The Labyrinth Game

The little game we will produce has a small maze of rooms through which a player
can walk.

Figure 39.3: The Labyrinth Maze

The player keeps track of the room he is in. The room can have connections to
other rooms in the four points of compass. Therefore a short implementation of the
requirements above could look like the classes below.

1
�
������� Person(object):

2

3 ��	�� __init__(� 	 � � , id):

4
� 	 � � .id = id

5
� 	 � � .room = None

6

7 ��	�� goTo(� 	 � � , direction):

8 assert direction
�
� (’north’, ’south’, ’east’, ’west’), \

9 ’"%s" is not a valid direction’ %direction

10 room = getattr(� 	 � � .room, direction, None)

11

�
� room

� � None:

12 ���
�
�� ’There is no room %s of here.’ %direction

13 	 ��� 	 :
14 ���

�
�� room.description

15
� 	 � � .room = room

16

17
�
������� Room(object):

18

19 ��	�� __init__(� 	 � � , id, description):

20
� 	 � � .id = id

21
� 	 � � .description = description

22
� 	 � � .north = � 	 � � .south = � 	 � � .east = � 	 � � .west = None

. Line 7–15: A convenience method that will move the user to the next room.

Note that I did not worry about writing interfaces for the objects, since they are
trivial and the interfaces would not be useful for anything.

CHAPTER 39 SPACESUITS – OBJECTS IN HOSTILE ENVIRONEMENTS

39.2. THE LABYRINTH GAME
381

Next we have to develop a function that will do all of the dirty setup work for us,
like create actual rooms, connect them and finally create a player with an assigned
starting room.

1 ��	�� setupWorld():

2 # Create the rooms

3 entrance = Room(’entrance’, ’The entrance of the labyrinth’)

4 fork = Room(’fork’, ’The big decision. Do I go east or west.’)

5 stairs = Room(’stairs’, ’Some long dark stairs.’)

6 hall = Room(’hall’, ’A cathedral-like hall.’)

7 corridor = Room(’corridor’, ’A long corridor’)

8

9 # Connect the rooms

10 entrance.north = fork

11 fork.south, fork.west, fork.east = entrance, stairs, corridor

12 stairs.east, stairs.north = fork, hall

13 corridor.west, corridor.north = fork, hall

14 hall.west, hall.east = stairs, corridor

15

16 # Setup player

17 player = Person(’player’)

18 player.room = entrance

19 ��	������� player

The final step is to develop the game loop that allows the player to move. The
game will support six fundamental commands: exit, info, north, south, east, and
west. When an error occurs, the game should not crash but try to display the error
as gracefully as possible.

1 ��	�� main():

2 player = setupWorld()

3 command = ’’

4 �
� � � 	 command != ’exit’:

5 ���� :
6

�
� command == ’info’:

7 ���
�
�� player.room.description

8 	 �
�
� command:

9 player.goTo(command)

10

11 	 � � 	 �� Exception, e:

12 ���
�
�� ’%s: %s’ %(e.__class__.__name__, e)

13

14 command = raw_input(’Command: ’)

15

16

�
� __name__ == ’__main__’:

17 main()

Now, if you save all of the code in a module file named labyrinth.py, then you
can just run the game with

python labyrinth.py

Here is the output of a simple session:

python labyrinth.py

Command: info

The entrance of the labyrinth

382
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

Command: north

The big decision. Do I go east or west.

Command: west

Some long dark stairs.

Command: north

A cathedral-like hall.

Command: east

A long corridor

Command: west

The big decision. Do I go east or west.

Command: south

The entrance of the labyrinth

Command: exit

#

39.3 Securing the Labyrinth

Now that we have a running game, let’s secure it. But what does “secure” mean
in the context of the game? It means that the player needs to have the permission
to enter the room. And we will not give her/him access to the corridor. We will
also limit the security to simply have an allow or deny policy. The following code is
developed in a new file called labyrinth security.py.

The first step is to declare the permissions that will be available to the security for
use. In our case this is just the Allow permission, since denying is just not having
the former permission. So all we need is

1 Allow = ’allow’

Next we have to build a permission database that stores the information on which
rooms the person/player is allowed to enter. This can be done with a simple dictio-
nary that maps a roomid to the principals that are allowed to access that room.

1 permissions = {}

2

3 �
	�� allowPerson(roomid, personid):

4 """Allow a particular person in a room."""

5 perms = permissions.setdefault(roomid, [])

6 perms.append(personid)

We have to implement the security-related components now. Let’s start with
the participation, which can simply fulfill its interface with the following trivial
implementation.

1 ������� zope.security.interfaces
�
� � ���
 IParticipation

2

3
�
������� PersonParticipation(object):

4

5 implements(IParticipation)

6

7 ��	�� __init__(� 	 � � , person):

8
� 	 � � .principal = person

9
� 	 � � .interaction = None

CHAPTER 39 SPACESUITS – OBJECTS IN HOSTILE ENVIRONEMENTS

39.3. SECURING THE LABYRINTH
383

Finally we need to implement the security and the interaction. Since the interac-
tion is just a realization of the security policy, the interaction is simply an instance
of the security policy class. Most of the security policy class is already implemented
by the simple policies, so we can just reuse it and concentrate on only implementing
checkPermission().

1 �
����� zope.security
�
��� ���� simplepolicies

2

3
��������� SecurityPolicy(simplepolicies.ParanoidSecurityPolicy):

4 """The Labyrinth’s access security policy."""

5

6 ��	�� checkPermission(� 	 � � , permission, object):

7 """See zope.security.interfaces.ISecurityPolicy"""

8 assert permission
� � Allow

9 allowed = permissions.get(object.id, [])

10 ����� participation
�
� � 	 � � .participations:

11

�
� ���� participation.principal.id

�
� allowed:

12 �
	������� False

13 �
	������� True

. Line 6: This security policy can only handle the Allow permission, so we assert
this right away.

. Line 7: Get a list of principals that are allowed in this room.

. Line 8–11: Every participant in the interaction must have the permission for the
action. For example, all construction workers that are required to renovate a house
need a key to the house to do the renovation.

Next we need to setup the security, which we do in a function called setupSecurity(player).

1

�
�������� labyrinth

2 �
����� zope.security
�
��� ���� checker, management

3

4 ��	�� setupSecurity(player):

5 # Setup security

6 management.setSecurityPolicy(SecurityPolicy)

7 room_checker = checker.NamesChecker(

8 (’description’, ’north’, ’south’, ’west’, ’east’), Allow)

9 checker.defineChecker(labyrinth.Room, room_checker)

10

11 # Allow the player everywhere but the corridor

12 allowPerson(’entrance’, player.id)

13 allowPerson(’fork’, player.id)

14 allowPerson(’stairs’, player.id)

15 allowPerson(’hall’, player.id)

16

17 # Add the player as a security manager and provide the player with a

18 # secure room

19 management.newInteraction(PersonParticipation(player))

20 proxied_room = checker.selectChecker(player.room).proxy(player.room)

21 player.room = proxied_room

22 ��	������� player

384
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

. Line 5–6: Register our security policy.

. Line 7–9: Create a Checker for the room, allowing all available attributes of the
Room class. In the second step we associate the checker with the Room. It is now
up to the player, whether s/he has the Allow permission for a room. You could
compare this to local permissions in Zope.

. Line 11–15: Allow the player to go anywhere but the corridor.

. Line 19: Create and store a new interaction using a player-based participation.
Note that the security policy must be set before the interaction is created.

. Line 20–21: Put a proxy around the entrance. Note that any object that is returned
by any method or attribute of the entrance is also proxied, so that from now on
all rooms the player interacts with are proxied.

The final step is to hook up the security and run the game.

1

�
� __name__ == ’__main__’:

2 oldSetupWorld = labyrinth.setupWorld

3 labyrinth.setupWorld = ��� ����� � : setupSecurity(oldSetupWorld())

4 labyrinth.main()

. Line 2–3: First we make a copy of the old setup. Then we create a new
setupWorld() function that adds the setup of the security. This monkey patch is
the only intrusion to the original code that we wrote in the previous section.

. Line 4: Run the game.

Finally, we are done! Before you can run the secure game, you have to set the
python path correctly to ZOPE3/src. Here is a sample transcript of playing the
game.

python labyrinth_security.py

Command: north

The big decision. Do I go east or west.

Command: east

Unauthorized: You are not authorized

Command: west

Some long dark stairs.

Command: north

A cathedral-like hall.

Command: east

Unauthorized: You are not authorized

Command: exit

#

Note how we get an Unauthorized error, if we try to access the corridor.
This completes my introduction of the Zope security mechanism. A more complex

example can be found in zope.security.example.

CHAPTER 40

THE LIFE OF A REQUEST

Difficulty

Contributor

Skills

• You should be well–familiar with the Zope 3 framework.

• Having a general idea of Internet server design is also very helpful.

Problem/Task

When developing Zope 3 applications, the coder is commonly dealing with the
request object to create views without thinking much about the details on how the
request gets into the view and what happens with the response that is constructed in
it. And this is fine, since it is often not necessary to know. But sometimes one needs
to write a custom server or change the behavior of the publisher. In these cases it
is good to know the general design of the Zope servers and publishers. This chapter
takes you on the journey through the life of a request using the browser (special
HTTP) request as an example.

Solution

40.1 What is a Request

The term “request” appears often when talking about Zope 3. But what is a re-
quest? In technically concrete situations we usually refer to objects that implement

385

386
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

IRequest. These objects are responsible to embed protocol-specific details and rep-
resent the protocol semantics to provide them for usage by presentation components.

It is not enough to only think of request objects, though. For me, anything that
the client sends to the server after connection negotiations is considered a request. So
on the very lowest level, when the user agent (in this case the classic Web browser)
sends the HTTP string

1 GET /index.html HTTP/1.1

it could be considered a request (raw) as well.

40.2 Finding the Origin of the Request

Now that we have an idea what the request is, let’s take a more technical approach
and find out how connections are handled technically and how a request is born in
the midst of much redirection and many confusing abstraction layers.

When a server starts up, it binds a socket to an address on the local ma-
chine (bind(address)) and then starts to listen for connections by calling
listen(backlog). When an incoming connection is detected, the accept() method
is called, which returns a connection object and the address of the computer to which
the connection was made. All of this is part of the standard Python socket library
and is documented in the zope.server.interfaces.ISocket interface.

The server, which is mainly an IDispatcher implementation, has a simple in-
terface to handle the specific events, by calling its corresponding handle 〈event〉()
methods. A complete list of all events that are managed this way is given
in the IDisplatcherEventHandler interface. So when a connection comes in,
handle accept() is called, which is overridden in the zope.server.serverbase.

ServerBase class around line 130. This method tries to get the connection by call-
ing accept() (see previous paragraph). If the connection was successfully created,
it is used to create a ServerChannel, which is the next level of abstraction. Most of
the other dispatcher functionality is provided by the standard async.dispatcher,
which fully implements IDispatcher.

At this stage the channel is taking over, which is just another dispatcher. So
the channel starts to collect the incoming data (see received(data)) and sends it
right away to the request parser, which is an instance of a class specified as parser

class. Obviously, this class will be different for every server implementation. The
way the parser functions is not that important. All we have to know is that it
implements IStreamConsumer, which has a way of saying when it has completed
parsing a request. Once all of the data is received, the IServerChannel method
receivedCompleteRequest(req) is called, whose goal is to schedule the request to
be executed. But only one request of the channel can be running at a time. So if

CHAPTER 40 THE LIFE OF A REQUEST

40.3. THE REQUEST AND THE PUBLISHER
387

the channel is busy, then we need to queue the request, until the running task is
completed.

Whenever the channel becomes available (see end task(close), the next request
from the queue is taken and converted to an ITask object. The task is then im-
mediately sent to the server for execution using IServer.addTask(task). There it
is added to a task dispatcher (see ITaskDispatcher), which schedules the task for
execution. But why all this redirection through a task and a task dispatcher? Un-
til now, all the code ran on a single thread. But in order to scale the servers better
and to support long-running requests without blocking the entire server, it is nec-
essary to be able to start several threads to handle the requests. It is now up to
the ITaskDispatcher implementation to decide how to spread the requests. The-
oretically, it could even consult other computers to execute a task. By default, we
use the zope.server.taskthreads.ThreadedTaskDispatcher though. Using its
setThreadCount(count) method, the Zope startup code is able specify the maxi-
mum amount of threads running at a time.

Once, it is the task’s turn to be serviced, the task dispatcher calls ITask.

service() which should finally execute the request. Specifically, when the HTTPTask

is serviced, the method executeRequest(task) of the HTTPServer is called.
The zope.server.http.publisherhttpserver.PublisherHTTPServer, which is
the one used for Zope 3, creates a IHTTPRequest object from the task and pub-
lishes the request with zope.publisher.publish(request). The server has an at-
tribute request factory in which the request class that is used to create the re-
quest is stored.

So what did the system accomplish so far? We have taken an incoming connection,
read all the incoming data and parsed it, scheduled it for execution, and finally
created a request that was published with the Zope 3 publisher. Except for the last
step, there was nothing Zope-specific about this code, so that all of this could be
replaced by any other Web server, like Twisted’s.

40.3 The Request and the Publisher

With the birth of the request and its start to walk the path of a request’s life by
entering the publisher using zope.publisher.publish.publish(), it also enters a
Zope-pure domain. In fact, Zope does not really care how a request was created, as
long as it implements IRequest. For example, when functional tests are executed,
they create the request purely from fictional data and pass it through the publisher
to analyze the response afterwards.

From a high-level point of view, the publisher’s publish() method is responsible
of interpreting the request’s information and cause the correct actions. It starts

388
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

out by traversing the given object path to an actual object, then call the object
and finally writing the result in the response. Everything else in this method is
about handling errors and exceptions as well as providing enough hooks for other
components to step in.

The publish() method is so central to the entire Zope 3 framework, that we will
now go through it very carefully trying to understand each step’s purpose. Wherever
necessary, we will take a rest and examine side paths closer. It might be of advantage
to open the zope.publisher.publish module at this point, so that it is easier to
follow the text.

The work of the publish() method starts with a infinite while–loop. The first
step inside the loop is to get the publication.

The publication provides the publisher with hooks to accomplish application-
specific tasks, related to data storages, transactions and security. The default im-
plementation is DefaultPublication, which is located in zope.publisher.base

and can be used by software that do not make use of the entire Zope framework. For
Zope 3, however, there is a specific Zope implementation in zope.app.publication.

zopepublication.
Now, wrapped inside three try/except statements, we tell the request to look at

its data and process whatever needs to be processed. In the case of a browser request,
like the one we use as example, the processInputs() tries to parse all HTML form
data that might have been sent by the browser and convert it to Python objects.

The next step is to convert the request’s object path to an object, a process known
as traversal. Besides calling all the event–hooks, the first step of the traversal process
is to determine the application or, in other words, the object root. For a common
Zope 3 installation, the application is of course the root of the ZODB. Then we use
the request’s traverse(object) method to get to the desired object. Let’s have a
closer look at this method for the BrowserRequest.

First of all we notice that the BrowserRequest’s traverse method does not do any
of the heavy lifting, but only covers a few browser-specific corner cases, like picking
a default view and using the HTML form data (by inspecting form variable names
for the suffix “:method”) for possible additional traversal steps. It turns out that the
BaseRequest’s traverse method does all the work. At the beginning of the method
there are several private attributes that are being pulled into the local namespace
and setup.

• publication: It is simply the publication object from before, which gives us
access to the application-specific functionality.

• traversal stack: A simple stack (i.e. list) of names that must be traversed.
These names came from the parsed path of the URL. For example “/path/-

CHAPTER 40 THE LIFE OF A REQUEST

40.3. THE REQUEST AND THE PUBLISHER
389

to/foo/bar/index.html” would be parsed to [’path’,’to’,’foo’,’bar’,’

index.html].

• traversed names: This is a list of names that have been already successfully
traversed. The names are simply the entries coming from traversal stack.

• last obj traversed: This variable keeps track of the last object that was
found in the traversal process.

Now we just work through the traversal stack until it has been completely emptied.
The interesting call here is the publication.traverseName(request,object,

name) which tries to determine the next object using the name from the traversal
stack and the request. The traverseName() method can be very complex. The Zope
3 application version, found in zope.app.publication.publicationtraverse.

PublicationTraverse, must be able to handle namespaces (“++namespace++”),
views (“@@”) and pluggable traverser lookups, so that objects can implement their
own traversers. To discuss the details of this method would be beyond the goal of
this chapter.

If everything goes well, and no exception was raised, meaning that the object
specified in the path was found, the traverse() method returns the found object
and we are back in the publisher’s publish() function. The next step is to execute
the object.

Calling the object assumes that the object is callable in the first place. There-
fore, the traversal process should always end in a view or a method on a view.
But since all common content objects have browser-specific default views, we
are guaranteed that the object is callable. For other presentation types, simi-
lar default options exist. Even though the object is formally executed by calling
publication.callObject(request,object), eventually mapply() is called, which
is defined in the zope.publisher.publish module. mapply() does not just call
the object, but takes great care of determining the argument and finding values for
them.

When an object is called, it can either write the result directly to the request’s
response object or return a result object. In the latter case, the publish() method
adds the result to the body of the response. Here it is assumed that the result object
is a unicode string. For the Zope application the afterCall(request) execution
is of importance, since it commits the transaction to the ZODB. This process can
cause a failure, so it is very important that we do not return any data to the server
until the transaction is committed.

When all this has successfully finished, we call outputBody() on the response,
which sends the data out to the world going through the task, channel and eventually
through the socket to the connected machine. Note that the output(data) method,

390
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

which is called from outputBody, is responsible for converting the internally kept
unicode strings to valid ASCII using an encoding. If no encoding was specified,
“UTF-8” is used by default.

Once the response has sent out its data, the request is closed by calling close()

on itself, which releases all locks on resources. This will also finish the running task,
close the channel and eventually disconnect the socket. This marks the end of the
request.

Let’s now look at some of the possible failure scenarios. The most common failure
is a ZODB write conflict, in which case we simply want to rollback the transaction and
retry the request again. But where does the Retry error come from, when the ZODB
raises a ConflictError? A quick look in the publication’s handleException()

method reveals, that if a write conflict error is detected, it is logged and afterwards
a Retry exception is raised, so that the next exception handler is used. Here we
simply reset the request and the response and allow the publishing process to start
all over again (remember, we have an everlasting while loop over all of this code).

In general, though, exceptions are handled by the handleException() method,
which logs the error and even allows them to be formatted in the appropriate output
format using a view. See the chapter on “Changing Standard Exception Views” for
details on how to define your own views on exceptions.

This concludes our journey through the life of a request. Sometimes I intentionally
ignored details to stay focused and not confuse you. If you are interested, you will
find that the interfaces of the various involved components serve well as further
documentation, especially for the publisher.

CHAPTER 40 THE LIFE OF A REQUEST

40.3. THE REQUEST AND THE PUBLISHER
391

����� ��� � � �
	 � ��

� ��������� � ��������� ��� ��	
�����! "�$#�� #

��%&	 � ����

�������� �'��()"�(��'�*+,-�-� ��%!*"�����.+-� � *"� ���/���� �'��()"�($%&���0�����	

1 ��� � � �
	 � ���� � *"�

#���� ��� � � �
	 � ��

2 ��3�� ���

4 ��	 � 5$� ��

6 ��� ��� � � �
	 � ��

7�����+.+.�8��

Figure 40.1: Low-Level setup of a connection.

392
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

��������������	
�� ��	
��

������� 	 ���� ���� ��	

������������� � 	 ��� � ��������	 �

����	 �� ��!���� �

"������#� 	 �

$���� ���%��� &����#')(�*!��� �% ��+,���#����	 � � ���#�

-������������

.���� �� � ��� � /���� � ��������	 �

����� ������� &����#� ���� ���

0���	 ��� &�� ����� �

��1����%2������� ��+3��������	 � ��	
��

������� �� � ��� � /���� ���� �54� ��	
��

��6,���57�8���� &���� '9���� � ���� ��6,���57�+,��������	 7���� 	 ��� ��63���57�����	
 ��6,���57�8���� &���� ��6,����7�+,���#����	

Figure 40.2: From data reception to the initialization of the request object

CHAPTER 40 THE LIFE OF A REQUEST

40.3. THE REQUEST AND THE PUBLISHER
393

��������� � � 	�
�� ������� � ����� � ��� ������������
�����
�� � ������������
�� �������
 ��������������� ����������!�
�� "�
�� #$	��%����
��

& ����� ����
�� �(' ������� �) *

+ ��,�
�� -������ � ����� � ����) *

. ��� � ��"�
�� �
�) �%����� � ����� � ����*

������/
��(�

0 ������� ������/
��(�

1 ������� ����� 2��43�5�) *

6 ������� �����) *

7 �48�� � �
�) 3���� ��*

9 ����3�3:	�
���3�
�� �

; ��8�� � �
�) 3���� ��*

&�< ���4� ���
�) *

Figure 40.3: The Request in the Publisher.

394
Zope 3 Developer’s Book

PART VI ADVANCED TOPICS

PART VII
Writing Tests

Writing tests for every bit of functionality is of utmost importance in Zope 3.
Testing can be done in many ways, from Java-like unit tests to pythonic doc- testing.

Chapter 41: Writing Basic Unit Tests

This chapter shows you how to develop basic unit tests for your code and explains in detail how
various pieces of functionality can be tested.

Chapter 42: Doctests: Example-driven Unit Tests

Sometimes regular unit tests are not as instructive to someone reviewing the code. It is shown
how example-driven doctests can become useful in these cases.

Chapter 43: Writing Functional Tests

Unit tests are great for testing isolated components, but are impractical for testing entire sections
of the system. For these type of tests we use a functional testing framework, which is introduced
here in some detail.

Chapter 44: Creating Functional Doctests

For the same reason doctests were developed to supercede unit tests, functional doctests are
intended to be a more descriptive solution to develop functional tests.

Chapter 45: Writing Tests against Interfaces

If an interface is commonly implemented multiple times, it is a good idea to write tests directly
against the interface as a base for the implementation tests. This chapter will show you how to do
that and expand on the motivation.

CHAPTER 41

WRITING BASIC UNIT TESTS

Difficulty

Newcomer

Skills

• All you need to know is some Python.

Problem/Task

As you know by now, Zope 3 gains its incredible stability from testing any code in
great detail. The currently most common method is to write unit tests. This chapter
introduces unit tests – which are Zope 3 independent – and introduces some of the
subtleties.

Solution

41.1 Implementing the Sample Class

Before we can write tests, we have to write some code that we can test. Here,
we will implement a simple class called Sample with a public attribute title

and description that is accessed via getDescription() and mutated using
setDescription(). Further, the description must be either a regular or unicode
string.

Since this code will not depend on Zope, open a file named test sample.py

anywhere and add the following class:

397

398
Zope 3 Developer’s Book

PART VII WRITING TESTS

1 Sample(object):

2 """A trivial Sample object."""

3

4 title = None

5

6 ��	�� __init__(� 	 � �):
7 """Initialize object."""

8
� 	 � � ._description = ’’

9

10 ��	�� setDescription(� 	 � � , value):

11 """Change the value of the description."""

12 assert isinstance(value, (str, unicode))

13
� 	 � � ._description = value

14

15 ��	�� getDescription(� 	 � �):
16 """Change the value of the description."""

17 ��	������� � 	 � � ._description

. Line 4: The title is just publicly declared and a value of None is given. Therefore
this is just a regular attribute.

. Line 8: The actual description string will be stored in description.

. Line 12: Make sure that the description is only a regular or unicode string, like it
was stated in the requirements.

If you wish you can now manually test the class with the interactive Python shell.
Just start Python by entering python in your shell prompt. Note that you should
be in the directory in which test sample.py is located when starting Python (an
alternative is of course to specify the directory in your PYTHONPATH.)

1 >>> �
��� � test_sample
�
�������
 Sample

2 >>> sample = Sample()

3 >>> ���
�
�� sample.title

4 None

5 >>> sample.title = ’Title’

6 >>> ���
�
�� sample.title

7 Title

8 >>> ���
�
�� sample.getDescription()

9

10 >>> sample.setDescription(’Hello World’)

11 >>> ���
�
�� sample.getDescription()

12 Hello World

13 >>> sample.setDescription(None)

14 Traceback (most recent call last):

15 File "<stdin>", line 1,
�
� ?

16 File "test_sample.py", line 31,
�
� setDescription

17 assert isinstance(value, (str, unicode))

18 AssertionError

As you can see in the last test, non-string object types are not allowed as descrip-
tions and an AssertionError is raised.

CHAPTER 41 WRITING BASIC UNIT TESTS

41.2. WRITING THE UNIT TESTS
399

41.2 Writing the Unit Tests

The goal of writing the unit tests is to convert this informal, manual, and interac-
tive testing session into a formal test class. Python provides already a module called
unittest for this purpose, which is a port of the Java-based unit testing product,
JUnit, by Kent Beck and Erich Gamma. There are three levels to the testing frame-
work (this list deviates a bit from the original definitions as found in the Python li-
brary documentation. 1).

The smallest unit is obviously the “test”, which is a single method in a TestCase

class that tests the behavior of a small piece of code or a particular aspect of an
implementation. The “test case” is then a collection tests that share the same se-
tup/inputs. On top of all of this sits the “test suite” which is a collection of test
cases and/or other test suites. Test suites combine tests that should be executed to-
gether. With the correct setup (as shown in the example below), you can then exe-
cute test suites. For large projects like Zope 3, it is useful to know that there is also
the concept of a test runner, which manages the test run of all or a set of tests. The
runner provides useful feedback to the application, so that various user interaces can
be developed on top of it.

But enough about the theory. In the following example, which you can simply
put into the same file as your code above, you will see a test in common Zope 3 style.

1

�
�������� unittest

2

3
��������� SampleTest(unittest.TestCase):

4 """Test the Sample class"""

5

6 ��	�� test_title(� 	 � �):
7 sample = Sample()

8
� 	 � � .assertEqual(sample.title, None)

9 sample.title = ’Sample Title’

10
� 	 � � .assertEqual(sample.title, ’Sample Title’)

11

12 ��	�� test_getDescription(� 	 � �):
13 sample = Sample()

14
� 	 � � .assertEqual(sample.getDescription(), ’’)

15 sample._description = "Description"

16
� 	 � � .assertEqual(sample.getDescription(), ’Description’)

17

18 ��	�� test_setDescription(� 	 � �):
19 sample = Sample()

20
� 	 � � .assertEqual(sample._description, ’’)

21 sample.setDescription(’Description’)

22
� 	 � � .assertEqual(sample._description, ’Description’)

23 sample.setDescription(u’Description2’)

24
� 	 � � .assertEqual(sample._description, u’Description2’)

25
� 	 � � .assertRaises(AssertionError, sample.setDescription, None)

26

27

1 http://www.python.org/doc/current/lib/module-unittest.html

400
Zope 3 Developer’s Book

PART VII WRITING TESTS

28 �
	�� test_suite():

29 ��	������� unittest.TestSuite((

30 unittest.makeSuite(SampleTest),

31))

32

33

�
� __name__ == ’__main__’:

34 unittest.main(defaultTest=’test_suite’)

. Line 3–4: We usually develop test classes which must inherit from TestCase.
While often not done, it is a good idea to give the class a meaningful docstring
that describes the purpose of the tests it includes.

. Line 6, 12 & 18: When a test case is run, a method called runTests() is executed.
While it is possible to overrride this method to run tests differently, the default
option will look for any method whose name starts with test and execute it as
a single test. This way we can create a “test method” for each aspect, method,
function or property of the code to be tested. This default is very sensible and is
used everywhere in Zope 3.

Note that there is no docstring for test methods. This is intentional. If a docstring
is specified, it is used instead of the method name to identify the test. When
specifying a docstring, we have noticed that it is very difficult to identify the test
later; therefore the method name is a much better choice.

. Line 8, 10, 14, . . . : The TestCase class implements a handful of methods that
aid you with the testing. Here are some of the most frequently used ones. For a
complete list see the standard Python documentation referenced above.

• assertEqual(first,second[,msg])

Checks whether the first and second value are equal. If the test fails, the
msg or None is returned.

• assertNotEqual(first,second[,msg])

This is simply the opposite to assertEqual() by checking for non-equality.

• assertRaises(exception,callable,...)

You expect the callable to raise exception when executed. After the
callable you can specify any amount of positional and keyword arguments
for the callable. If you expect a group of exceptions from the execution,
you can make exception a tuple of possible exceptions.

• assert (expr[,msg])

Assert checks whether the specified expression executes correctly. If not, the
test fails and msg or None is returned.

• failUnlessEqual()

This testing method is equivalent to assertEqual().

CHAPTER 41 WRITING BASIC UNIT TESTS

41.3. RUNNING THE TESTS
401

• failUnless(expr[,msg])

This method is equivalent to assert (expr[,msg]).

• failif()

This is the opposite to failUnless().

• fail([msg])

Fails the running test without any evaluation. This is commonly used when
testing various possible execution paths at once and you would like to signify
a failure if an improper path was taken.

. Line 6–10: This method tests the title attribute of the Sample class. The first
test should be of course that the attribute exists and has the expected initial value
(line 8). Then the title attribute is changed and we check whether the value was
really stored. This might seem like overkill, but later you might change the title
in a way that it uses properties instead. Then it becomes very important to check
whether this test still passes.

. Line 12–16: First we simply check that getDescription() returns the correct de-
fault value. Since we do not want to use other API calls like setDescription() we
set a new value of the description via the implementation-internal description

attribute (line 15). This is okay! Unit tests can make use of implementation-
specific attributes and methods. Finally we just check that the correct value is re-
turned.

. Line 18–25: On line 21–24 it is checked that both regular and unicode strings are
set correctly. In the last line of the test we make sure that no other type of objects
can be set as a description and that an error is raised.

. Line 28–31: This method returns a test suite that includes all test cases created
in this module. It is used by the Zope 3 test runner when it picks up all available
tests. You would basically add the line unittest.makeSuite(TestCaseClass)

for each additional test case.

. Line 33–34: In order to make the test module runnable by itself, you can execute
unittest.main() when the module is run.

41.3 Running the Tests

You can run the test by simply calling pythontest sample.py from the directory
you saved the file in. Here is the result you should see:

...

--

402
Zope 3 Developer’s Book

PART VII WRITING TESTS

Ran 3 tests in 0.001s

OK

The three dots represent the three tests that were run. If a test had failed, it would
have been reported pointing out the failing test and providing a small traceback.

When using the default Zope 3 test runner, tests will be picked up as long as they
follow some conventions.

• The tests must either be in a package or be a module called tests.

• If tests is a package, then all test modules inside must also have a name
starting with test, as it is the case with our name test sample.py.

• The test module must be somewhere in the Zope 3 source tree, since the test
runner looks only for files there.

In our case, you could simply create a tests package in ZOPE3/src (do not forget
the init .py file). Then place the test sample.py file into this directory.

You you can use the test runner to run only the sample tests as follows from the
Zope 3 root directory:

python test.py -vp tests.test_sample

The -v option stands for verbose mode, so that detailed information about a
test failure is provided. The -p option enables a progress bar that tells you how
many tests out of all have been completed. There are many more options that can
be specified. You can get a full list of them with the option -h: pythontest.py-h.

The output of the call above is as follows:

Configuration file found.

Running UNIT tests at level 1

Running UNIT tests from /opt/zope/Zope3

3/3 (100.0%): test_title (tests.test_sample.SampleTest)

--

Ran 3 tests in 0.002s

OK

Running FUNCTIONAL tests at level 1

Running FUNCTIONAL tests from /opt/zope/Zope3

--

Ran 0 tests in 0.000s

OK

. Line 1: The test runner uses a configuration file for some setup. This allows
developers to use the test runner for other projects as well. This message simply
tells us that the configuration file was found.

CHAPTER 41 WRITING BASIC UNIT TESTS

41.3. RUNNING THE TESTS
403

. Line 2–8: The unit tests are run. On line 4 you can see the progress bar.

. Line 9–15: The functional tests are run, since the default test runner runs both
types of tests. Since we do not have any functional tests in the specified module,
there are no tests to run. To just run the unit tests, use option -u and -f for
just running the functional tests. See “Writing Functional Tests” for more detials
on functional tests.

404
Zope 3 Developer’s Book

PART VII WRITING TESTS

Exercises

1. It is not very common to do the setup – in our case sample=Sample() – in every
test method. Instead there exists a method called setUp() and its counterpart
tearDown that are run before and after each test, respectively. Change the test
code above, so that it uses the setUp() method. In later chapters and the rest
of the book we will frequently use this method of setting up tests.

2. Currently the test setDescription() test only verifies that None is not al-
lowed as input value.

(a) Improve the test, so that all other builtin types are tested as well.

(b) Also, make sure that any objects inheriting from str or unicode pass as
valid values.

CHAPTER 42

DOCTESTS: EXAMPLE-DRIVEN UNIT

TESTS

Difficulty

Newcomer

Skills

• You should have read the previous chapter on unit tests, since this chapter
heavily depends the work done there.

Problem/Task

Unit tests are nice, but they are not the best implementation of what eXtreme
Programming expects of testing. Testing should also serve as documentation, a
requirement that the conventional unit test module pattern does not provide. This
chapter will show you an alternative way of writing unit tests that can also serve
well as documentation.

Solution

Python already provides docstrings for classes and methods, which serve – like
the name suggests – as documentation for the object. If you would be able to
write tests in the docstrings of classes and methods and execute them during test
runs, all requirements of a testing framework are fulfilled. Even better, the tests
would automatically become part of the documentation. This way the documentation

405

406
Zope 3 Developer’s Book

PART VII WRITING TESTS

reader would always see a working example of the code. Since most people learn by
example, this will also speed up the learning process of the technology.

The solution to this problem are doctests, which have exactly the described be-
havior. If you embed Python-prompt-like sample code in the docstrings of a class
and register the contained module as one having doctests, then the Python code in
the docstrings is executed for testing. Each docstring will be counted as a single test.

42.1 Integrating the Doctest

So how will our example from the previous chapter change in light of docstests? First
of all, you can completely get rid of the TestSample class. Next, add the following
lines to the docstring of the Sample class:

1 Examples:

2

3 >>> sample = Sample()

4

5 Here you can see how the ’title’ attribute works.

6

7 >>> print sample.title

8 None

9 >>> sample.title = ’Title’

10 >>> print sample.title

11 Title

12

13 The description is implemented using a accessor and mutator method

14

15 >>> sample.getDescription()

16 ’’

17 >>> sample.setDescription(’Hello World’)

18 >>> sample.getDescription()

19 ’Hello World’

20 >>> sample.setDescription(u’Hello World’)

21 >>> sample.getDescription()

22 u’Hello World’

23

24 ’setDescription()’ only accepts regular and unicode strings

25

26 >>> sample.setDescription(None)

27 Traceback (most recent call last):

28 File "<stdin>", line 1, in ?

29 File "test_sample.py", line 31, in setDescription

30 assert isinstance(value, (str, unicode))

31 AssertionError

. Line 1: The double colon at this line is not mistake. In Zope 3’s documentation
tools we assume that all docstrings are written in structured text, a plain text
format that allows to insert some markup without diminishing the readability of
the text. The double colon simply signifies the beginning of a code segment.

CHAPTER 42 DOCTESTS: EXAMPLE-DRIVEN UNIT TESTS

42.2. SHORTCOMINGS
407

. Line 5, 13 & 24: It is even possible to insert additional comments for better
documentation. This way examples can be explained step by step.

Next you need to change the test suite construction to look for the doctests in
the Sample class’ docstring. To do so, import the DocTestSuite class and change
the test suite() function as follows:

1 �
����� zope.testing.doctestunit
�
�������
 DocTestSuite

2

3 ��	�� test_suite():

4 ��	������� unittest.TestSuite((

5 DocTestSuite(),

6))

The first argument to the DocTestSuite constructor is a string that is the dot-
ted Python path to the module that is to be searched for doctests. If no module is
specified the current one is chosen. The constructor also takes two keyword argu-
ments, setUp and tearDown, that specify functions that are called before and af-
ter each tests. These are the equivalent methods to the TestCase’s setUp() and
tearDown() methods.

You can now execute the test as before using Pythontest sample.py, except
that ZOPE3/src must be in your PYTHONPATH. The output is the same as for unit
tests.
.

--

Ran 1 test in 0.003s

OK

As you can see, the three different unit tests collapsed to one doctest.
You will have to agree that doctests are a much more natural way to test your

code. However, there are a couple of issues that one should be aware of when using
doctests.

42.2 Shortcomings

The most obvious problem is that if you like to test attributes and properties, there
is no docstring to place the tests. This problem is usually solved by testing attributes
implicitly in context of other tests and/or place their tests in the class’ docstring.
This solution is actually good, since attributes by themselves usually do not have
much functionality, but are used in combination with methods to provide function-
ality.

Next, it is not easy to test for certain outputs. The prime example here is None,
since it has no representation. The easy way around this is to make the testing
statement a condition. So the statement methodReturningNone() which should

408
Zope 3 Developer’s Book

PART VII WRITING TESTS

return None is tested using methodReturningNone()isNone which should return
True. There are also some issues when testing statements that return output whose
representation is longer than a line, since the docstring checker is not smart enough
the remove the indentation white space. A good example of such objects are lists
and tuples. The best solution to this problem is to use the pretty printer module,
pprint, which always represents objects in lines no longer than 80 characters and
uses nice indentation rules for clarity.

Another problematic object to test are dictionaries, since their representation
might change from one time to another based on the way the entries are hashed.
The simplest solution to the problem is to always convert the dictionary to a list
using the items() method and sorting the entries. This should give you a uniquely
identifiable representation of the dictionary.

Over time I have noticed that using doctests tends to make me write sloppy tests.
Since I think of the tests as examples to show how the class is supposed to work, I
often neglect to test for all aspects and possible situation a piece of code could come
into. This problem can be solved by either writing some additional classic unit tests
or by creating a special testing module that contains further doctests.

While doctests cover 98% of all test situations well, there are some tests that re-
quire heavy programming. A good example of that is a test in the internationaliza-
tion support that makes sure that all XML locale files can be parsed and some of
the most important data is correctly evaluated. I found that it is totally okay to use
regular unit tests for these scenarios.

Still, overall I think doctests are the way to go, due to their great integration into
documentation!

CHAPTER 42 DOCTESTS: EXAMPLE-DRIVEN UNIT TESTS

42.2. SHORTCOMINGS
409

Exercises

1. As a matter of taste, some people like it better when each method is tested in the
method docstring. Therefore, move the getDescription and setDescription

tests to the methods’ docstrings and make sure that all three tests pass.

2. Once you have split up the tests, you always have to setup the sample object
over and over again. Use a setUp() function to setup the sample as you did
for the unit tests in the previous chapter.

3. (Equivalent to excercise 2 in the previous chapter.) Currently the test

setDescription() test only verifies that None is not allowed as input value.

(a) Improve the test, so that all other builtin types are tested as well.

(b) Also, make sure that any objects inheriting from str or unicode pass as
valid values.

410
Zope 3 Developer’s Book

PART VII WRITING TESTS

CHAPTER 43

WRITING FUNCTIONAL TESTS

Difficulty

Newcomer

Skills

• It is good to know how Zope 3 generated forms work before reading this chapter.
Optional.

Problem/Task

Unit tests cover a large part of the testing requirements listed in the eXtreme
Programming literature, but are not everything. There are also integration and
functional tests. While integration tests can be handled with unit tests and doctests,
functional tests cannot. For this reason the Zope 3 community members developed
an extension to unittest that handles functional tests. This package is introduced
in this chapter.

Solution

Unit tests are very good for testing the functionality of a particular object
in absence of the environment it will eventually live in. Integration tests build
on this by testing the behavior of an object in a limited environment. Then
functional tests should test the behavior of an object in a fully running sys-
tem. Therefore functional tests often check the user interface behavior and it
is not surprising that they are found in the browser packages of Zope 3. In
fact, in Zope 3’s implementation of functional tests there exists a base test case

411

412
Zope 3 Developer’s Book

PART VII WRITING TESTS

class for each view type, such as zope.testing.functional.BrowserTestCase or
zope.app.dav.ftests.dav.DAVTestCase.

43.1 The Browser Test Case

Each custom functional test case class provides some valuable methods that help
us write the tests in a fast and efficient manner. Here are the methods that the
BrowserTestCase class provides.

• getRootFolder()

Returns the root folder of the database. This method is available in every
functional test case class.

• makeRequest(path=’’,basic=None,form=None,env={},outstream=None)
This class creates a new BrowserRequest instance that can be used for pub-
lishing a request with the Zope publisher.

– path – This is the absolute path of the URL (i.e. the URL minus the
protocol, server and port) of the object that is beeing accessed.

– basic – It provides the authentication information of the format "〈login〉:
〈password〉". When Zope 3 is brought up for functional testing, a user with
the login “mgr” and the password “mgrpw” is automatically created having
the role “zope.Manager” assigned to it. So usually we will use "mgr:mgrpw"

as our basic argument.

– form – The argument is a dictionary that contains all fields that would
be provided by an HTML form. Note that we should have covnerted the
data already to their native Python format; be sure to only use unicode for
strings.

– env – This variable is also a dictionary where we can specify further
environment variables, like HTTP headers. For example, the header
X-Header:value would be an entry of the form ’HTTP X HEADER’:value

in the dictionary.

– outstream – Optionally we can define the the stream to which the out-
putted HTML is sent. If we do not specify one, one will be created for us.

However, one would often not use this method directly, since it does not actually
publish the request. Use the publish() method described below.

• publish(self,path,basic=None,form=None,env={},handle errors=False)

The method creates a request as described above, that is then published with

CHAPTER 43 WRITING FUNCTIONAL TESTS

43.2. TESTING “ZPT PAGE” VIEWS
413

a fully-running Zope 3 instance and finally returns a regular browser response
object that is enhanced by a couple of methods:

– getOutput() – Returns all of the text that was pushed to the outstream.

– getBody() – Only returns all of the HTML of the response. It therefore
excludes HTTP headers.

– getPath() – Returns the path that was passed to the request.

The path, basic, form and env have the same semantics as the equally-named
arguments to makeRequest(). If handle errors is False, then occuring
exceptions are not caught. If True, the default view of an exception is used
and a nice formatted HTML page will be returned. As you can imagine the first
option is often more useful for testing.

• checkForBrokenLinks(body,path,basic=None)

Given an output body and a published path, this method checks whether the
contained HTML contains any links and checks that these links are not broken.
Since the availability of pages and therefore links depends on the permissions
of the user, one might want to specify a login/password pair in the basic

argument. For example, if we have published a request as a manager, it will
be very likely that the returned HTML contains links that require the manager
role.

43.2 Testing “ZPT Page” Views

Okay, now that we know how the BrowserTestCase extends the normal unittest.

TestCase, we can use it to write some functional tests for the “add”, “edit” and
“index” view of the “ZPT Page” content type.

Anywhere, create a file called test zptpage.py and add the following functional
testing code:

1

�
�������� time

2

�
�������� unittest

3

4 �
����� transaction
�
� � ���� get_transaction

5 �
����� zope.app.tests.functional
�
�������
 BrowserTestCase

6 �
����� zope.app.zptpage.zptpage
�
�������
 ZPTPage

7

8
��������� ZPTPageTests(BrowserTestCase):

9 """Funcional tests for ZPT Page."""

10

11 template = u’’’\

12 <html>

13 <body>

14 <h1 tal:content="modules/time/asctime" />

414
Zope 3 Developer’s Book

PART VII WRITING TESTS

15 </body>

16 </html>’’’

17

18 template2 = u’’’\

19 <html>

20 <body>

21 <h1 tal:content="modules/time/asctime">time</h1>

22 </body>

23 </html>’’’

24

25 ��	�� createPage(� 	 � �):
26 root = � 	 � � .getRootFolder()
27 root[’zptpage’] = ZPTPage()

28 root[’zptpage’].setSource(� 	 � � .template, ’text/html’)

29 get_transaction().commit()

30

31 ��	�� test_add(� 	 � �):
32 response = � 	 � � .publish(
33 "/+/zope.app.zptpage.ZPTPage=",

34 basic=’mgr:mgrpw’,

35 form={’add_input_name’ : u’newzptpage’,

36 ’field.expand.used’ : u’’,

37 ’field.source’ : � 	 � � .template,
38 ’field.evaluateInlineCode.used’ : u’’,

39 ’field.evaluateInlineCode’ : u’on’,

40 ’UPDATE_SUBMIT’ : ’Add’})

41

42
� 	 � � .assertEqual(response.getStatus(), 302)

43
� 	 � � .assertEqual(response.getHeader(’Location’),

44 ’http://localhost/@@contents.html’)

45

46 zpt = � 	 � � .getRootFolder()[’newzptpage’]
47

� 	 � � .assertEqual(zpt.getSource(), � 	 � � .template)
48

� 	 � � .assertEqual(zpt.evaluateInlineCode, True)

49

50 ��	�� test_editCode(� 	 � �):
51

� 	 � � .createPage()
52 response = � 	 � � .publish(
53 "/zptpage/@@edit.html",

54 basic=’mgr:mgrpw’,

55 form={’field.expand.used’ : u’’,

56 ’field.source’ : � 	 � � .template2,
57 ’UPDATE_SUBMIT’ : ’Change’})

58
� 	 � � .assertEqual(response.getStatus(), 200)

59
� 	 � � .assert_(’>time<’

�
� response.getBody())

60 zpt = � 	 � � .getRootFolder()[’zptpage’]
61

� 	 � � .assertEqual(zpt.getSource(), � 	 � � .template2)
62

� 	 � � .checkForBrokenLinks(response.getBody(), response.getPath(),

63 ’mgr:mgrpw’)

64

65 ��	�� test_index(� 	 � �):
66

� 	 � � .createPage()
67 t = time.asctime()

68 response = � 	 � � .publish("/zptpage", basic=’mgr:mgrpw’)

69
� 	 � � .assertEqual(response.getStatus(), 200)

70
� 	 � � .assert_(response.getBody().find(’<h1>’+t+’</h1>’) != -1)

71

72 �
	�� test_suite():

CHAPTER 43 WRITING FUNCTIONAL TESTS

43.2. TESTING “ZPT PAGE” VIEWS
415

73 ��	������� unittest.TestSuite((

74 unittest.makeSuite(ZPTPageTests),

75))

76

77

�
� __name__==’__main__’:

78 unittest.main(defaultTest=’test_suite’)

. Line 25–29: This is the perfect example of a helper method often used in Zope’s
functional tests. It creates a “ZPT Page” content object called zptpage. To
write the new object to the ZODB, we have to commit the transaction using
get transaction().commit().

. Line 31–48: To understand this test completely, it is surely helpful to be familiar
with the way Zope 3 adds new objects and how the widgets create an HTML form.
The “+”-sign in the URL is the adding view for a folder. The path that follows is
simply the factory id of the content type (line 33). Instead of the factory id, we
sometimes also find the name of the object’s add form there.

The form dictionary is another piece of information that must be carefully con-
structed. First of all, the field.expand.used and field.evaluateInlineCode.

used are required, whether we want to activate expand and evaluateInlineCode

or not. It is required by the corresponding widgets. The add input name key con-
tains the name the content object will recieve and UPDATE SUBMIT just tells the
form generator that the form was actually submitted and action should be taken.
Also note that all form entries representing a field have a “field.” prefix, which is
done by the widgets. How did I know all these variable names? Parallel to writ-
ing the functional test, I just created a “ZPT Page” on the browser, looking at
the HTML source for the names and values. There is no way I would have remem-
bered all this!

On line 42, we check whether the request was successful. Code 302 signalizes a
redirect and on line 43–44 we check that we are redirected to the correct page.

Now, it is time to check in the ZODB whether the object has really been created
and that all data was set correctly. On line 46 we retrieve the object itself and con-
sequently we check that the source is set correctly and the evaluateInlineCode

flag was turned on (line 48) as the request demanded in the form (line 39).

. Line 50–63: Before we can test whether the data of a “ZPT Page” can be edited
correctly, we have to create one. Here the createPage() method comes in handy,
which quickly creates a page that we can use. Having done previous test already,
the contents of the form dictionary should be obvious.

Since the edit page returns itself, the status of the response should be 200. We
also inspect the body of the response to make sure that the temlpate was stored
correctly.

416
Zope 3 Developer’s Book

PART VII WRITING TESTS

One extremly useful feature of the BrowserTestCase is the check for broken links
in the returned page. I would suggest that you do this test whenever a HTML
page is returned by the response.

. Line 65–70: Here we simply test the default view of the “ZPT Page”. No compli-
cated forms or environments are necessary. We just need to make sure that the
template is executed correctly.

43.3 Running Functional Tests

The testing code directly depends on the Zope 3 source tree, so make sure to have
it in your Python path. In Un*x/Linux we can do this using

export PYTHONPATH=$PYTHONPATH:ZOPE3/src

where ZOPE3 is the path to our Zope 3 installation. Furthermore, functional tests
depend on finding a file called ftesting.zcml, which is used to bring up the Zope
3 application server. Therefore it is best to just go to the directory ZOPE3, since
there exists such a file. You can now execute our new funtional tests using

python path/to/ftest/test_zptpage.py

You will notice that these tests will take a couple seconds (5-10 seconds) to run.
This is okay, since the functional tests have to bring up the entire Zope 3 system,
which by itself will take about 4-10 seconds.

...

--

Ran 3 tests in 16.623s

OK

As usual you also use the test runner to execute the tests.

CHAPTER 43 WRITING FUNCTIONAL TESTS

43.3. RUNNING FUNCTIONAL TESTS
417

Exercises

1. Add another functional test that checks the “Preview” and “Inline Code” screen.

418
Zope 3 Developer’s Book

PART VII WRITING TESTS

CHAPTER 44

CREATING FUNCTIONAL DOCTESTS

Difficulty

Sprinter

Skills

• You should be familiar on how to start Zope 3 and use the Web UI.

Problem/Task

When writing functional tests, as we have done in the previous chapter, we first
have to use the Web UI to see what and how we want to test. We also often need
to look at the HTML code to determine all important form data elements. Then
we start to write some Python code to mimic the behavior, which is often very
frustrating and tedious, to say the least. Wouldn’t it be nice, if some mechanism
would record our actions and then simply convert the recorded session to a test that
we can simply comment on? This chapter will tell you exactly how to do this using
functional doctests.

Solution

In the previous chapter we developed some functional tests for the common tasks
of a “ZPT Page”, creating the component, edit the content, and finally calling the
default view to render the page. In this chapter we will recreate only the rendering
of the template for simplicity.

Creating functional doctests requires some specific setup of Zope 3 and a nice
Python script called tcpwatch.py by Shane Hathaway. TCP Watch will record

419

420
Zope 3 Developer’s Book

PART VII WRITING TESTS

the HTTP requests and responses for us, which we will use to create the functional
tests. Next a script called dochttp.py is used to convert the TCP Watch output
to a functional doctest, which you can then document and adjust as you desire.

44.1 Step I: Setting up the Zope 3 Environment

The best way to run a recording session is to have a clean ZODB. Therefore, save
your old Data.fs as Data.fs.orig and remove Data.fs. This way you start at
the same position as the functional testing framework. Also, the functional tests
know only about one user with login “mgr” and password “mgrpw”. The user has
the “zope.Manager” role. You will need to setup this user, if you want to be able to
access all screens. The user is easily added by placing the following two directives to
principals.zcml:

1 <principal

2 id="zope.mgr"

3 title="Manager"

4 login="mgr"

5 password="mgrpw" />

6

7 <grant role="zope.Manager" principal="zope.mgr" />

In fact, I just simply copied this code from the ftesting.zcml file, which is
actually used when running the functional tests.

Now simply start Zope 3. I assume for the rest of this chapter that Zope runs on
port 8080. Since we only want to test the rendering of the ZPT, add a a new “ZPT
Page” via the Web GUI having the following template code:

1 tml>

2 <body>

3 <h1 tal:content="modules/time/asctime" />

4 </body>

5 html>

44.2 Step II: Setting up TCP Watch

As mentioned before, TCP Watch is used to record a Web GUI session. The distri-
bution of the script can be found on Shane’s Web site, http://hathawaymix.org/

Software/TCPWatch. Download the latest version.
Once the download is complete, untar the archive.

tar xvzf tcpwatch-1.3.tar.gz

Now enter the newly created directory tcpwatch. You can now install the script
by calling
python setup.py install

CHAPTER 44 CREATING FUNCTIONAL DOCTESTS

44.3. RECORDING A SESSION
421

You might have to be root to call this command, since Python might be installed in
a directory you do not have write access to.

Now create a temporary directory that can be used by TCP Watch to store the
collected requests and responses. The easiest will be

mkdir tmp

Start the script using

/path/to/python/bin/tcpwatch.py -L 8081:8080 -s -r tmp

The -L option tells TCP Watch to listen on port 8081 for incoming connections,
-s outputs the result to stdout instead of a graphical window, and -r〈dir〉 specifies
the directory to record the session.

Once started you can access Zope also via port 8081, except that all communica-
tion between the client and server is reported by TPC Watch.

44.3 Step III: Recording a Session

Now that everything is setup, you can just do whatever you want via port 8081.
Don’t forget to log in as “mgr” on port 8081, so that the authentication will also
work via the functional test. In our case, we just call the URL http://localhost:

8081/newzptpage, which will render the page output the result, all of which is
recorded.

Once you are done recording, shut down TPC Watch using CTRL-C. You may
also shut down Zope 3.

44.4 Step IV: Creating and Running the Test

Once the session is recorded, you can convert it to a functional test using

Python ZOPE3/src/zope/app/tests/dochttp.py ./tmp > zptpage_raw.txt

I prefer to store the output of this script in a temporary file and copy request for
request into the final text file. The raw functional test should look like this:

>>> print http(r"""

... GET /newzptpage HTTP/1.1

... Cache-Control: no-cache

... Pragma: no-cache

... """)

HTTP/1.1 200 Ok

Content-Length: 72

Content-Type: text/html;charset=utf-8

<BLANKLINE>

<html>

422
Zope 3 Developer’s Book

PART VII WRITING TESTS

<body>

<h1>Thu Aug 26 12:24:26 2004</h1>

</body>

</html>

<BLANKLINE>

Our final functional test will be stored in zptpage.txt though. Since we added
the newzptpage object before the recording session, our final test file must add this
object via Python code. Here is the final version of zptpage.txt:

1 ========

2 ZPT Page

3 ========

4

5 This file demonstrates how a page template is rendered in content

6 space. Before we can render the page though, we have to create one. The

7 template content will be:

8

9 >>> template = u’’’\

10 ... <html>

11 ... <body>

12 ... <h1 tal:content="modules/time/asctime" />

13 ... </body>

14 ... </html>’’’

15

16 Next we have to create the ZPT Page in the root folder. The root folder of the

17 test setup can be simply retrieved by calling ‘getRootFolder()‘. At the end we

18 have to commit the transaction, so that the page will be stored in the ZODB

19 and available for requests to be accessed.

20

21 >>> from transaction import get_transaction

22 >>> from zope.app.zptpage.zptpage import ZPTPage

23 >>> root = getRootFolder()

24 >>> root[’newzptpage’] = ZPTPage()

25 >>> root[’newzptpage’].setSource(template, ’text/html’)

26 >>> get_transaction().commit()

27

28 Now that we have the page setup, we can just send the HTTP request by calling

29 the function ‘http()‘, which will return the complete HTTP response. When

30 comparing the

31

32 >>> print http(r"""

33 ... GET /newzptpage HTTP/1.1

34 ... Cache-Control: no-cache

35 ... Pragma: no-cache

36 ... """)

37 HTTP/1.1 200 Ok

38 Content-Length: 72

39 Content-Type: text/html;charset=utf-8

40 <BLANKLINE>

41 <html>

42 <body>

43 <h1>...</h1>

44 </body>

45 </html>

46 <BLANKLINE>

CHAPTER 44 CREATING FUNCTIONAL DOCTESTS

44.4. CREATING AND RUNNING THE TEST
423

. Line 21–26: Here we add a “ZPT Page” named “newzptpage” to the root folder.
This is identical to the method we created in the previous chapter.

. Line 43: Here I replaced the date/time string with three dots (...), which means
that the content is variable. This is necessary, since the session and the functional
test are run at different times.

Now that the test is written we make it runnable with a usual setup. In a file
named ftests.py add the following test setup.

1

�
�������� unittest

2 �
����� zope.app.tests.functional
�
�������
 FunctionalDocFileSuite

3

4 ��	�� test_suite():

5 ��	������� FunctionalDocFileSuite(’zptpage.txt’)

6

7

�
� __name__ == ’__main__’:

8 unittest.main(defaultTest=’test_suite’)

When running a functional doctest, you just use the FunctionalDocFileSuite

class to create a doctest suite. You are now able to run the tests with the test runner
as usual.

424
Zope 3 Developer’s Book

PART VII WRITING TESTS

CHAPTER 45

WRITING TESTS AGAINST INTERFACES

Difficulty

Newcomer

Skills

• You should be familiar with Python interfaces. If necessary, read the “An
Introduction to Interfaces” chapter.

• You should know about the unittest package, especially the material covered
in the “Writing Basic Unit Tests” chapter.

Problem/Task

When one expects an interface to be implemented multiple times, it is good to
provide a set of generic tests that verify the correct semantics of this interface. In
Zope 3 we refer to these abstract tests as “interface tests”. This chapter will describe
how to implement and use such tests using two different implementations of a simple
interface.

Solution

45.1 Introduction

In Zope 3 we have many interfaces that we expect to be implemented multiple times.
The prime example is the IContainer interface, which is primarily implemented by

425

426
Zope 3 Developer’s Book

PART VII WRITING TESTS

Folder, but also by many other objects that contain some other content. Here it
would be useful to implement some set of tests which verify that Folder and other
classes correctly implement IContainer.

Interface tests are abstract tests – i.e. they do not run by themselves, since
they do not know about any implementation – that provide a set of common tests.
The advantage of these tests is that the implementor of this interface immediately
has some feedback about his implementation of the interface. However, one should
not mistake the interface tests to be a replacement of a complete set of unit tests,
but rather as a supplement. Interface tests by definition cannot test implementation
details, something that is required of unit tests. Additional tests also ensure a higher
quality of code.

There are a couple of characteristics that you will be able to recognize in any
interface test. First, an interface should always have a test that verifies that
the interface implementation fulfills the contract. This can be done using the
verifyObject(interface,instance) method, which is found at zope.interface.

verify. Second, while the interface test is abstract, it needs to get an instance of
the implementation from somewhere. For this reason an interface test should always
provide an abstract method that returns an instance of the object. By convention
this method is called makeTestObject and it should look like that:

1 �
	�� makeTestObject(� 	 � �):
2 � �

� � 	 NotImplemented()

Each test case that inherits from the interface test should then realize this method
by returning an instance of the object to be tested.

But how can we determine what should be part of an interface test? The best way
to approach the problem is by thinking about the functionality that the attributes
and methods of the interface provide. You may also ask about its behavior inside the
system? Interface tests often model actual usages of an object, while implementation
tests also cover a lot of corner cases and exceptions, something that is often hard to
do with interface tests, since you are bound to the interface-declared methods and
attributes. From another point of view, since tests should document an object, think
of interface tests as documentation on how the interface should be used and behave
normally.

45.2 The ISample Interface, Its Tests, and Its Implementations

Reusing the examples from the unit and doc test chapters, we develop an ISample

interface that provides a title attribute and uses the methods getDescription

and setDescription for dealing with the description of the object.

CHAPTER 45 WRITING TESTS AGAINST INTERFACES

45.2. ISample, TESTS, & IMPLEMENTATIONS
427

Again, we would like to keep the code contained in one file for simplicity, so open
a file test isample.py anywhere and add the following interface to it:

1 �
����� zope.interface
�
��� ���� implements, Interface, Attribute

2

3
��������� ISample(Interface):

4 """This is a Sample."""

5

6 title = Attribute(’The title of the sample’)

7

8 ��	�� setDescription(value):

9 """Set the description of the Sample.

10

11 Only regular and unicode values should be accepted.

12 """

13

14 ��	�� getDescription():

15 """Return the value of the description."""

I assume you know about interfaces, so there is nothing interesting here. The
next step is to write the interface tests, so add the following TestCase class. You
will notice how similar these tests are to the ones developed before.

1

�
�������� unittest

2 �
����� zope.interface.verify
�
��� ���� verifyObject

3

4
��������� TestISample(unittest.TestCase):

5 """Test the ISample interface"""

6

7 ��	�� makeTestObject(� 	 � �):
8 """Returns an ISample instance"""

9 � �
� � 	 NotImplemented()

10

11 ��	�� test_verifyInterfaceImplementation(� 	 � �):
12

� 	 � � .assert_(verifyObject(ISample, � 	 � � .makeTestObject()))
13

14 ��	�� test_title(� 	 � �):
15 sample = � 	 � � .makeTestObject()
16

� 	 � � .assertEqual(sample.title, None)

17 sample.title = ’Sample Title’

18
� 	 � � .assertEqual(sample.title, ’Sample Title’)

19

20 ��	�� test_setgetDescription(� 	 � �):
21 sample = � 	 � � .makeTestObject()
22

� 	 � � .assertEqual(sample.getDescription(), ’’)

23 sample.setDescription(’Description’)

24
� 	 � � .assertEqual(sample.getDescription(), ’Description’)

25
� 	 � � .assertRaises(AssertionError, sample.setDescription, None)

. Line 4–6: Here is the promised method to create object instances.

. Line 8–9: As mentioned before, every interface test case should check whether the
object implements the tested interface. It is the easiest test you will ever write,
and it is one of the most important ones.

428
Zope 3 Developer’s Book

PART VII WRITING TESTS

. Line 11–15: This test is equivalent to the test we wrote before, except that we do
not create the sample instance by using the class, but using some indirection by
asking the makeTestObject() to create one for us.

. Line 17–22: In interface tests it does not make much sense to test the accessor and
mutator method of a particular attribute seperately, since you do not know how
the data is stored anyway. So, similar to the test before, we test some combinations
of calling the description getter and setter.

Now that we have an interface and some tests for it, we are ready to create an
implementation. In fact, we will create two, so that you can see the independence of
the interface tests to specific implementations.

The first implementation is equivalent to the one we used in the unit test chapter,
except that we call it Sample1 now and that we tell it that it implements ISample.

1
�
������� Sample1(object):

2 """A trivial ISample implementation."""

3

4 implements(ISample)

5

6 # See ISample

7 title = None

8

9 ��	�� __init__(� 	 � �):
10 """Create objects."""

11
� 	 � � ._description = ’’

12

13 ��	�� setDescription(� 	 � � , value):

14 """See ISample"""

15 assert isinstance(value, (str, unicode))

16
� 	 � � ._description = value

17

18 ��	�� getDescription(� 	 � �):
19 """See ISample"""

20 ��	������� � 	 � � ._description

The second implementation uses Python’s property feature to implement its
title attribute and uses a different attribute name, desc, to store the data of the
description.

1
�
������� Sample2(object):

2 """A trivial ISample implementation."""

3

4 implements(ISample)

5

6 ��	�� __init__(� 	 � �):
7 """Create objects."""

8
� 	 � � .__desc = ’’

9
� 	 � � .__title = None

10

11 ��	�� getTitle(� 	 � �):
12 ��	������� � 	 � � .__title
13

CHAPTER 45 WRITING TESTS AGAINST INTERFACES

45.2. ISample, TESTS, & IMPLEMENTATIONS
429

14 ��	�� setTitle(� 	 � � , value):

15
� 	 � � .__title = value

16

17 ��	�� setDescription(� 	 � � , value):

18 """See ISample"""

19 assert isinstance(value, (str, unicode))

20
� 	 � � .__desc = value

21

22 ��	�� getDescription(� 	 � �):
23 """See ISample"""

24 �
	������� � 	 � � .__desc
25

26 description = property(getDescription, setDescription)

27

28 # See ISample

29 title = property(getTitle, setTitle)

. Line 26: While this implementation chooses to provide a convenience property to
setDescription and getDescription, it is not part of the interface and should
not be tested in the interface tests. However, the specific implementation tests
should cover this feature.

These two implementations are different enough that the interface tests should
fail, if we would have included implementation-specific testing code. The tests can
now be implemented quickly:

1
��������� TestSample1(TestISample):

2

3 ��	�� makeTestObject(� 	 � �):
4 �
	������� Sample1()

5

6 # Sample1-specific tests are here

7

8

9
��������� TestSample2(TestISample):

10

11 ��	�� makeTestObject(� 	 � �):
12 �
	������� Sample2()

13

14 # Sample2-specific tests are here

15

16

17 ��	�� test_suite():

18 ��	������� unittest.TestSuite((

19 unittest.makeSuite(TestSample1),

20 unittest.makeSuite(TestSample2)

21))

22

23

�
� __name__ == ’__main__’:

24 unittest.main(defaultTest=’test_suite’)

. Line 1–6 & 9–14: The realization of the TestISample tests is easily done by imple-
menting the makeTestObject() method. We did not write any implementation-
specific test in order to keep the code snippets small and concise.

430
Zope 3 Developer’s Book

PART VII WRITING TESTS

. Line 12–19: This is just the usual test environment boiler plate.

To run the tests, you need to make sure to have 〈ZOPE3〉/src in your PYTHONPATH,
since this code depends on zope.interface. Then you can simply execute the code
using

python test_sampleiface.py

from the directory containing test sampleiface.py.

Configuration file found.

Running UNIT tests at level 1

Running UNIT tests from /opt/zope/Zope3/Zope3-Cookbook

6/6 (100.0%): test_verifyInterfaceImplementation (...leiface.TestSample2)

--

Ran 6 tests in 0.004s

OK

As you can see, you just wrote three tests, but for the two implementations six
tests run. Interface tests are a great way to add additional tests (that multiply
quickly) and they are a great motivation to keep on writing tests, a task that can be
annoying sometimes.

CHAPTER 45 WRITING TESTS AGAINST INTERFACES

45.2. ISample, TESTS, & IMPLEMENTATIONS
431

Exercises

1. Develop implementation-specific tests for each ISample implementation.

2. Change the ISample interface and tests in a way that it uses a description

attribute instead of getDescription() and setDescription(). Note: The
requirement that the description value can only be a regular or unicde string
should still be valid.

432
Zope 3 Developer’s Book

PART VII WRITING TESTS

PART VIII
Appendix

APPENDIX A

GLOSSARY OF TERMS

Adapter

This basic component is used to provide additional functionality for an object. For-
mally, it uses one interface (implemented by an object) to provide (adapt to) another
interface. For example, given an object IMessage one can develop an adapter that
provides the interface IMailSubscription for this object.

The adapter can also be seen as some form of object wrapper that is able to use
the object to provide new or additional functionality. The adapter’s constructor will
therefore always take one object as argument. This object is commonly known as
the context.

Advanced uses also allow multi-adaptation, where several objects – each imple-
menting a specified interface – are adapted to one interface. Therefore the adapter
has several contexts.

See also: Component Architecture

Annotation

Annotations are additional, non-critical pieces of information about an object. This
includes all meta data; for example the Dublin Core.

An annotations provides an object-wide data namespace and is identified by the
annotation key. Some care should be taken to choose the key wisely to avoid key
name collisions. A safe way is to use XML-like namespace declarations, like http:

//namespaces.zope.org/mailsubscription#1.1, but the safest way is to use the
dotted name of the object that creates an annotation, like zope.app.messageboard.

MailSubscription.
Annotations are also often used by adapters to store additional data to save its

state. For example the IMessage’s MailSubscription adapter stores the subscribed
E-mail addresses in an annotation of the message.

435

436
Zope 3 Developer’s Book

PART VIII APPENDIX

The most common form of an annotation is the attribute annotation, which sim-
ply stores the annotation in a special attribute of the object. An object simply has
to implement the IAttributeAnnotable marker interface to allow attribute anno-
tations.

Reference: zope.app.annotation.interfaces.IAnnotations, zope.app.annotation.

interfaces.AttributeAnnotatable

Cache

The cache allows you to store results of expensive operations using a key. For exam-
ple, sometimes it is not necessary to render a page template any time a request is
made, since the output might not change for a long time. The most common imple-
mentation of a cache is the RAM cache, which stores the cache entries in RAM for
fast access. Caches, when carefully used, can increase the performance of your ap-
plication while not disturbing the dynamics of it.

Reference: zope.app.cache.interfaces.ICache

Checker

Checkers describe the security assertions made for a particular type (types are classes
that inherit object). Given an object and an attribute name, the checker can tell
you whether the current user has the right to access or even mutate the attribute.
The checker can also create a protective proxy for a given object.

A common checker is the name-based checker, where read and write permissions
are stored for each attribute name. These checkers have also the advantage that they
can be easily introspected about their configuration.

Reference: zope.security.interfaces.IChecker

See also: Security, Proxy

Component

A component can be any Python object and represents the most fundamental con-
cept of Zope 3. Components are commonly classes, though they can be any arbitrary
Python object. The fundamental components are Service, Adapter, Utility, Presen-
tation, Content, and Factory. One could consider Interface to be a component too,
though they are usually considered utilities.

See also: Component Architecture, Service, Adapter, Utility, Presentation, Factory,
Interface

APPENDIX A GLOSSARY OF TERMS
437

Component Architecture

The component architecture is a set of five fundamental services (registries) in which
the specific components are managed. The services are: Service Manager (or also
known as the Service Service), Adapter Service, Utility Service, Presentation Service
(also known as View Service), and Factory Service.

Components can interact through the interfaces they implement. Using interfaces
and the above mentioned services, you are able build any component-based system
you can image. The advantage over components versus larger mix-in based classes
and convention-driving naming schemes is that components have much better defined
functionality, clear interaction contracts and better reusability.

Reference: zope.component.interface.IComponentArchitecture

See also: Component, Service

Container

A container is an object that can contain other objects, differentiating its entries
by name. It is very similar to a dictionary. In fact, the container implements the
entire Python dictionary (mapping) API, so that the same syntax may be used. Any
content object that contains children should implement the container interface.

One important feature of the container has become the fact that it can restrict the
types of components it can contain. This is accomplished by setting pre-conditions
on the setitem () method of the container interface.

Reference: zope.app.container.interfaces.IContainer

See also: Folder, Content

Content

This basic component stores data/content in the object database or anywhere else.
Interfaces that are meant to be used by content components usually provide the
IContentType marker interface.

Content components are usually created by factories, which are defined in the
configuration. Prominent examples of content components include File, Image,
TemplatedPage, and SQLScript.

Reference: zope.app.content.interfaces.IContentType

See also: Component

438
Zope 3 Developer’s Book

PART VIII APPENDIX

Context

The context is usually a place in the object hierarchy from which code is executed.
Having components be associated with a context, we are able to provide location-
specific implementations and instances of a particular component. This allows us to
override, enhance or enrich the functionality of a component as we walk down a path
in the object tree.

The concept of of contexts is also used for adapters and views. There they describe
the component that is wrapped by the adapter. For the view the context is simply
the component that the view is for.

See also: Global Components, Local Components, Adapter, View

Doctests

Doctests provide the capability of writing unit tests inside docstrings or simple text
files. However, a test does not look like straight Python code, but like the screen
output of an interactive Python session.

Doctests allow us to use the tests themselves as documentation in forms of exam-
ples. It is also much easier this way to document the steps the test goes through.
Doctests have therefore become the primary way to write unit tests in Zope 3.

Reference: zope.testing.doctestunit

See also: Tests, Unit Tests, Functional Tests

Document Template Markup Language (DTML)

DTML uses custom XML tags to create templates for markup. It was the original
templating technology in Zope and is still favored by many developers, since it is easy
to understand and extend. DTML is available in Zope 3 as a content component
and is used for dynamic SQL scripts. DTML, in contrast to ZPT, does not require
the template or the output to be well-formed XML.

Reference: zope.documenttemplate

See also: Zope Page Template

Dublin Core

The Dublin Core defines a finite set of meta-data attributes, such as “name” and
“title”. For a complete list of attributes including detailed descriptions you can see
the relevant chapter in the book, the interfaces, or the official Dublin Core Web site
(http://www.dublincore.org/).

APPENDIX A GLOSSARY OF TERMS
439

Reference: zope.app.dublincore.interfaces.IZopeDublinCore

See also: Annotation, Meta-data

Event

An event in the Zope 3 sense is an object that represents a taken or to be taken
action of the system. An event can contain and represent anything as long as
it implements IEvent. Some common examples include ObjectCreatedEvent,
ObjectModifiedEvent and IObjectCopiedEvent. All these belong to the group of
object events and always carry the affected object with them.

Reference: zope.app.event.interfaces.IEvent

See also: Event Channel, Event Subscriber

Event Channel

An event channel (or in general an ISubscribable object) can send events to a
list of event subscribers. When a subscription is made, the subscriber object,
an event type and a filter is passed. The subscriber is only notified when the
to-be-distributed event matches the event type and the filter condition is satisfied.

Think about the event channel in terms of a mailing list manager, like Mailman.
People can subscribe with an E-mail address (event subscriber) to a particular mail-
ing list (event type). When someone sends a mail to a mailing list (which goes
through the list manager), the list manager figures out to which mailing list the mail
(event) should go and sends it (notifies) all subscribers.

See also: Event, Event Subscriber

Event Subscriber

An event subscriber can be subscribed to an event channel. Whenever an event, in
which the subscriber is interested in, arrives the event channel, the event subscriber
is notified about the event.

See also: Event, Event Channel

Factory

A factory is responsible for creating other components. Additionally one can check
what interfaces will be implemented by the component the factory creates. Factories
also carry a title and description, which can be used in user interfaces to represent
the factory.

440
Zope 3 Developer’s Book

PART VIII APPENDIX

Note that factories should never require a permission to be executed, since they
just create an object. Just because an object can be created, it does not mean that
the creator has any permissions to access anything in the object.

Reference: zope.component.interfaces.IFactory

See also: Component, Component Architecture

Field

Fields are extensions to interface Attributes that describe an object’s attribute in
much more detail, since a lot of meta data about the attribute is supplied. Some
fields that are available are: Text, TextLine, Int, Float, Bool, Choice, Tuple, List,
Set, Dict, Date, Time, Datetime, Bytes, BytesLine, and Password.

Fields are used to validate attribute values and to create input elements in user
interfaces.

Reference: zope.schema.interfaces

See also: Schema, Form, Widget

Folder

The folder is used in content space as the primary container-like object. It places
no restrictions on the type of object it can contain. Furthermore, any folder can be
upgraded to become a site.

Folders implement the IContainer interface, of course.

Reference: zope.app.folder.interfaces.IFolder

See also: Container, Content, Site

Form

Practically, a form is the view of a schema or parts of a schema. For the browser,
the form is able to produce a full HTML form whose data input is converted to a na-
tive Python object, validated and finally stored in the component that implements
the schema. Forms, in combination with schemas, are Zope 3’s solution for autogen-
erated input and display GUIs that are solely based on information provided by the
component.

See also: Schema, Field, Widget, View

APPENDIX A GLOSSARY OF TERMS
441

Functional Tests

This class of tests run under a fully functional system. Often we use them to test
whether views are generated and handle data correctly and whether their interaction
with low-level components works without failure.

Functional tests are usually specific to a particular presentation type, such as the
Web browser or FTP.

Reference: zope.app.tests.functional

See also: Tests

Global Components

Any component that is created without having a context is considered global and
will be always available. Commonly, global components are created during startup,
mainly through ZCML directives.

Global components cannot store a state between Zope startups. Whenever Zope
is shut down all of the component is destroyed. Therefore, the ZCML directives
completely describe the state of such components. Care should be taken that no
other mechanism can modify their state.

See also: Component, Local Component, Zope Configuration Markup Language

Interaction

The interaction decides whether all involved participation (acting principals) have
the necessary permission required to access an object’s attribute. The interaction is
the heart of the security implementation, since it applies the rules of the system on
particular actions.

Reference: zope.security.interfaces.IInteraction

See also: Security, Security Policy, Participation, Principal

Interface

An interface in Zope, like in many other programming languages and environments,
describes the functionality of an object in a formal way. It specifies all methods and
attributes of an object that are part of the public API. Interfaces are also used as
the primary API documentation.

Reference: zope.interface.interfaces.IInterface

See also: Component, Component Architecture

442
Zope 3 Developer’s Book

PART VIII APPENDIX

Internationalization

Internationalization, commonly abbreviated as I18n, is the process of making a soft-
ware adjustable to different regions and languages. This is not just about translat-
ing text, but also allowing different number and date/time formats, unicode support,
text encoding/decoding and so on. Zope 3 is completely internationalized.

See also: Localization, Locale

Local Components

These are components that are only available in a relative context or place. They
are defined in Site objects (special folders) and will be available in the site and its
children. The creation and configuration is commonly accomplished via the Web-
based GUI (ZMI).

Local Components can store a state across Zope startups, since they are stored
in the ZODB.

See also: Component, Global Component, Site, Context

Locale

A locale is an object that contains specific information about a user’s region and
language, such as number and date/time formats, month names, and so on. Zope 3
uses LDML-based XML locale files to get its data for over 200 locales. See http:

//www.openi18n.org for more information.

Reference: zope.i18n.interfaces.locale.ILocale

See also: Internationalization, Localization

Localization

Localization, commonly abbreviated as L10n, is the actual process of making a soft-
ware available for a particular region and language. Since the region information is
usually available via the locale, the L10n process for Zope 3 consists mainly of trans-
lating message strings from the standard message catalog.

See also: Internationalization, Locale, Message Catalog

Location

A location is a place along the object tree. Objects, that support themselves to
be placed into a location, have information about its parent and the name through

APPENDIX A GLOSSARY OF TERMS
443

which it is available from the parent. A common example of components that are
commonly given a location are content components.

Obviously, not all components must have a location, such as all global components.

Reference: zope.app.location.interfaces.ILocation

See also: Local Components, Global Components, Content

Message Catalog

Message catalogs are collections of translations for a particular language and domain.
For filesystem-based code, the standard Gettext message catalog format (also known
as PO files) and directory structure is used, while the local version makes use of
advanced Python structures.

Reference: zope.i18n.interfaces.IMessageCatalog

See also: Localization, Domain

Meta-data

Meta-data in Zope 3 is data that is additional data about an object. It usually
allows the object to be better integrated in its environment without convoluting
the object’s original data namespace. Examples of meta-data items include “title”,
“author”, “size” and “modification data” of an object.

See also: Annotation, Dublin Core

Namespace

In Zope 3 this term is used in two different ways. When dealing with XML (like
ZCML or ZPT), the term namespace is used to refer to XML namespaces, which,
for example, play a vital role by providing new directives in ZCML.

The other use of namespace is in traversable URLs. Whenever a path segment
starts and ends with “++” a new traversal namespace is accessed. Traversal names-
paces are primarily used to separate content from software from documentation, but
also for inserting new parameters, like the skin to be used or the virtual hosting
URL. Available namespaces include: etc, view, resource, attribute, item, acquire,
skin, help, vh, and apidoc.

Reference: zope.app.traversing.namespace

See also: Zope Configuration Markup Language, Traversal

444
Zope 3 Developer’s Book

PART VIII APPENDIX

Pair Programming

When pair programming, two developers sit at one computer and develop together
a piece of software. The idea is that the driver (the programmer doing the typing)
is constantly checked by the second person for typos, bugs and design flaws. Pair
programming also accelerates when design decisions need to be made, since there is
immediate feedback of ideas.

See also: Sprint

Participation

The participation, which would have been better named participant, represents one
participating party (principal) in the interaction. The participation consists basically
of a principal-interaction pair.

Reference: zope.security.interfaces.IParticipation

See also: Security, Principal, Interaction, Security Policy

Permission

Permissions are used to allow or deny a user access to an object’s attribute. They
represent the smallest unit in the access control list. Permissions are just common
strings, except for zope.security.checker.CheckerPublic which is the permis-
sion that makes an attribute available to everyone (the public).

See also: Security, Checker, Role

Persistent

Objects that are considered “persistent” can be stored in the ZODB and attribute
mutations are automatically registered and stored as well. Objects that want to be
persistent must inherit persistent.Persistent or provide another implementation
of the persistent interface.

Reference: persistent.interfaces.IPersistent

See also: Zope Object Database

Presentation

Presentation components provide an interface between the system-internal compo-
nents and the user interface or other communication protocol. This includes Browser,

APPENDIX A GLOSSARY OF TERMS
445

WebDAV, XML-RPC and FTP. However, the output can be anything one could im-
age. In this sense, presentation components are like adapters, except that they com-
monly adapt to external interfaces instead of formal Python/Zope ones.

If a presentation component does not create a publishable presentation output
(i.e. just an HTML snippet instead of an HTML document), then it can also provide
a formal interface. These type of presentations are then used by other presentation
components. A prime example are widgets, which provide view snippets of fields.

Reference: zope.component.interfaces.IPresentation

See also: Component, Component Architecture, View, Resource

Principal

In general, a principal is an agent using the system. The system can associate
permissions with a principal and therefore grant access to the objects that require
the permissions. Principals can be security certificates, groups, and most commonly
users.

Reference: zope.app.security.interfaces.IPrincipal

See also: Security, Permission, User

Proxy

Proxies, in general, are object wrappers that either protect objects or add additional
functionality to them. In Zope, however, the main proxy class is defined in the
security package and is responsible for providing a protective layer around the object,
so that only principals with sufficient permissions can access the attributes of the
object.

Reference: zope.security.proxy.Proxy

See also: Security, Checker

Publisher

The Zope publisher is responsible for publishing a request in the Zope application.
Thereby it relies heavily on the request’s information to find the object, handle output
and even know about the principal that sent the request. Most of the publishing
process, however, is delegated to other components.

Reference: zope.publisher.interfaces.IPublisher

See also: Request, Principal, Component

446
Zope 3 Developer’s Book

PART VIII APPENDIX

Relational Database Adapter

A database adapter is a connection from Zope to a specific relational database. For
each existing relational database there is a slightly different database adapter. Each
instance of an adapter connects to one particular database.

Reference: zope.app.rdb.interfaces.IZopeDatabaseAdapter

Python Developer

This term is used to refer to the audience that will develop filesystem-based Python
packages and products for Zope 3. Python Developers are the most advanced group
of developers. It is expected that they know Python very well and are familiar with
common programming patterns and formal object-oriented development.

Request

A request contains all the information the system will know about a user’s inquiry
to the publisher. Information the request carries include the path to the accessed
object, the user, the user’s region and language, the output format of the returned
data, possible environment variables, and input data.

Reference: zope.publisher.interfaces.IRequest

See also: Publisher, User

Resource

A resource is a presentation component that does not depend on another component.
It is used to provide context insensitive data. Most commonly, browser-specific
resources are used to provide CSS, Javascript and picture files for an HTML page.

Reference: zope.component.interfaces.IResource

See also: Component, Presentation, View

Role

Roles are collections of permissions that can be granted to a principal. They are
provided by the standard Zope security policy, which is also responsible for the
management of the roles.

Note that the role is a concept that must not be provided by all security policies
and therefore application code should not depend on them.

Reference: zope.products.securitypolicy.interfaces.IRole

APPENDIX A GLOSSARY OF TERMS
447

See also: Security, Permission, Principal

Schema

A schema is an interfaces that contains fields instead of methods and attributes.
Schemas are used to provide additional meta-data for the fields it supports. This
additional data helps the system to validate values and autogenerate user interfaces
using widgets, such as HTML forms.

See also: Field, Form, Widget

Scripter

This audience has a classic HTML, CSS and Javascript development background.
They are using Zope to develop dynamic Web pages as easily as possible. They are
not familiar with any programming patterns and formal development. They just
want to get the job done!

Zope 3 tries to provide facilities for this group by allowing content-space templat-
ing and high-level TTW development of components. We also intend to provide mi-
gration paths for the scripter to become a real Zope 3 developer.

Security

Zope has a well-designed security model that allows to protect its components in
untrusted environments. Untrusted environments are marked by uncontrollable input
and object access. Whenever a component is requested by untrusted code, it is put
in a spacesuit, the proxy. When the untrusted code requests an attribute the proxy
checks with the object’s checker whether the registered user for the request has the
necessary permission to access the attribute.

The decision process whether a principal has the required permission for an ob-
ject’s attribute is up to the security to decide.

See also: Checker, Permission, Principal, Proxy, Role, Security Policy, Interaction,
Participation

Security Policy

The security policy is the blueprint for the interaction. Its only responsibility is to
create an interaction, given a set of participations. While roles are not necessary for
the security to function, the default Zope security policy provides extensive facilities
to manage and use roles in its decision process.

448
Zope 3 Developer’s Book

PART VIII APPENDIX

Reference: zope.security.interfaces.ISecurityPolicy

See also: Security, Interaction, Participation, Principal, Permission, Role

Service

A service provides some fundamental functionality to the system and its existence is
necessary for the system’s correct functioning. Services, unlike many other compo-
nents, do not self-destruct or are created every time they are being called. There-
fore it is possible for them to have some state. Global services are always completely
built up from scratch getting all its data from the configuration process, whereby lo-
cal implementations can store the state in the ZODB and are therefore saved over
any amount of runtimes.

See also: Component, Component Architecture

Session

A session allows to store a user’s state in an application. This is only important, if
the connection to the user is closed after every request, meaning that the state would
usually be lost. HTTP is a protocol that closes connections after each request, for
example.

Reference: zope.app.session.interfaces.ISession

Site

A site is a folder that can also contain software and configuration. It provides a
connection from content space to local software space and allows the development of
through-the-web components. From another point of view, a site simply provides a
local service manager.

Folders can always be converted to sites.

Reference: zope.app.site.interfaces.ISite

See also: Component, Component Architecture, Service, Folder

Sprint

A sprint in general is a two to three day session of intensive software development.
Since the idea stems from eXtreme Programming, hacking is not an option, but
instead disciplined pair programming, testing and documenting is asked for. Sprints
were used during the Zope 3 development to boost development and introduce the
software to interested parties.

APPENDIX A GLOSSARY OF TERMS
449

See also: Pair Programming

Template Attribute Language (TAL)

This extension to HTML allows us to do server-side scripting and templating with-
out using non-standard HTML. Since there exists valid HTML at any time, WYSI-
WIG tools like Dreamweaver can be used to edit the HTML without disturbing the
template scripting.

Reference: zope.tal

See also: TALES, Zope Page Template

Template Attribute Language Expression Syntax (TALES)

TALES are expressions that evaluate code of a specified type and return its results.
The various expression types are managed by the TALES engine. In a TALES
expression, one can specify the expression type at the beginning. Here are some of
the most common default expression types:

• “path: ” – This expression takes a URL-like path and tries to evaluate (traverse)
it to an object. This expression is the default one in most TALES engines.

• “string: ” – Returns a string, but it has interpolation built in that handles path
expressions.

• “python: ” – This expression returns the result of a Python expression.

• “not: ” – If the result of the following expression is a boolean, simply negate
that result.

• “exists: ” – Determine whether an object of a given path (as in path expression)
exists.

Reference: zope.tales.engine

See also: TAL, Zope Page Template

Tests

Tests are meant to check software for its functionality and discover possible bugs.
This programming technique was primarily pushed by eXtreme Programming, a
software development process that was used to develop Zope 3. There are several
levels of testing: unit, regression, and functional tests.

See also: Unit Tests, Functional Tests

450
Zope 3 Developer’s Book

PART VIII APPENDIX

Through-the-Web Development

This term, commonly abbreviated TTW development, refers to the process of devel-
oping software via the Zope 3 Web interface (ZMI). Developing TTW is often sim-
pler than hardcore Python product development and provides the scripter with a
path to migrate to more formal, component-oriented development. TTW-developed
components are also commonly known as local components, since they are only ap-
plicable for the site they were developed in.

See also: Zope Management Interface, Site, Local Component

Transaction

A transaction is a collection of actions in a database, in our case the ZODB. Zope
transactions, like relational database transactions, can be begun, committed, and
aborted. Upon commit, if the set of actions do not cause any problems, the actions
are executed. If errors occur an exception is raised. Sometimes errors happen at
different places of the system; in this case the pending list of actions can be aborted.

The process of first checking whether a commit will be successful and then doing
the actual commit is known as a two-phase commit of a transaction. Two-phase
commits are important for data integrity and consistency.

Reference: ZODB.interfaces.ITransaction

See also: Publisher, ZODB

Translation Domain

Not all words and phrases that will be ever used is Zope 3 are applicable in all
applications. Domains are used to separate translations by usage. For example, all
of the standard Zope 3 distribution uses the domain “zope”, whereby the Zope 3
Wiki uses “zwiki”.

Another use for domains is sometimes to differentiate between different meanings
of a word. For example, the word “Sun” could be the abbreviation for “Sunday”,
our star the “Sun” or the company “Sun” (Standford University Networks). So for
example, “Sun” as in “Sunday” could be in a domain called “calendar”, whereby
“Sun” as in our star could be in domain called “star”.

This utility is responsible for translating text string to a desired language. Af-
ter the translation, the mechanism also handles interpolation of data using the
“varname′′orthesimpler“varname” syntax. Common implementations of the do-
main make use of message catalogs, which provide the translations.

Reference: zope.i18n.interfaces.ITranslationDomain

APPENDIX A GLOSSARY OF TERMS
451

See also: Utility, Domain, Message Catalog, Internationalization, Localization

Traversal

Traversal is the process of converting a path to the actual object given a base object
(starting point). Traversal is a central concept in Zope 3, and its behavior can vary
depending for which purposes it is used.

For example, if you traverse a browser URL, the traversal mechanism must be
able to handle namespaces, views and other specialties and cannot be just a plain
object lookup. It is also possible to change the traversal behavior of a given object
by registering a custom traversal component for it.

Reference: zope.app.traversing.interfaces.ITraverslAPI

See also: Component, Namespace, View

Unit Tests

Unit Tests verify the correct functioning of the API and implementation details of
a single component. Thereby the tests should not rely on any other component or a
working environment. Unit Tests are the most commonly written tests and should
exist for every component of the system. Every Zope 3 package should have a tests

module that contains the unit tests.

Reference: unittest

See also: Tests, Doctests, Functional Tests

User

A user is any individual accessing the system via any communication method. While
the user might be authenticated, s/he can be anonymous, as it is the case before
the user logs into the system. The system associates various data with the user,
including username/password, region, language and maybe even the computer from
which s/he accesses Zope 3. Applications might associate other data with a user
based on their needs.

Reference: zope.app.pluggableauth.interfaces.IUserSchemafied

See also: Security, Principal

Utility

This basic component provides functionality to the system that does not depend
on state. If a particular utility is missing, it should not cause the system to fail.

452
Zope 3 Developer’s Book

PART VIII APPENDIX

Good examples of utilities are database connections, mailers, caches and language
interpreters.

If you have troubles to decide whether you want to use a service or utilities for
a particular functionality, think of the following: If the service is just a registry
of components that will be used, then it is better to implement and register the
components as utilities; the utility service functions like a registry as you can ask for
all utilities that implement a certain interface.

See also: Component, Component Architecture, Service

View

Views are presentation components for other components. They always require a
component (known as context) and a request to function. Views can take many
forms based on the presentation type of the request. For browser views, for example,
they usually just evaluate a template whose result (HTML) is returned to the client.

Reference: zope.component.interfaces.IView

See also: Component, Component Architecture, Presentation, Resource

Virtual Hosting

Virtual hosting, being HTTP-specific, allows one to run the Zope server behind
another Web server while still handling all the target links of the request correctly.
Virtual hosting is commonly used when Zope 3 is run behind an Apache installation,
which might provide a different URL than the one Zope determines from a hostname
lookup. The virtual URL can be specified via the “++vh++” namespace.

See also: Namespace

Volatile Objects

Volatile objects are object that appear in your traversal path, but are not persistent
and are destroyed with the end of a transaction. They cannot be used to store
persistent data. They are used as some sort of proxy, who looks up the data they
represent as needed. The most obvious example is a SQL object that retrieves and
stores its data in a relational database.

APPENDIX A GLOSSARY OF TERMS
453

WebDAV

WebDAV is an extension to HTTP that defines additional HTTP verbs that are
used to manage the available Web resources better. For example, it allows you to
store any meta data about an object and lock/unlock it for editing. Zope 3 supports
WebDAV partially.

Reference: zope.app.dav.interfaces

Widget

A widget is simply the view of a field, so it is specific to a presentation type. For the
browser widgets are used to autogenerate input and display HTML code for the field
of an object’s attribute. Widgets can also convert the data coming from an external
source (i.e. the browser) to a Python object that satisfies the field’s type.

Reference: zope.app.form.interfaces.IWidget

See also: Field, Form, Schema, View

Workflow

Workflows manage the state through which an object can pass and the processes
that cause the state change. There are two approaches to workflows. The first one
keeps track of the state of an object. The state can be changed to another using
a transition. If a user has the required permission, s/he can cause a transition to
another state. The other model (developed by WfMC) uses activities through which
the object can go through. Only the first one has been implemented in Zope 3 so
far.

Reference: zope.app.interfaces.workflow

ZConfig

This package allows one to write Apache-like configuration files that are automati-
cally parsed into configuration objects. ZConfig is particularly useful for configura-
tion that is likely to be edited by administrators, since they know this type of syn-
tax well. Zope 3 uses ZConfig files to setup its servers, ZODB and loggers.

Reference: ZOPE3/src/ZConfig/doc/zconfig.pdf

Zope Configuration Markup Language (ZCML)

ZCML is a Zope-specific XML dialect used to configure and build up the Zope 3
component architecture during startup. All global components are registered through

454
Zope 3 Developer’s Book

PART VIII APPENDIX

ZCML, except for a few bootstrap components. ZCML can be easily extended by
implementing new namespaces and directives.

Reference: ZOPE3/doc/zcml

See also: Component, Component Architecture

Zope Management Interface (ZMI)

ZMI is the formal name of the Zope 3 Web GUI that is used to manage content
component instances and TTW software.

See also: Content, Through-the-Web Development

Zope Object Database (ZODB)

The ZODB stores all persistent data for Zope. It is a scalable, robust and well-
established object database completely written in Python. Using the persistent
mechanism, object data can be stored without any additional code. The ZODB
has also two-phase transaction support and scalability is ensured through the distri-
bution of the data to several machines using the Zope Enterprise Option (ZEO).

Reference: ZODB

See also: Persistent, Transaction

Zope Page Template (ZPT)

Page templates are the integration of TAL, TALES and METAL into Zope. You
can write so called ZPT scripts that are executed at run time. ZPT’s will provide
a Zope-specific context, environment and base names for TAL, which makes them
extremely useful. They are used as the primary tool to create HTML-based views in
Zope 3.

Reference: zope.pagetemplate.pagetemplate.PageTemplate

See also: TAL, TALES

APPENDIX B

CREDITS

• Stephan Richter (srichter@cosmos.phy.tufts.edu) is the main author of the
book.

• Garrett Smith (garrett@mojave-corp.com) provided the original version of the
“Installing Zope Products” chapter.

• Marius Gedminas (mgedmin@codeworks.lt) provided much technical insight
and example code for “Setting up a Virtual Hosting Environment” with Apache.

• Ken Manheimer (klm@zope.com) provided a different view on meta data in
“Meta Data and the Dublin Core”.

• Brad Bollenbach (brad@bbnet.ca) gave useful feedback and corrections to the
chapter for “Internationalizing a Product” and other chapters.

• Sutharsan “Xerophyte” Kathirgamu (xerophyte@linuxnetworkcare.com)
commented on early versions of the “Content Components” chapters and made
suggestions.

• Lalo Martin (e-mail) corrected some typos.

• Marcus Ertl (e-mail) provided feedback to the early version of the Content
Components chapters and corrected bugs.

• Gintautas Miliauskas (gintas@pov.lt) fixed numerous typos and corrected
some mistakes.

• Lex Berezhny (LBerezhny@DevIS.com) proof-read many chapters and sent in
corrections. He also provided general feedback about the book as a whole.

• Eckart Hertzler (hertzler.eckart@guj.de) updated and reviewed many of the
content component chapters.

455

456
Zope 3 Developer’s Book

PART VIII APPENDIX

• Paul Everitt (paul@zope-europe.org) proof-read some chapters to point out
unclear paragraphs and fixed grammer/spelling mistakes.

• Max M (maxm@mxm.dk) pointed out a mistake with a URL in the text.

Please let me know, if I forgot you!

APPENDIX C

ATTRIBUTION-NODERIVS-
NONCOMMERCIAL LICENSE 1.0

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF
THIS CREATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”).
THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICA-
BLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UN-
DER THIS LICENSE IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU
ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE.
THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSID-
ERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

(a) “Collective Work” means a work, such as a periodical issue, anthology or
encyclopedia, in which the Work in its entirety in unmodified form, along
with a number of other contributions, constituting separate and indepen-
dent works in themselves, are assembled into a collective whole. A work
that constitutes a Collective Work will not be considered a Derivative Work
(as defined below) for the purposes of this License.

(b) “Derivative Work” means a work based upon the Work or upon the Work
and other pre-existing works, such as a translation, musical arrangement,
dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the
Work may be recast, transformed, or adapted, except that a work that
constitutes a Collective Work will not be considered a Derivative Work for
the purpose of this License.

(c) “Licensor” means the individual or entity that offers the Work under the
terms of this License.

457

458
Zope 3 Developer’s Book

PART VIII APPENDIX

(d) “Original Author” means the individual or entity who created the Work.

(e) “Work” means the copyrightable work of authorship offered under the terms
of this License.

(f) “You” means an individual or entity exercising rights under this License
who has not previously violated the terms of this License with respect to
the Work, or who has received express permission from the Licensor to
exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict
any rights arising from fair use, first sale or other limitations on the exclusive
rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor
hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in the Work
as stated below:

(a) to reproduce the Work, to incorporate the Work into one or more Collective
Works, and to reproduce the Work as incorporated in the Collective Works;
to distribute copies or phonorecords of, display publicly, perform publicly,
and perform publicly by means of a digital audio transmission the Work
including as incorporated in Collective Works;

(b) The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats. All rights not expressly granted by Licensor are
hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject
to and limited by the following restrictions:

(a) You may distribute, publicly display, publicly perform, or publicly digitally
perform the Work only under the terms of this License, and You must in-
clude a copy of, or the Uniform Resource Identifier for, this License with ev-
ery copy or phonorecord of the Work You distribute, publicly display, pub-
licly perform, or publicly digitally perform. You may not offer or impose
any terms on the Work that alter or restrict the terms of this License or the
recipients’ exercise of the rights granted hereunder. You may not sublicense
the Work. You must keep intact all notices that refer to this License and to
the disclaimer of warranties. You may not distribute, publicly display, pub-
licly perform, or publicly digitally perform the Work with any technological

APPENDIX C LICENSE
459

measures that control access or use of the Work in a manner inconsistent
with the terms of this License Agreement. The above applies to the Work
as incorporated in a Collective Work, but this does not require the Collec-
tive Work apart from the Work itself to be made subject to the terms of
this License. If You create a Collective Work, upon notice from any Licen-
sor You must, to the extent practicable, remove from the Collective Work
any reference to such Licensor or the Original Author, as requested.

(b) You may not exercise any of the rights granted to You in Section 3 above
in any manner that is primarily intended for or directed toward commer-
cial advantage or private monetary compensation. The exchange of the
Work for other copyrighted works by means of digital file-sharing or oth-
erwise shall not be considered to be intended for or directed toward com-
mercial advantage or private monetary compensation, provided there is no
payment of any monetary compensation in connection with the exchange
of copyrighted works.

(c) If you distribute, publicly display, publicly perform, or publicly digitally
perform the Work or any Collective Works, You must keep intact all copy-
right notices for the Work and give the Original Author credit reason-
able to the medium or means You are utilizing by conveying the name
(or pseudonym if applicable) of the Original Author if supplied; the title
of the Work if supplied. Such credit may be implemented in any reason-
able manner; provided, however, that in the case of a Collective Work, at a
minimum such credit will appear where any other comparable authorship
credit appears and in a manner at least as prominent as such other compa-
rable authorship credit.

5. Representations, Warranties and Disclaimer

(a) By offering the Work for public release under this License, Licensor repre-
sents and warrants that, to the best of Licensor’s knowledge after reason-
able inquiry:

i. Licensor has secured all rights in the Work necessary to grant the li-
cense rights hereunder and to permit the lawful exercise of the rights
granted hereunder without You having any obligation to pay any roy-
alties, compulsory license fees, residuals or any other payments;

ii. The Work does not infringe the copyright, trademark, publicity rights,
common law rights or any other right of any third party or constitute
defamation, invasion of privacy or other tortious injury to any third
party.

460
Zope 3 Developer’s Book

PART VIII APPENDIX

(b) EXCEPT AS EXPRESSLY STATED IN THIS LICENSE OR OTH-
ERWISE AGREED IN WRITING OR REQUIRED BY APPLICABLE
LAW, THE WORK IS LICENSED ON AN “AS IS” BASIS, WITHOUT
WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED IN-
CLUDING, WITHOUT LIMITATION, ANY WARRANTIES REGARD-
ING THE CONTENTS OR ACCURACY OF THE WORK.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLI-
CABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABIL-
ITY TO A THIRD PARTY RESULTING FROM BREACH OF THE WAR-
RANTIES IN SECTION 5, IN NO EVENT WILL LICENSOR BE LIABLE TO
YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will terminate automatically
upon any breach by You of the terms of this License. Individuals or entities
who have received Collective Works from You under this License, however,
will not have their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
will survive any termination of this License.

(b) Subject to the above terms and conditions, the license granted here is per-
petual (for the duration of the applicable copyright in the Work). Notwith-
standing the above, Licensor reserves the right to release the Work under
different license terms or to stop distributing the Work at any time; pro-
vided, however that any such election will not serve to withdraw this Li-
cense (or any other license that has been, or is required to be, granted un-
der the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

8. Miscellaneous

(a) Each time You distribute or publicly digitally perform the Work or a Col-
lective Work, the Licensor offers to the recipient a license to the Work on
the same terms and conditions as the license granted to You under this Li-
cense.

(b) If any provision of this License is invalid or unenforceable under applicable
law, it shall not affect the validity or enforceability of the remainder of

APPENDIX C LICENSE
461

the terms of this License, and without further action by the parties to
this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

(c) No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed
by the party to be charged with such waiver or consent.

(d) This License constitutes the entire agreement between the parties with re-
spect to the Work licensed here. There are no understandings, agreements
or representations with respect to the Work not specified here. Licensor
shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

462
Zope 3 Developer’s Book

PART VIII APPENDIX

APPENDIX D

ZOPE PUBLIC LICENSE (ZPL)
VERSION 2.1

A copyright notice accompanies this license document that identifies the copyright
holders.

This license has been certified as open source. It has also been designated as GPL
compatible by the Free Software Foundation (FSF).

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions in source code must retain the accompanying copyright notice,
this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the accompanying copyright no-
tice, this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Names of the copyright holders must not be used to endorse or promote products
derived from this software without prior written permission from the copyright
holders.

4. The right to distribute this software or to use it for any purpose does not give you
the right to use Servicemarks (sm) or Trademarks (tm) of the copyright holders.
Use of them is covered by separate agreement with the copyright holders.

5. If any files are modified, you must cause the modified files to carry prominent
notices stating that you changed the files and the date of any change.

463

464
Zope 3 Developer’s Book

PART VIII APPENDIX

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS “AS IS”
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Index

absolute url, 282
Acquisition, xiii, 43
Annotations, 241, 243, 435

Attribute Annotations, 243
IAnnotatable, 244
IAnnotations, 244
IAttributeAnnotatable, 244

Key, 244
Apache

access log, 25
error log, 25
Rewrite Engine, 25
SSL Encryption, 24

Application Server, xi
Authentication, 255

Browser, xi
BrowserView, 114
BTreeContainer, 100

Cache, 436
CMF Tools (Zope 2), 42
COM, 42
Component Architecture, xi, 41, 437
Components, 436

Adapter, 44, 143, 435
Content, 91, 437
Factory, 45, 439
Presentation, 46, 444
Service, 42, 448
Utility, 45, 451

configuration, 61
Conflict Error, 390

Container, 437
Constraints, 95
IContainer, 95, 300
IContainmentRoot, 282
IContentContainer, 103
IWriteContainer, 99

Content Management System, xi
Content Objects

Folder, 11, 99, 440
content space, 14
Context, 438
Corba, 42
CustomWidget, 59
Cygwin, 4

default package, 16
Development

Coding Style, 32
Directory Hierarchy, 32
Process, 29
Python Coding Rules, 33
Test Coding Rules, 35
ZCML Coding Rules, 34
ZPL Header, 33
ZPT Coding Rules, 35

Dispatcher, 386
Display Widget, 55
Doctests, 438
DTML, xiii, 438
Dublin Core, 75, 244, 438

Elements, 76

Events, 165, 439

465

466
Zope 3 Developer’s Book

Event Channel, 439
Event Subscriber, 165, 439
ObjectCreatedEvent, 246
Subscriber, 172

Exception View, 325
eXtreme Programming, 29

Pair Programming, 444
Sprints, 29, 448

Field, 50, 94, 125, 440
Fields

Choice, 316
List, 316
Set, 316
Text, 127
Tuple, 126, 316

Filesystem
IReadDirectory, 202
IReadFile, 205
IWriteDirectory, 202

Find, 11
Five, 88
Form, xiii, 55, 440
Formulator, xiii, 50
FTP, 201

Publisher, 201
Server, 5

Functional Tests, 441

Gadfly, xiii
gcc, 4
Global Components, 441
Global Utility, 241, 279
Global vs. Local, 47
Grant Rights, 11

Help, 11
HTML form, 49
HTMLSourceWidget, 130

I18n, 68, 149

() Function, 150
DateTimeFormatter, 154

domain, 151
GNU Gettext, 69
i18n namespace, 68
i18nextract.py, 157

ICU, 69
KBabel, 158
locale, 69, 70
message catalog, 69, 70
Message Id, 71
Message Id factory, 151
msgfmt, 158
msgmerge, 158

PO Files, 71
Translation Service, 68
unicode, 69

ICMFDublinCore, 114
IItemMapping, 99
ILocalUtility, 304
Input Widget, 55
Installation

Binary Distro, 8
Confirmation, 21
Packages, 1, 19
Source, 6
SVN, 4
Using Apache, 23
Virtual Hosts, 23
Zope 3, 1, 3

Interface, 37, 93, 441
Attribute, 38
marker, 39
Method, 39
usage/application, 40
verification, 40

Internationalization (I18n), xiii, 442
Introspector, 13
IPrincipalSource, 256
IReadMapping, 99

467

ISized, 144
ITALESFunctionNamespace, 339
IZopeTalesAPI, 338

JMX, 42

KParts, 42

L10n, 68, 150
Local Components, 442
Local Utility, 241, 299
Locale, 150, 442
Localization (L10n), xiii, 442
Localizer, xiii, 68
Location, 442

MacOS X, 4
Message Catalog, 443
Meta-data, 443
meta-data, 75
Mozilla API, 42
MS Windows, 4

Namespace, 443
NotFoundError, 324

Online Help, 197

Package
Wiki, 20

Page Templates
i18n namespace, 73

ZPT, xiii, 454
ZPT Page, 11

Persistent, 444
Porting Apps, 86
Precondition, 95
Presentation

dialog macros, 227
Layer, 46, 226
Resource, 46, 275, 446
Skin, 47, 225

skin macros, 227
View, 46

Principal Source, 255
Proxy, 445
Publication, 388
Publisher, 387, 445
pyskel.py, 31, 98
Python, xi
Python Developer, 446

Relational Database Adapter, 446
Request, 386, 446
Resource, see Presentation

Schema, xiii, 38, 50, 94, 447
Scripter, 447
Security, 447

Checker, 384, 436
Initial Principals, 5
Interaction, 378, 441
Management, 378
Participation, 378, 444
Permission, 135, 444
Policy, 135, 379, 447
Principal, 135, 256, 383, 445
Proxy, 378
Role, 136, 446

Server, 387
Server Channel, 386
Service

Authentication, 255
Principal Annotation, 267
Service, 42
Utility, 42, 279

Session, 448
SimplePrincipal, 260
Site, 15, 47, 448
Socket, 386
software space, 14
Strip-O-Gram, 134

468
Zope 3 Developer’s Book

stub-implementation, 31
SVN, 4

TAL, 449
TALES, 329, 361, 449

Context, 362
Context, 367

Engine, 340, 362
Expression, 362
expression, 367
ExpressionEngine, 367

Register Expression, 371
TALES Namespace, 338

Tamino XML Database, xi
Task Dispatcher, 387
TCP Watch, 420
Templated Page, see Page Templates
Tests, 449

BrowserTestCase, 412
Doc Tests, 96
Doctests, 406
DocTestSuite, 407

Field, 129
Functional Doctests, 420
Functional Tests, 35, 412
FunctionalDocFileSuite, 423

Interface Tests, 31
setUp(), 407
tearDown(), 407

Test, 399
Test Case, 399
Test Runner, 399
Test Runner Config File, 402
Test Suite, 399
Unit Tests, 96, 399, 451
Verify Interface, 35

Through-The-Web (TTW) Development,
15

Tokenized Vocabulary, 317
Transaction, 450

Translation Domain, 450
Traversal, 343, 388, 451
Traverser, 344

publishTraverse(), 346
TTW Development, 450
Twisted, xi

Un*x/Linux, 4
Undo, 11
Unit Tests, see Tests
URL Namespace, 24

skin, 10
vh (Virtual Hosting), 24

User, 451
User Error, 324
Utility

Translation Domain, 16, 68

ValidationError, 127, 131
View, 452
Virtual Hosting, 452
Visual C++, 4
Vocabulary, 316
Volatile Objects, 452

WebDAV, 453
Namespace, 352
Server, 5

Widget, xiii, 55, 125, 453
Workflow, xi, 183, 244, 453

activity model, 194
Content Workflows Manager, 195
DCWorkflow (Zope 2), 194
entity model, 194
OpenFlow (Zope 2), 194
Process Definition, 183, 194
Process Instance, 195
Process Instance Container, 195
stateful, 194
Stateful Process Definition, 184
WfMC, 194

469

workflow-relevant data, 195

XML-RPC, xi, 217
MethodPublisher, 219

Server, 5
XMLRPCRequest, 219

zapi, 114
ZBabel, xiii, 68
ZCML, 61, 453

configure.zcml, 63
Directive, 62
Directive Handler, 288, 333
Directive Schema, 287, 333
meta namespace, 63
meta.zcml, 63
metadirectives.zcml, 63

Namespaces, 65
Simple Directive, 332
Special Fields, 63

ZCML Directive, 329, 331
browser:addform, 107, 112
browser:containerViews, 112
browser:defaultView, 119
browser:editform, 107, 112
browser:icon, 122
browser:layer, 226
browser:page, 112, 115
browser:resource, 228, 276
browser:resourceDirectory, 277
browser:skin, 226
browser:view, 112
help:register, 199
mail:queuedService, 175
mail:smtpMailer, 174
meta:complexDirective, 335
meta:complexDirective, 291
meta:directive, 291, 335
meta:directives, 291, 335
meta:subdirective, 335

tales:expressiontype, 371
xmlrpc:view, 223
zope:adapter, 146, 249
zope:allow, 104
zope:content, 103
zope:factory, 103
zope:grant, 139
zope:implements, 103
zope:interface, 103
zope:permission, 137
zope:principal, 140
zope:require, 104
zope:role, 139
zope:subscriber, 175
zope:vocabulary, 294, 316

ZConfig, 453
ZMI, 454
ZODB, 454
Zope, xi
Zope 2 compatibility, 87
Zope Contributor Agreement, 30
Zope Management Interface (ZMI), xii

Layout, 10
Zwiki for Zope 2, 86

